
Rocky Enterprise Linux 9.2 Manual Pages on command 'ld.so.8'

$ man ld.so.8

LD.SO(8)                   Linux Programmer's Manual                  LD.SO(8)

NAME

       ld.so, ld-linux.so - dynamic linker/loader

SYNOPSIS

       The dynamic linker can be run either indirectly by running some dynami?

       cally linked program or shared object (in which  case  no  command-line

       options  to  the dynamic linker can be passed and, in the ELF case, the

       dynamic linker which is stored in the .interp section of the program is

       executed) or directly by running:

       /lib/ld-linux.so.*  [OPTIONS] [PROGRAM [ARGUMENTS]]

DESCRIPTION

       The  programs  ld.so  and ld-linux.so* find and load the shared objects

       (shared libraries) needed by a program, prepare the program to run, and

       then run it.

       Linux binaries require dynamic linking (linking at run time) unless the

       -static option was given to ld(1) during compilation.

       The program ld.so handles a.out binaries, a  binary  format  used  long

       ago.    The   program   ld-linux.so*   (/lib/ld-linux.so.1  for  libc5, Page 1/14



       /lib/ld-linux.so.2 for glibc2) handles binaries that are  in  the  more

       modern  ELF  format.  Both programs have the same behavior, and use the

       same   support   files   and   programs   (ldd(1),   ldconfig(8),   and

       /etc/ld.so.conf).

       When resolving shared object dependencies, the dynamic linker first in?

       spects each dependency string to see if it contains a slash  (this  can

       occur  if  a shared object pathname containing slashes was specified at

       link time).  If a slash is found, then the dependency string is  inter?

       preted  as  a (relative or absolute) pathname, and the shared object is

       loaded using that pathname.

       If a shared object dependency does not contain  a  slash,  then  it  is

       searched for in the following order:

       o  Using  the directories specified in the DT_RPATH dynamic section at?

          tribute of the binary if present and DT_RUNPATH attribute  does  not

          exist.  Use of DT_RPATH is deprecated.

       o  Using  the  environment  variable  LD_LIBRARY_PATH,  unless the exe?

          cutable is being run in secure-execution mode (see below), in  which

          case this variable is ignored.

       o  Using  the  directories  specified in the DT_RUNPATH dynamic section

          attribute of the binary if present.  Such directories  are  searched

          only  to  find those objects required by DT_NEEDED (direct dependen?

          cies) entries and do not apply to  those  objects'  children,  which

          must  themselves  have their own DT_RUNPATH entries.  This is unlike

          DT_RPATH, which is applied to searches for all children in  the  de?

          pendency tree.

       o  From the cache file /etc/ld.so.cache, which contains a compiled list

          of candidate shared objects previously found in  the  augmented  li?

          brary path.  If, however, the binary was linked with the -z nodeflib

          linker option, shared objects in  the  default  paths  are  skipped.

          Shared objects installed in hardware capability directories (see be?

          low) are preferred to other shared objects.

       o  In the default path /lib, and then /usr/lib.  (On some 64-bit archi?

          tectures,  the  default  paths for 64-bit shared objects are /lib64, Page 2/14



          and then /usr/lib64.)  If the binary was linked with the -z nodeflib

          linker option, this step is skipped.

   Dynamic string tokens

       In several places, the dynamic linker expands dynamic string tokens:

       o  In the environment variables LD_LIBRARY_PATH, LD_PRELOAD, and LD_AU?

          DIT,

       o  inside the values of the dynamic section tags  DT_NEEDED,  DT_RPATH,

          DT_RUNPATH, DT_AUDIT, and DT_DEPAUDIT of ELF binaries,

       o  in  the  arguments  to the ld.so command line options --audit, --li?

          brary-path, and --preload (see below), and

       o  in the filename arguments to the dlopen(3) and dlmopen(3) functions.

       The substituted tokens are as follows:

       $ORIGIN (or equivalently ${ORIGIN})

              This expands to the directory containing the program  or  shared

              object.   Thus,  an  application located in somedir/app could be

              compiled with

                  gcc -Wl,-rpath,'$ORIGIN/../lib'

              so that it finds an associated shared object in  somedir/lib  no

              matter  where  somedir  is  located  in the directory hierarchy.

              This facilitates the creation of "turn-key" applications that do

              not  need  to be installed into special directories, but can in?

              stead be unpacked into any directory and still  find  their  own

              shared objects.

       $LIB (or equivalently ${LIB})

              This  expands  to  lib  or  lib64  depending on the architecture

              (e.g., on x86-64, it expands to lib64 and on x86-32, it  expands

              to lib).

       $PLATFORM (or equivalently ${PLATFORM})

              This  expands to a string corresponding to the processor type of

              the host system (e.g., "x86_64").  On  some  architectures,  the

              Linux  kernel  doesn't  provide a platform string to the dynamic

              linker.  The value of this string is taken from the  AT_PLATFORM

              value in the auxiliary vector (see getauxval(3)). Page 3/14



       Note that the dynamic string tokens have to be quoted properly when set

       from a shell, to prevent their expansion as shell or environment  vari?

       ables.

OPTIONS

       --audit list

              Use  objects named in list as auditors.  The objects in list are

              delimited by colons.

       --inhibit-cache

              Do not use /etc/ld.so.cache.

       --library-path path

              Use path instead of LD_LIBRARY_PATH environment variable setting

              (see  below).   The  names  ORIGIN, LIB, and PLATFORM are inter?

              preted as for the LD_LIBRARY_PATH environment variable.

       --inhibit-rpath list

              Ignore RPATH and RUNPATH information in object  names  in  list.

              This  option  is  ignored  when running in secure-execution mode

              (see below).  The objects in list are  delimited  by  colons  or

              spaces.

       --list List all dependencies and how they are resolved.

       --preload list (since glibc 2.30)

              Preload  the objects specified in list.  The objects in list are

              delimited by colons or spaces.  The objects are preloaded as ex?

              plained  in  the description of the LD_PRELOAD environment vari?

              able below.

              By contrast with LD_PRELOAD, the --preload option provides a way

              to  perform preloading for a single executable without affecting

              preloading performed in any child process that  executes  a  new

              program.

       --verify

              Verify  that  program  is  dynamically  linked  and this dynamic

              linker can handle it.

ENVIRONMENT

       Various environment variables influence the operation  of  the  dynamic Page 4/14



       linker.

   Secure-execution mode

       For  security  reasons,  if the dynamic linker determines that a binary

       should be run in secure-execution mode, the effects of some environment

       variables  are  voided  or  modified, and furthermore those environment

       variables are stripped from the environment, so that the  program  does

       not  even see the definitions.  Some of these environment variables af?

       fect the operation of the dynamic linker itself, and are described  be?

       low.    Other  environment  variables  treated  in  this  way  include:

       GCONV_PATH,  GETCONF_DIR,  HOSTALIASES,  LOCALDOMAIN,   LOCPATH,   MAL?

       LOC_TRACE,  NIS_PATH,  NLSPATH,  RESOLV_HOST_CONF, RES_OPTIONS, TMPDIR,

       and TZDIR.

       A binary is executed in secure-execution mode if the AT_SECURE entry in

       the  auxiliary vector (see getauxval(3)) has a nonzero value.  This en?

       try may have a nonzero value for various reasons, including:

       *  The process's real and effective user IDs differ, or  the  real  and

          effective  group  IDs  differ.  This typically occurs as a result of

          executing a set-user-ID or set-group-ID program.

       *  A process with a non-root user ID executed a binary  that  conferred

          capabilities to the process.

       *  A nonzero value may have been set by a Linux Security Module.

   Environment variables

       Among the more important environment variables are the following:

       LD_ASSUME_KERNEL (since glibc 2.2.3)

              Each  shared object can inform the dynamic linker of the minimum

              kernel ABI version that it requires.  (This requirement  is  en?

              coded  in an ELF note section that is viewable via readelf -n as

              a section labeled NT_GNU_ABI_TAG.)  At  run  time,  the  dynamic

              linker determines the ABI version of the running kernel and will

              reject loading shared objects that specify minimum ABI  versions

              that exceed that ABI version.

              LD_ASSUME_KERNEL  can be used to cause the dynamic linker to as?

              sume that it is running on a system with a different kernel  ABI Page 5/14



              version.  For example, the following command line causes the dy?

              namic linker to assume it is running on Linux 2.2.5 when loading

              the shared objects required by myprog:

                  $ LD_ASSUME_KERNEL=2.2.5 ./myprog

              On systems that provide multiple versions of a shared object (in

              different directories in the search path)  that  have  different

              minimum kernel ABI version requirements, LD_ASSUME_KERNEL can be

              used to select the version of the object that is used (dependent

              on the directory search order).

              Historically,  the  most common use of the LD_ASSUME_KERNEL fea?

              ture was to manually select the older LinuxThreads POSIX threads

              implementation  on  systems  that provided both LinuxThreads and

              NPTL (which latter was typically the default on  such  systems);

              see pthreads(7).

       LD_BIND_NOW (since glibc 2.1.1)

              If  set  to  a nonempty string, causes the dynamic linker to re?

              solve all symbols at program startup instead of deferring  func?

              tion  call  resolution  to  the point when they are first refer?

              enced.  This is useful when using a debugger.

       LD_LIBRARY_PATH

              A list of directories in which to search for  ELF  libraries  at

              execution  time.   The items in the list are separated by either

              colons or semicolons, and there is no support for  escaping  ei?

              ther separator.  A zero-length directory name indicates the cur?

              rent working directory.

              This variable is ignored in secure-execution mode.

              Within the pathnames specified in LD_LIBRARY_PATH,  the  dynamic

              linker  expands  the tokens $ORIGIN, $LIB, and $PLATFORM (or the

              versions using curly braces around the names) as described above

              in  Dynamic  string  tokens.   Thus,  for example, the following

              would cause a library to be searched for in either  the  lib  or

              lib64 subdirectory below the directory containing the program to

              be executed: Page 6/14



                  $ LD_LIBRARY_PATH='$ORIGIN/$LIB' prog

              (Note the use of single quotes, which prevent expansion of $ORI?

              GIN and $LIB as shell variables!)

       LD_PRELOAD

              A  list  of additional, user-specified, ELF shared objects to be

              loaded before all others.  This feature can be  used  to  selec?

              tively override functions in other shared objects.

              The  items of the list can be separated by spaces or colons, and

              there is no support for escaping either separator.  The  objects

              are  searched  for using the rules given under DESCRIPTION.  Ob?

              jects are searched for and added to the link map in the left-to-

              right order specified in the list.

              In  secure-execution  mode, preload pathnames containing slashes

              are ignored.  Furthermore, shared  objects  are  preloaded  only

              from  the standard search directories and only if they have set-

              user-ID mode bit enabled (which is not typical).

              Within the names specified in the LD_PRELOAD list,  the  dynamic

              linker  understands  the tokens $ORIGIN, $LIB, and $PLATFORM (or

              the versions using curly braces around the names)  as  described

              above  in  Dynamic  string  tokens.  (See also the discussion of

              quoting under the description of LD_LIBRARY_PATH.)

              There are various methods of specifying  libraries  to  be  pre?

              loaded, and these are handled in the following order:

              (1) The LD_PRELOAD environment variable.

              (2) The  --preload command-line option when invoking the dynamic

                  linker directly.

              (3) The /etc/ld.so.preload file (described below).

       LD_TRACE_LOADED_OBJECTS

              If set (to any value), causes the program to  list  its  dynamic

              dependencies, as if run by ldd(1), instead of running normally.

       Then there are lots of more or less obscure variables, many obsolete or

       only for internal use.

       LD_AUDIT (since glibc 2.4) Page 7/14



              A list of user-specified, ELF shared objects to be loaded before

              all  others  in a separate linker namespace (i.e., one that does

              not intrude upon the normal symbol bindings that would occur  in

              the process) These objects can be used to audit the operation of

              the dynamic linker.  The items in the list are  colon-separated,

              and there is no support for escaping the separator.

              LD_AUDIT is ignored in secure-execution mode.

              The  dynamic  linker will notify the audit shared objects at so-

              called auditing checkpoints?for example, loading  a  new  shared

              object,  resolving  a  symbol,  or calling a symbol from another

              shared object?by calling an appropriate function within the  au?

              dit  shared object.  For details, see rtld-audit(7).  The audit?

              ing interface is largely compatible with that  provided  on  So?

              laris,  as  described  in its Linker and Libraries Guide, in the

              chapter Runtime Linker Auditing Interface.

              Within the names specified in the  LD_AUDIT  list,  the  dynamic

              linker  understands  the tokens $ORIGIN, $LIB, and $PLATFORM (or

              the versions using curly braces around the names)  as  described

              above  in  Dynamic  string  tokens.  (See also the discussion of

              quoting under the description of LD_LIBRARY_PATH.)

              Since glibc 2.13, in secure-execution mode, names in  the  audit

              list  that  contain slashes are ignored, and only shared objects

              in the standard search directories  that  have  the  set-user-ID

              mode bit enabled are loaded.

       LD_BIND_NOT (since glibc 2.1.95)

              If this environment variable is set to a nonempty string, do not

              update the GOT (global offset table) and PLT (procedure  linkage

              table)  after resolving a function symbol.  By combining the use

              of this variable with LD_DEBUG (with the categories bindings and

              symbols), one can observe all run-time function bindings.

       LD_DEBUG (since glibc 2.1)

              Output  verbose debugging information about operation of the dy?

              namic linker.  The content of this variable is one  of  more  of Page 8/14



              the  following  categories,  separated by colons, commas, or (if

              the value is quoted) spaces:

              help        Specifying help in the value of this  variable  does

                          not  run  the specified program, and displays a help

                          message about which categories can be  specified  in

                          this environment variable.

              all         Print  all  debugging information (except statistics

                          and unused; see below).

              bindings    Display information about which definition each sym?

                          bol is bound to.

              files       Display progress for input file.

              libs        Display library search paths.

              reloc       Display relocation processing.

              scopes      Display scope information.

              statistics  Display relocation statistics.

              symbols     Display search paths for each symbol look-up.

              unused      Determine unused DSOs.

              versions    Display version dependencies.

              Since glibc 2.3.4, LD_DEBUG is ignored in secure-execution mode,

              unless the file /etc/suid-debug exists (the content of the  file

              is irrelevant).

       LD_DEBUG_OUTPUT (since glibc 2.1)

              By  default,  LD_DEBUG  output is written to standard error.  If

              LD_DEBUG_OUTPUT is defined, then output is written to the  path?

              name  specified by its value, with the suffix "." (dot) followed

              by the process ID appended to the pathname.

              LD_DEBUG_OUTPUT is ignored in secure-execution mode.

       LD_DYNAMIC_WEAK (since glibc 2.1.91)

              By default, when searching shared libraries to resolve a  symbol

              reference,  the dynamic linker will resolve to the first defini?

              tion it finds.

              Old glibc versions (before 2.2), provided a different  behavior:

              if  the  linker  found a symbol that was weak, it would remember Page 9/14



              that symbol and keep  searching  in  the  remaining  shared  li?

              braries.   If  it  subsequently found a strong definition of the

              same symbol, then it would instead use that definition.  (If  no

              further  symbol was found, then the dynamic linker would use the

              weak symbol that it initially found.)

              The old glibc behavior was nonstandard.  (Standard  practice  is

              that the distinction between weak and strong symbols should have

              effect only at static link time.)  In  glibc  2.2,  the  dynamic

              linker  was  modified to provide the current behavior (which was

              the behavior that was provided by most other implementations  at

              that time).

              Defining  the  LD_DYNAMIC_WEAK  environment  variable  (with any

              value) provides the old (nonstandard) glibc behavior, whereby  a

              weak  symbol in one shared library may be overridden by a strong

              symbol subsequently discovered in another shared library.  (Note

              that even when this variable is set, a strong symbol in a shared

              library will not override a weak definition of the  same  symbol

              in the main program.)

              Since  glibc  2.3.4, LD_DYNAMIC_WEAK is ignored in secure-execu?

              tion mode.

       LD_HWCAP_MASK (since glibc 2.1)

              Mask for hardware capabilities.

       LD_ORIGIN_PATH (since glibc 2.1)

              Path where the binary is found.

              Since glibc 2.4, LD_ORIGIN_PATH is ignored  in  secure-execution

              mode.

       LD_POINTER_GUARD (glibc from 2.4 to 2.22)

              Set  to  0 to disable pointer guarding.  Any other value enables

              pointer guarding, which is also the default.   Pointer  guarding

              is  a security mechanism whereby some pointers to code stored in

              writable program memory (return addresses saved by setjmp(3)  or

              function  pointers  used by various glibc internals) are mangled

              semi-randomly to make it more difficult for an attacker  to  hi? Page 10/14



              jack  the  pointers  for use in the event of a buffer overrun or

              stack-smashing attack.  Since glibc 2.23,  LD_POINTER_GUARD  can

              no  longer be used to disable pointer guarding, which is now al?

              ways enabled.

       LD_PROFILE (since glibc 2.1)

              The name of a (single) shared object to be  profiled,  specified

              either  as a pathname or a soname.  Profiling output is appended

              to the file whose name is:  "$LD_PROFILE_OUTPUT/$LD_PROFILE.pro?

              file".

              Since  glibc  2.2.5,  LD_PROFILE  is ignored in secure-execution

              mode.

       LD_PROFILE_OUTPUT (since glibc 2.1)

              Directory where LD_PROFILE output should be  written.   If  this

              variable  is not defined, or is defined as an empty string, then

              the default is /var/tmp.

              LD_PROFILE_OUTPUT is ignored in secure-execution  mode;  instead

              /var/profile  is always used.  (This detail is relevant only be?

              fore glibc 2.2.5, since in later glibc versions,  LD_PROFILE  is

              also ignored in secure-execution mode.)

       LD_SHOW_AUXV (since glibc 2.1)

              If  this  environment variable is defined (with any value), show

              the auxiliary array passed up from the kernel (see also  getaux?

              val(3)).

              Since  glibc  2.3.4, LD_SHOW_AUXV is ignored in secure-execution

              mode.

       LD_TRACE_PRELINKING (since glibc 2.4)

              If this environment variable is defined, trace prelinking of the

              object  whose  name  is  assigned  to this environment variable.

              (Use ldd(1) to get a list of the objects that might be  traced.)

              If the object name is not recognized, then all prelinking activ?

              ity is traced.

       LD_USE_LOAD_BIAS (since glibc 2.3.3)

              By default (i.e., if this variable is not defined),  executables Page 11/14



              and  prelinked shared objects will honor base addresses of their

              dependent shared objects and (nonprelinked) position-independent

              executables (PIEs) and other shared objects will not honor them.

              If LD_USE_LOAD_BIAS is defined with the value 1,  both  executa?

              bles   and   PIEs   will   honor   the   base   addresses.    If

              LD_USE_LOAD_BIAS is defined with the value 0,  neither  executa?

              bles nor PIEs will honor the base addresses.

              Since  glibc 2.3.3, this variable is ignored in secure-execution

              mode.

       LD_VERBOSE (since glibc 2.1)

              If set to a nonempty string, output symbol  versioning  informa?

              tion  about  the program if the LD_TRACE_LOADED_OBJECTS environ?

              ment variable has been set.

       LD_WARN (since glibc 2.1.3)

              If set to a nonempty string, warn about unresolved symbols.

       LD_PREFER_MAP_32BIT_EXEC (x86-64 only; since glibc 2.23)

              According to the Intel Silvermont software  optimization  guide,

              for  64-bit  applications,  branch prediction performance can be

              negatively impacted when the target of a  branch  is  more  than

              4 GB  away from the branch.  If this environment variable is set

              (to any value), the dynamic linker will first try  to  map  exe?

              cutable pages using the mmap(2) MAP_32BIT flag, and fall back to

              mapping without that flag if that attempt fails.  NB:  MAP_32BIT

              will map to the low 2 GB (not 4 GB) of the address space.

              Because  MAP_32BIT  reduces  the address range available for ad?

              dress    space    layout    randomization    (ASLR),     LD_PRE?

              FER_MAP_32BIT_EXEC is always disabled in secure-execution mode.

FILES

       /lib/ld.so

              a.out dynamic linker/loader

       /lib/ld-linux.so.{1,2}

              ELF dynamic linker/loader

       /etc/ld.so.cache Page 12/14



              File  containing  a  compiled  list  of  directories in which to

              search for shared objects  and  an  ordered  list  of  candidate

              shared objects.  See ldconfig(8).

       /etc/ld.so.preload

              File  containing  a  whitespace-separated list of ELF shared ob?

              jects to be loaded before the program.  See  the  discussion  of

              LD_PRELOAD above.  If both LD_PRELOAD and /etc/ld.so.preload are

              employed, the libraries specified by  LD_PRELOAD  are  preloaded

              first.  /etc/ld.so.preload has a system-wide effect, causing the

              specified libraries to be preloaded for all  programs  that  are

              executed  on  the  system.  (This is usually undesirable, and is

              typically employed only as an emergency remedy, for example,  as

              a temporary workaround to a library misconfiguration issue.)

       lib*.so*

              shared objects

NOTES

   Hardware capabilities

       Some  shared  objects are compiled using hardware-specific instructions

       which do not exist on every CPU.  Such objects should be  installed  in

       directories whose names define the required hardware capabilities, such

       as /usr/lib/sse2/.  The dynamic linker checks these directories against

       the  hardware of the machine and selects the most suitable version of a

       given shared object.  Hardware capability directories can  be  cascaded

       to  combine  CPU  features.   The list of supported hardware capability

       names depends on the CPU.  The following  names  are  currently  recog?

       nized:

       Alpha  ev4, ev5, ev56, ev6, ev67

       MIPS   loongson2e, loongson2f, octeon, octeon2

       PowerPC

              4xxmac,  altivec, arch_2_05, arch_2_06, booke, cellbe, dfp, efp?

              double, efpsingle,  fpu,  ic_snoop,  mmu,  notb,  pa6t,  power4,

              power5,  power5+,  power6x,  ppc32,  ppc601,  ppc64,  smt,  spe,

              ucache, vsx Page 13/14



       SPARC  flush, muldiv, stbar, swap, ultra3, v9, v9v, v9v2

       s390   dfp, eimm, esan3, etf3enh,  g5,  highgprs,  hpage,  ldisp,  msa,

              stfle, z900, z990, z9-109, z10, zarch

       x86 (32-bit only)

              acpi, apic, clflush, cmov, cx8, dts, fxsr, ht, i386, i486, i586,

              i686, mca, mmx, mtrr, pat, pbe, pge, pn, pse36,  sep,  ss,  sse,

              sse2, tm

SEE ALSO

       ld(1),  ldd(1), pldd(1), sprof(1), dlopen(3), getauxval(3), elf(5), ca?

       pabilities(7), rtld-audit(7), ldconfig(8), sln(8)

COLOPHON

       This page is part of release 5.10 of the Linux  man-pages  project.   A

       description  of  the project, information about reporting bugs, and the

       latest    version    of    this    page,    can     be     found     at

       https://www.kernel.org/doc/man-pages/.

GNU                               2020-08-13                          LD.SO(8)

Page 14/14


