
Rocky Enterprise Linux 9.2 Manual Pages on command 'ld.1'

$ man ld.1

LD(1) GNU Development Tools LD(1)

NAME

 ld - The GNU linker

SYNOPSIS

 ld [options] objfile ...

DESCRIPTION

 ld combines a number of object and archive files, relocates their data

 and ties up symbol references. Usually the last step in compiling a

 program is to run ld.

 ld accepts Linker Command Language files written in a superset of

 AT&T's Link Editor Command Language syntax, to provide explicit and

 total control over the linking process.

 This man page does not describe the command language; see the ld entry

 in "info" for full details on the command language and on other aspects

 of the GNU linker.

 This version of ld uses the general purpose BFD libraries to operate on

 object files. This allows ld to read, combine, and write object files

 in many different formats---for example, COFF or "a.out". Different Page 1/67

 formats may be linked together to produce any available kind of object

 file.

 Aside from its flexibility, the GNU linker is more helpful than other

 linkers in providing diagnostic information. Many linkers abandon

 execution immediately upon encountering an error; whenever possible, ld

 continues executing, allowing you to identify other errors (or, in some

 cases, to get an output file in spite of the error).

 The GNU linker ld is meant to cover a broad range of situations, and to

 be as compatible as possible with other linkers. As a result, you have

 many choices to control its behavior.

OPTIONS

 The linker supports a plethora of command-line options, but in actual

 practice few of them are used in any particular context. For instance,

 a frequent use of ld is to link standard Unix object files on a

 standard, supported Unix system. On such a system, to link a file

 "hello.o":

 ld -o <output> /lib/crt0.o hello.o -lc

 This tells ld to produce a file called output as the result of linking

 the file "/lib/crt0.o" with "hello.o" and the library "libc.a", which

 will come from the standard search directories. (See the discussion of

 the -l option below.)

 Some of the command-line options to ld may be specified at any point in

 the command line. However, options which refer to files, such as -l or

 -T, cause the file to be read at the point at which the option appears

 in the command line, relative to the object files and other file

 options. Repeating non-file options with a different argument will

 either have no further effect, or override prior occurrences (those

 further to the left on the command line) of that option. Options which

 may be meaningfully specified more than once are noted in the

 descriptions below.

 Non-option arguments are object files or archives which are to be

 linked together. They may follow, precede, or be mixed in with

 command-line options, except that an object file argument may not be Page 2/67

 placed between an option and its argument.

 Usually the linker is invoked with at least one object file, but you

 can specify other forms of binary input files using -l, -R, and the

 script command language. If no binary input files at all are

 specified, the linker does not produce any output, and issues the

 message No input files.

 If the linker cannot recognize the format of an object file, it will

 assume that it is a linker script. A script specified in this way

 augments the main linker script used for the link (either the default

 linker script or the one specified by using -T). This feature permits

 the linker to link against a file which appears to be an object or an

 archive, but actually merely defines some symbol values, or uses

 "INPUT" or "GROUP" to load other objects. Specifying a script in this

 way merely augments the main linker script, with the extra commands

 placed after the main script; use the -T option to replace the default

 linker script entirely, but note the effect of the "INSERT" command.

 For options whose names are a single letter, option arguments must

 either follow the option letter without intervening whitespace, or be

 given as separate arguments immediately following the option that

 requires them.

 For options whose names are multiple letters, either one dash or two

 can precede the option name; for example, -trace-symbol and

 --trace-symbol are equivalent. Note---there is one exception to this

 rule. Multiple letter options that start with a lower case 'o' can

 only be preceded by two dashes. This is to reduce confusion with the

 -o option. So for example -omagic sets the output file name to magic

 whereas --omagic sets the NMAGIC flag on the output.

 Arguments to multiple-letter options must either be separated from the

 option name by an equals sign, or be given as separate arguments

 immediately following the option that requires them. For example,

 --trace-symbol foo and --trace-symbol=foo are equivalent. Unique

 abbreviations of the names of multiple-letter options are accepted.

 Note---if the linker is being invoked indirectly, via a compiler driver Page 3/67

 (e.g. gcc) then all the linker command-line options should be prefixed

 by -Wl, (or whatever is appropriate for the particular compiler driver)

 like this:

 gcc -Wl,--start-group foo.o bar.o -Wl,--end-group

 This is important, because otherwise the compiler driver program may

 silently drop the linker options, resulting in a bad link. Confusion

 may also arise when passing options that require values through a

 driver, as the use of a space between option and argument acts as a

 separator, and causes the driver to pass only the option to the linker

 and the argument to the compiler. In this case, it is simplest to use

 the joined forms of both single- and multiple-letter options, such as:

 gcc foo.o bar.o -Wl,-eENTRY -Wl,-Map=a.map

 Here is a table of the generic command-line switches accepted by the

 GNU linker:

 @file

 Read command-line options from file. The options read are inserted

 in place of the original @file option. If file does not exist, or

 cannot be read, then the option will be treated literally, and not

 removed.

 Options in file are separated by whitespace. A whitespace

 character may be included in an option by surrounding the entire

 option in either single or double quotes. Any character (including

 a backslash) may be included by prefixing the character to be

 included with a backslash. The file may itself contain additional

 @file options; any such options will be processed recursively.

 -a keyword

 This option is supported for HP/UX compatibility. The keyword

 argument must be one of the strings archive, shared, or default.

 -aarchive is functionally equivalent to -Bstatic, and the other two

 keywords are functionally equivalent to -Bdynamic. This option may

 be used any number of times.

 --audit AUDITLIB

 Adds AUDITLIB to the "DT_AUDIT" entry of the dynamic section. Page 4/67

 AUDITLIB is not checked for existence, nor will it use the

 DT_SONAME specified in the library. If specified multiple times

 "DT_AUDIT" will contain a colon separated list of audit interfaces

 to use. If the linker finds an object with an audit entry while

 searching for shared libraries, it will add a corresponding

 "DT_DEPAUDIT" entry in the output file. This option is only

 meaningful on ELF platforms supporting the rtld-audit interface.

 -b input-format

 --format=input-format

 ld may be configured to support more than one kind of object file.

 If your ld is configured this way, you can use the -b option to

 specify the binary format for input object files that follow this

 option on the command line. Even when ld is configured to support

 alternative object formats, you don't usually need to specify this,

 as ld should be configured to expect as a default input format the

 most usual format on each machine. input-format is a text string,

 the name of a particular format supported by the BFD libraries.

 (You can list the available binary formats with objdump -i.)

 You may want to use this option if you are linking files with an

 unusual binary format. You can also use -b to switch formats

 explicitly (when linking object files of different formats), by

 including -b input-format before each group of object files in a

 particular format.

 The default format is taken from the environment variable

 "GNUTARGET".

 You can also define the input format from a script, using the

 command "TARGET";

 -c MRI-commandfile

 --mri-script=MRI-commandfile

 For compatibility with linkers produced by MRI, ld accepts script

 files written in an alternate, restricted command language,

 described in the MRI Compatible Script Files section of GNU ld

 documentation. Introduce MRI script files with the option -c; use Page 5/67

 the -T option to run linker scripts written in the general-purpose

 ld scripting language. If MRI-cmdfile does not exist, ld looks for

 it in the directories specified by any -L options.

 -d

 -dc

 -dp These three options are equivalent; multiple forms are supported

 for compatibility with other linkers. They assign space to common

 symbols even if a relocatable output file is specified (with -r).

 The script command "FORCE_COMMON_ALLOCATION" has the same effect.

 --depaudit AUDITLIB

 -P AUDITLIB

 Adds AUDITLIB to the "DT_DEPAUDIT" entry of the dynamic section.

 AUDITLIB is not checked for existence, nor will it use the

 DT_SONAME specified in the library. If specified multiple times

 "DT_DEPAUDIT" will contain a colon separated list of audit

 interfaces to use. This option is only meaningful on ELF platforms

 supporting the rtld-audit interface. The -P option is provided for

 Solaris compatibility.

 --enable-non-contiguous-regions

 This option avoids generating an error if an input section does not

 fit a matching output section. The linker tries to allocate the

 input section to subseque nt matching output sections, and

 generates an error only if no output section is large enough. This

 is useful when several non-contiguous memory regions are available

 and the input section does not require a particular one. The order

 in which input sections are evaluated does not change, for

 instance:

 MEMORY {

 MEM1 (rwx) : ORIGIN : 0x1000, LENGTH = 0x14

 MEM2 (rwx) : ORIGIN : 0x1000, LENGTH = 0x40

 MEM3 (rwx) : ORIGIN : 0x2000, LENGTH = 0x40

 }

 SECTIONS { Page 6/67

 mem1 : { *(.data.*); } > MEM1

 mem2 : { *(.data.*); } > MEM2

 mem3 : { *(.data.*); } > MEM2

 }

 with input sections:

 .data.1: size 8

 .data.2: size 0x10

 .data.3: size 4

 results in .data.1 affected to mem1, and .data.2 and .data.3

 affected to mem2, even though .data.3 would fit in mem3.

 This option is incompatible with INSERT statements because it

 changes the way input sections are mapped to output sections.

 --enable-non-contiguous-regions-warnings

 This option enables warnings when "--enable-non-contiguous-regions"

 allows possibly unexpected matches in sections mapping, potentially

 leading to silently discarding a section instead of failing because

 it does not fit any output region.

 -e entry

 --entry=entry

 Use entry as the explicit symbol for beginning execution of your

 program, rather than the default entry point. If there is no

 symbol named entry, the linker will try to parse entry as a number,

 and use that as the entry address (the number will be interpreted

 in base 10; you may use a leading 0x for base 16, or a leading 0

 for base 8).

 --exclude-libs lib,lib,...

 Specifies a list of archive libraries from which symbols should not

 be automatically exported. The library names may be delimited by

 commas or colons. Specifying "--exclude-libs ALL" excludes symbols

 in all archive libraries from automatic export. This option is

 available only for the i386 PE targeted port of the linker and for

 ELF targeted ports. For i386 PE, symbols explicitly listed in a

 .def file are still exported, regardless of this option. For ELF Page 7/67

 targeted ports, symbols affected by this option will be treated as

 hidden.

 --exclude-modules-for-implib module,module,...

 Specifies a list of object files or archive members, from which

 symbols should not be automatically exported, but which should be

 copied wholesale into the import library being generated during the

 link. The module names may be delimited by commas or colons, and

 must match exactly the filenames used by ld to open the files; for

 archive members, this is simply the member name, but for object

 files the name listed must include and match precisely any path

 used to specify the input file on the linker's command-line. This

 option is available only for the i386 PE targeted port of the

 linker. Symbols explicitly listed in a .def file are still

 exported, regardless of this option.

 -E

 --export-dynamic

 --no-export-dynamic

 When creating a dynamically linked executable, using the -E option

 or the --export-dynamic option causes the linker to add all symbols

 to the dynamic symbol table. The dynamic symbol table is the set

 of symbols which are visible from dynamic objects at run time.

 If you do not use either of these options (or use the

 --no-export-dynamic option to restore the default behavior), the

 dynamic symbol table will normally contain only those symbols which

 are referenced by some dynamic object mentioned in the link.

 If you use "dlopen" to load a dynamic object which needs to refer

 back to the symbols defined by the program, rather than some other

 dynamic object, then you will probably need to use this option when

 linking the program itself.

 You can also use the dynamic list to control what symbols should be

 added to the dynamic symbol table if the output format supports it.

 See the description of --dynamic-list.

 Note that this option is specific to ELF targeted ports. PE Page 8/67

 targets support a similar function to export all symbols from a DLL

 or EXE; see the description of --export-all-symbols below.

 --export-dynamic-symbol=glob

 When creating a dynamically linked executable, symbols matching

 glob will be added to the dynamic symbol table. When creating a

 shared library, references to symbols matching glob will not be

 bound to the definitions within the shared library. This option is

 a no-op when creating a shared library and -Bsymbolic or

 --dynamic-list are not specified. This option is only meaningful on

 ELF platforms which support shared libraries.

 --export-dynamic-symbol-list=file

 Specify a --export-dynamic-symbol for each pattern in the file.

 The format of the file is the same as the version node without

 scope and node name. See VERSION for more information.

 -EB Link big-endian objects. This affects the default output format.

 -EL Link little-endian objects. This affects the default output

 format.

 -f name

 --auxiliary=name

 When creating an ELF shared object, set the internal DT_AUXILIARY

 field to the specified name. This tells the dynamic linker that

 the symbol table of the shared object should be used as an

 auxiliary filter on the symbol table of the shared object name.

 If you later link a program against this filter object, then, when

 you run the program, the dynamic linker will see the DT_AUXILIARY

 field. If the dynamic linker resolves any symbols from the filter

 object, it will first check whether there is a definition in the

 shared object name. If there is one, it will be used instead of

 the definition in the filter object. The shared object name need

 not exist. Thus the shared object name may be used to provide an

 alternative implementation of certain functions, perhaps for

 debugging or for machine-specific performance.

 This option may be specified more than once. The DT_AUXILIARY Page 9/67

 entries will be created in the order in which they appear on the

 command line.

 -F name

 --filter=name

 When creating an ELF shared object, set the internal DT_FILTER

 field to the specified name. This tells the dynamic linker that

 the symbol table of the shared object which is being created should

 be used as a filter on the symbol table of the shared object name.

 If you later link a program against this filter object, then, when

 you run the program, the dynamic linker will see the DT_FILTER

 field. The dynamic linker will resolve symbols according to the

 symbol table of the filter object as usual, but it will actually

 link to the definitions found in the shared object name. Thus the

 filter object can be used to select a subset of the symbols

 provided by the object name.

 Some older linkers used the -F option throughout a compilation

 toolchain for specifying object-file format for both input and

 output object files. The GNU linker uses other mechanisms for this

 purpose: the -b, --format, --oformat options, the "TARGET" command

 in linker scripts, and the "GNUTARGET" environment variable. The

 GNU linker will ignore the -F option when not creating an ELF

 shared object.

 -fini=name

 When creating an ELF executable or shared object, call NAME when

 the executable or shared object is unloaded, by setting DT_FINI to

 the address of the function. By default, the linker uses "_fini"

 as the function to call.

 -g Ignored. Provided for compatibility with other tools.

 -G value

 --gpsize=value

 Set the maximum size of objects to be optimized using the GP

 register to size. This is only meaningful for object file formats

 such as MIPS ELF that support putting large and small objects into Page 10/67

 different sections. This is ignored for other object file formats.

 -h name

 -soname=name

 When creating an ELF shared object, set the internal DT_SONAME

 field to the specified name. When an executable is linked with a

 shared object which has a DT_SONAME field, then when the executable

 is run the dynamic linker will attempt to load the shared object

 specified by the DT_SONAME field rather than the using the file

 name given to the linker.

 -i Perform an incremental link (same as option -r).

 -init=name

 When creating an ELF executable or shared object, call NAME when

 the executable or shared object is loaded, by setting DT_INIT to

 the address of the function. By default, the linker uses "_init"

 as the function to call.

 -l namespec

 --library=namespec

 Add the archive or object file specified by namespec to the list of

 files to link. This option may be used any number of times. If

 namespec is of the form :filename, ld will search the library path

 for a file called filename, otherwise it will search the library

 path for a file called libnamespec.a.

 On systems which support shared libraries, ld may also search for

 files other than libnamespec.a. Specifically, on ELF and SunOS

 systems, ld will search a directory for a library called

 libnamespec.so before searching for one called libnamespec.a. (By

 convention, a ".so" extension indicates a shared library.) Note

 that this behavior does not apply to :filename, which always

 specifies a file called filename.

 The linker will search an archive only once, at the location where

 it is specified on the command line. If the archive defines a

 symbol which was undefined in some object which appeared before the

 archive on the command line, the linker will include the Page 11/67

 appropriate file(s) from the archive. However, an undefined symbol

 in an object appearing later on the command line will not cause the

 linker to search the archive again.

 See the -(option for a way to force the linker to search archives

 multiple times.

 You may list the same archive multiple times on the command line.

 This type of archive searching is standard for Unix linkers.

 However, if you are using ld on AIX, note that it is different from

 the behaviour of the AIX linker.

 -L searchdir

 --library-path=searchdir

 Add path searchdir to the list of paths that ld will search for

 archive libraries and ld control scripts. You may use this option

 any number of times. The directories are searched in the order in

 which they are specified on the command line. Directories

 specified on the command line are searched before the default

 directories. All -L options apply to all -l options, regardless of

 the order in which the options appear. -L options do not affect

 how ld searches for a linker script unless -T option is specified.

 If searchdir begins with "=" or $SYSROOT, then this prefix will be

 replaced by the sysroot prefix, controlled by the --sysroot option,

 or specified when the linker is configured.

 The default set of paths searched (without being specified with -L)

 depends on which emulation mode ld is using, and in some cases also

 on how it was configured.

 The paths can also be specified in a link script with the

 "SEARCH_DIR" command. Directories specified this way are searched

 at the point in which the linker script appears in the command

 line.

 -m emulation

 Emulate the emulation linker. You can list the available

 emulations with the --verbose or -V options.

 If the -m option is not used, the emulation is taken from the Page 12/67

 "LDEMULATION" environment variable, if that is defined.

 Otherwise, the default emulation depends upon how the linker was

 configured.

 -M

 --print-map

 Print a link map to the standard output. A link map provides

 information about the link, including the following:

 ? Where object files are mapped into memory.

 ? How common symbols are allocated.

 ? All archive members included in the link, with a mention of the

 symbol which caused the archive member to be brought in.

 ? The values assigned to symbols.

 Note - symbols whose values are computed by an expression which

 involves a reference to a previous value of the same symbol may

 not have correct result displayed in the link map. This is

 because the linker discards intermediate results and only

 retains the final value of an expression. Under such

 circumstances the linker will display the final value enclosed

 by square brackets. Thus for example a linker script

 containing:

 foo = 1

 foo = foo * 4

 foo = foo + 8

 will produce the following output in the link map if the -M

 option is used:

 0x00000001 foo = 0x1

 [0x0000000c] foo = (foo * 0x4)

 [0x0000000c] foo = (foo + 0x8)

 See Expressions for more information about expressions in

 linker scripts.

 ? How GNU properties are merged.

 When the linker merges input .note.gnu.property sections into

 one output .note.gnu.property section, some properties are Page 13/67

 removed or updated. These actions are reported in the link

 map. For example:

 Removed property 0xc0000002 to merge foo.o (0x1) and bar.o (not found)

 This indicates that property 0xc0000002 is removed from output

 when merging properties in foo.o, whose property 0xc0000002

 value is 0x1, and bar.o, which doesn't have property

 0xc0000002.

 Updated property 0xc0010001 (0x1) to merge foo.o (0x1) and bar.o (0x1)

 This indicates that property 0xc0010001 value is updated to 0x1

 in output when merging properties in foo.o, whose 0xc0010001

 property value is 0x1, and bar.o, whose 0xc0010001 property

 value is 0x1.

 --print-map-discarded

 --no-print-map-discarded

 Print (or do not print) the list of discarded and garbage collected

 sections in the link map. Enabled by default.

 -n

 --nmagic

 Turn off page alignment of sections, and disable linking against

 shared libraries. If the output format supports Unix style magic

 numbers, mark the output as "NMAGIC".

 -N

 --omagic

 Set the text and data sections to be readable and writable. Also,

 do not page-align the data segment, and disable linking against

 shared libraries. If the output format supports Unix style magic

 numbers, mark the output as "OMAGIC". Note: Although a writable

 text section is allowed for PE-COFF targets, it does not conform to

 the format specification published by Microsoft.

 --no-omagic

 This option negates most of the effects of the -N option. It sets

 the text section to be read-only, and forces the data segment to be

 page-aligned. Note - this option does not enable linking against Page 14/67

 shared libraries. Use -Bdynamic for this.

 -o output

 --output=output

 Use output as the name for the program produced by ld; if this

 option is not specified, the name a.out is used by default. The

 script command "OUTPUT" can also specify the output file name.

 --dependency-file=depfile

 Write a dependency file to depfile. This file contains a rule

 suitable for "make" describing the output file and all the input

 files that were read to produce it. The output is similar to the

 compiler's output with -M -MP. Note that there is no option like

 the compiler's -MM, to exclude "system files" (which is not a well-

 specified concept in the linker, unlike "system headers" in the

 compiler). So the output from --dependency-file is always specific

 to the exact state of the installation where it was produced, and

 should not be copied into distributed makefiles without careful

 editing.

 -O level

 If level is a numeric values greater than zero ld optimizes the

 output. This might take significantly longer and therefore

 probably should only be enabled for the final binary. At the

 moment this option only affects ELF shared library generation.

 Future releases of the linker may make more use of this option.

 Also currently there is no difference in the linker's behaviour for

 different non-zero values of this option. Again this may change

 with future releases.

 -plugin name

 Involve a plugin in the linking process. The name parameter is the

 absolute filename of the plugin. Usually this parameter is

 automatically added by the complier, when using link time

 optimization, but users can also add their own plugins if they so

 wish.

 Note that the location of the compiler originated plugins is Page 15/67

 different from the place where the ar, nm and ranlib programs

 search for their plugins. In order for those commands to make use

 of a compiler based plugin it must first be copied into the

 ${libdir}/bfd-plugins directory. All gcc based linker plugins are

 backward compatible, so it is sufficient to just copy in the newest

 one.

 --push-state

 The --push-state allows to preserve the current state of the flags

 which govern the input file handling so that they can all be

 restored with one corresponding --pop-state option.

 The option which are covered are: -Bdynamic, -Bstatic, -dn, -dy,

 -call_shared, -non_shared, -static, -N, -n, --whole-archive,

 --no-whole-archive, -r, -Ur, --copy-dt-needed-entries,

 --no-copy-dt-needed-entries, --as-needed, --no-as-needed, and -a.

 One target for this option are specifications for pkg-config. When

 used with the --libs option all possibly needed libraries are

 listed and then possibly linked with all the time. It is better to

 return something as follows:

 -Wl,--push-state,--as-needed -libone -libtwo -Wl,--pop-state

 --pop-state

 Undoes the effect of --push-state, restores the previous values of

 the flags governing input file handling.

 -q

 --emit-relocs

 Leave relocation sections and contents in fully linked executables.

 Post link analysis and optimization tools may need this information

 in order to perform correct modifications of executables. This

 results in larger executables.

 This option is currently only supported on ELF platforms.

 --force-dynamic

 Force the output file to have dynamic sections. This option is

 specific to VxWorks targets.

 -r Page 16/67

 --relocatable

 Generate relocatable output---i.e., generate an output file that

 can in turn serve as input to ld. This is often called partial

 linking. As a side effect, in environments that support standard

 Unix magic numbers, this option also sets the output file's magic

 number to "OMAGIC". If this option is not specified, an absolute

 file is produced. When linking C++ programs, this option will not

 resolve references to constructors; to do that, use -Ur.

 When an input file does not have the same format as the output

 file, partial linking is only supported if that input file does not

 contain any relocations. Different output formats can have further

 restrictions; for example some "a.out"-based formats do not support

 partial linking with input files in other formats at all.

 This option does the same thing as -i.

 -R filename

 --just-symbols=filename

 Read symbol names and their addresses from filename, but do not

 relocate it or include it in the output. This allows your output

 file to refer symbolically to absolute locations of memory defined

 in other programs. You may use this option more than once.

 For compatibility with other ELF linkers, if the -R option is

 followed by a directory name, rather than a file name, it is

 treated as the -rpath option.

 -s

 --strip-all

 Omit all symbol information from the output file.

 -S

 --strip-debug

 Omit debugger symbol information (but not all symbols) from the

 output file.

 --strip-discarded

 --no-strip-discarded

 Omit (or do not omit) global symbols defined in discarded sections. Page 17/67

 Enabled by default.

 -t

 --trace

 Print the names of the input files as ld processes them. If -t is

 given twice then members within archives are also printed. -t

 output is useful to generate a list of all the object files and

 scripts involved in linking, for example, when packaging files for

 a linker bug report.

 -T scriptfile

 --script=scriptfile

 Use scriptfile as the linker script. This script replaces ld's

 default linker script (rather than adding to it), so commandfile

 must specify everything necessary to describe the output file.

 If scriptfile does not exist in the current directory, "ld" looks

 for it in the directories specified by any preceding -L options.

 Multiple -T options accumulate.

 -dT scriptfile

 --default-script=scriptfile

 Use scriptfile as the default linker script.

 This option is similar to the --script option except that

 processing of the script is delayed until after the rest of the

 command line has been processed. This allows options placed after

 the --default-script option on the command line to affect the

 behaviour of the linker script, which can be important when the

 linker command line cannot be directly controlled by the user. (eg

 because the command line is being constructed by another tool, such

 as gcc).

 -u symbol

 --undefined=symbol

 Force symbol to be entered in the output file as an undefined

 symbol. Doing this may, for example, trigger linking of additional

 modules from standard libraries. -u may be repeated with different

 option arguments to enter additional undefined symbols. This Page 18/67

 option is equivalent to the "EXTERN" linker script command.

 If this option is being used to force additional modules to be

 pulled into the link, and if it is an error for the symbol to

 remain undefined, then the option --require-defined should be used

 instead.

 --require-defined=symbol

 Require that symbol is defined in the output file. This option is

 the same as option --undefined except that if symbol is not defined

 in the output file then the linker will issue an error and exit.

 The same effect can be achieved in a linker script by using

 "EXTERN", "ASSERT" and "DEFINED" together. This option can be used

 multiple times to require additional symbols.

 -Ur For anything other than C++ programs, this option is equivalent to

 -r: it generates relocatable output---i.e., an output file that can

 in turn serve as input to ld. When linking C++ programs, -Ur does

 resolve references to constructors, unlike -r. It does not work to

 use -Ur on files that were themselves linked with -Ur; once the

 constructor table has been built, it cannot be added to. Use -Ur

 only for the last partial link, and -r for the others.

 --orphan-handling=MODE

 Control how orphan sections are handled. An orphan section is one

 not specifically mentioned in a linker script.

 MODE can have any of the following values:

 "place"

 Orphan sections are placed into a suitable output section

 following the strategy described in Orphan Sections. The

 option --unique also affects how sections are placed.

 "discard"

 All orphan sections are discarded, by placing them in the

 /DISCARD/ section.

 "warn"

 The linker will place the orphan section as for "place" and

 also issue a warning. Page 19/67

 "error"

 The linker will exit with an error if any orphan section is

 found.

 The default if --orphan-handling is not given is "place".

 --unique[=SECTION]

 Creates a separate output section for every input section matching

 SECTION, or if the optional wildcard SECTION argument is missing,

 for every orphan input section. An orphan section is one not

 specifically mentioned in a linker script. You may use this option

 multiple times on the command line; It prevents the normal merging

 of input sections with the same name, overriding output section

 assignments in a linker script.

 -v

 --version

 -V Display the version number for ld. The -V option also lists the

 supported emulations.

 -x

 --discard-all

 Delete all local symbols.

 -X

 --discard-locals

 Delete all temporary local symbols. (These symbols start with

 system-specific local label prefixes, typically .L for ELF systems

 or L for traditional a.out systems.)

 -y symbol

 --trace-symbol=symbol

 Print the name of each linked file in which symbol appears. This

 option may be given any number of times. On many systems it is

 necessary to prepend an underscore.

 This option is useful when you have an undefined symbol in your

 link but don't know where the reference is coming from.

 -Y path

 Add path to the default library search path. This option exists Page 20/67

 for Solaris compatibility.

 -z keyword

 The recognized keywords are:

 bndplt

 Always generate BND prefix in PLT entries. Supported for

 Linux/x86_64.

 call-nop=prefix-addr

 call-nop=suffix-nop

 call-nop=prefix-byte

 call-nop=suffix-byte

 Specify the 1-byte "NOP" padding when transforming indirect

 call to a locally defined function, foo, via its GOT slot.

 call-nop=prefix-addr generates "0x67 call foo".

 call-nop=suffix-nop generates "call foo 0x90".

 call-nop=prefix-byte generates "byte call foo".

 call-nop=suffix-byte generates "call foo byte". Supported for

 i386 and x86_64.

 cet-report=none

 cet-report=warning

 cet-report=error

 Specify how to report the missing

 GNU_PROPERTY_X86_FEATURE_1_IBT and

 GNU_PROPERTY_X86_FEATURE_1_SHSTK properties in input

 .note.gnu.property section. cet-report=none, which is the

 default, will make the linker not report missing properties in

 input files. cet-report=warning will make the linker issue a

 warning for missing properties in input files.

 cet-report=error will make the linker issue an error for

 missing properties in input files. Note that ibt will turn off

 the missing GNU_PROPERTY_X86_FEATURE_1_IBT property report and

 shstk will turn off the missing

 GNU_PROPERTY_X86_FEATURE_1_SHSTK property report. Supported

 for Linux/i386 and Linux/x86_64. Page 21/67

 combreloc

 nocombreloc

 Combine multiple dynamic relocation sections and sort to

 improve dynamic symbol lookup caching. Do not do this if

 nocombreloc.

 common

 nocommon

 Generate common symbols with STT_COMMON type during a

 relocatable link. Use STT_OBJECT type if nocommon.

 common-page-size=value

 Set the page size most commonly used to value. Memory image

 layout will be optimized to minimize memory pages if the system

 is using pages of this size.

 defs

 Report unresolved symbol references from regular object files.

 This is done even if the linker is creating a non-symbolic

 shared library. This option is the inverse of -z undefs.

 dynamic-undefined-weak

 nodynamic-undefined-weak

 Make undefined weak symbols dynamic when building a dynamic

 object, if they are referenced from a regular object file and

 not forced local by symbol visibility or versioning. Do not

 make them dynamic if nodynamic-undefined-weak. If neither

 option is given, a target may default to either option being in

 force, or make some other selection of undefined weak symbols

 dynamic. Not all targets support these options.

 execstack

 Marks the object as requiring executable stack.

 global

 This option is only meaningful when building a shared object.

 It makes the symbols defined by this shared object available

 for symbol resolution of subsequently loaded libraries.

 globalaudit Page 22/67

 This option is only meaningful when building a dynamic

 executable. This option marks the executable as requiring

 global auditing by setting the "DF_1_GLOBAUDIT" bit in the

 "DT_FLAGS_1" dynamic tag. Global auditing requires that any

 auditing library defined via the --depaudit or -P command-line

 options be run for all dynamic objects loaded by the

 application.

 ibtplt

 Generate Intel Indirect Branch Tracking (IBT) enabled PLT

 entries. Supported for Linux/i386 and Linux/x86_64.

 ibt Generate GNU_PROPERTY_X86_FEATURE_1_IBT in .note.gnu.property

 section to indicate compatibility with IBT. This also implies

 ibtplt. Supported for Linux/i386 and Linux/x86_64.

 initfirst

 This option is only meaningful when building a shared object.

 It marks the object so that its runtime initialization will

 occur before the runtime initialization of any other objects

 brought into the process at the same time. Similarly the

 runtime finalization of the object will occur after the runtime

 finalization of any other objects.

 interpose

 Specify that the dynamic loader should modify its symbol search

 order so that symbols in this shared library interpose all

 other shared libraries not so marked.

 lazy

 When generating an executable or shared library, mark it to

 tell the dynamic linker to defer function call resolution to

 the point when the function is called (lazy binding), rather

 than at load time. Lazy binding is the default.

 loadfltr

 Specify that the object's filters be processed immediately at

 runtime.

 max-page-size=value Page 23/67

 Set the maximum memory page size supported to value.

 muldefs

 Allow multiple definitions.

 nocopyreloc

 Disable linker generated .dynbss variables used in place of

 variables defined in shared libraries. May result in dynamic

 text relocations.

 nodefaultlib

 Specify that the dynamic loader search for dependencies of this

 object should ignore any default library search paths.

 nodelete

 Specify that the object shouldn't be unloaded at runtime.

 nodlopen

 Specify that the object is not available to "dlopen".

 nodump

 Specify that the object can not be dumped by "dldump".

 noexecstack

 Marks the object as not requiring executable stack.

 noextern-protected-data

 Don't treat protected data symbols as external when building a

 shared library. This option overrides the linker backend

 default. It can be used to work around incorrect relocations

 against protected data symbols generated by compiler. Updates

 on protected data symbols by another module aren't visible to

 the resulting shared library. Supported for i386 and x86-64.

 noreloc-overflow

 Disable relocation overflow check. This can be used to disable

 relocation overflow check if there will be no dynamic

 relocation overflow at run-time. Supported for x86_64.

 now When generating an executable or shared library, mark it to

 tell the dynamic linker to resolve all symbols when the program

 is started, or when the shared library is loaded by dlopen,

 instead of deferring function call resolution to the point when Page 24/67

 the function is first called.

 origin

 Specify that the object requires $ORIGIN handling in paths.

 relro

 norelro

 Create an ELF "PT_GNU_RELRO" segment header in the object.

 This specifies a memory segment that should be made read-only

 after relocation, if supported. Specifying common-page-size

 smaller than the system page size will render this protection

 ineffective. Don't create an ELF "PT_GNU_RELRO" segment if

 norelro.

 separate-code

 noseparate-code

 Create separate code "PT_LOAD" segment header in the object.

 This specifies a memory segment that should contain only

 instructions and must be in wholly disjoint pages from any

 other data. Don't create separate code "PT_LOAD" segment if

 noseparate-code is used.

 shstk

 Generate GNU_PROPERTY_X86_FEATURE_1_SHSTK in .note.gnu.property

 section to indicate compatibility with Intel Shadow Stack.

 Supported for Linux/i386 and Linux/x86_64.

 stack-size=value

 Specify a stack size for an ELF "PT_GNU_STACK" segment.

 Specifying zero will override any default non-zero sized

 "PT_GNU_STACK" segment creation.

 start-stop-visibility=value

 Specify the ELF symbol visibility for synthesized

 "__start_SECNAME" and "__stop_SECNAME" symbols. value must be

 exactly default, internal, hidden, or protected. If no -z

 start-stop-visibility option is given, protected is used for

 compatibility with historical practice. However, it's highly

 recommended to use -z start-stop-visibility=hidden in new Page 25/67

 programs and shared libraries so that these symbols are not

 exported between shared objects, which is not usually what's

 intended.

 text

 notext

 textoff

 Report an error if DT_TEXTREL is set, i.e., if the position-

 independent or shared object has dynamic relocations in read-

 only sections. Don't report an error if notext or textoff.

 undefs

 Do not report unresolved symbol references from regular object

 files, either when creating an executable, or when creating a

 shared library. This option is the inverse of -z defs.

 Other keywords are ignored for Solaris compatibility.

 -(archives -)

 --start-group archives --end-group

 The archives should be a list of archive files. They may be either

 explicit file names, or -l options.

 The specified archives are searched repeatedly until no new

 undefined references are created. Normally, an archive is searched

 only once in the order that it is specified on the command line.

 If a symbol in that archive is needed to resolve an undefined

 symbol referred to by an object in an archive that appears later on

 the command line, the linker would not be able to resolve that

 reference. By grouping the archives, they will all be searched

 repeatedly until all possible references are resolved.

 Using this option has a significant performance cost. It is best

 to use it only when there are unavoidable circular references

 between two or more archives.

 --accept-unknown-input-arch

 --no-accept-unknown-input-arch

 Tells the linker to accept input files whose architecture cannot be

 recognised. The assumption is that the user knows what they are Page 26/67

 doing and deliberately wants to link in these unknown input files.

 This was the default behaviour of the linker, before release 2.14.

 The default behaviour from release 2.14 onwards is to reject such

 input files, and so the --accept-unknown-input-arch option has been

 added to restore the old behaviour.

 --as-needed

 --no-as-needed

 This option affects ELF DT_NEEDED tags for dynamic libraries

 mentioned on the command line after the --as-needed option.

 Normally the linker will add a DT_NEEDED tag for each dynamic

 library mentioned on the command line, regardless of whether the

 library is actually needed or not. --as-needed causes a DT_NEEDED

 tag to only be emitted for a library that at that point in the link

 satisfies a non-weak undefined symbol reference from a regular

 object file or, if the library is not found in the DT_NEEDED lists

 of other needed libraries, a non-weak undefined symbol reference

 from another needed dynamic library. Object files or libraries

 appearing on the command line after the library in question do not

 affect whether the library is seen as needed. This is similar to

 the rules for extraction of object files from archives.

 --no-as-needed restores the default behaviour.

 --add-needed

 --no-add-needed

 These two options have been deprecated because of the similarity of

 their names to the --as-needed and --no-as-needed options. They

 have been replaced by --copy-dt-needed-entries and

 --no-copy-dt-needed-entries.

 -assert keyword

 This option is ignored for SunOS compatibility.

 -Bdynamic

 -dy

 -call_shared

 Link against dynamic libraries. This is only meaningful on Page 27/67

 platforms for which shared libraries are supported. This option is

 normally the default on such platforms. The different variants of

 this option are for compatibility with various systems. You may

 use this option multiple times on the command line: it affects

 library searching for -l options which follow it.

 -Bgroup

 Set the "DF_1_GROUP" flag in the "DT_FLAGS_1" entry in the dynamic

 section. This causes the runtime linker to handle lookups in this

 object and its dependencies to be performed only inside the group.

 --unresolved-symbols=report-all is implied. This option is only

 meaningful on ELF platforms which support shared libraries.

 -Bstatic

 -dn

 -non_shared

 -static

 Do not link against shared libraries. This is only meaningful on

 platforms for which shared libraries are supported. The different

 variants of this option are for compatibility with various systems.

 You may use this option multiple times on the command line: it

 affects library searching for -l options which follow it. This

 option also implies --unresolved-symbols=report-all. This option

 can be used with -shared. Doing so means that a shared library is

 being created but that all of the library's external references

 must be resolved by pulling in entries from static libraries.

 -Bsymbolic

 When creating a shared library, bind references to global symbols

 to the definition within the shared library, if any. Normally, it

 is possible for a program linked against a shared library to

 override the definition within the shared library. This option is

 only meaningful on ELF platforms which support shared libraries.

 -Bsymbolic-functions

 When creating a shared library, bind references to global function

 symbols to the definition within the shared library, if any. This Page 28/67

 option is only meaningful on ELF platforms which support shared

 libraries.

 --dynamic-list=dynamic-list-file

 Specify the name of a dynamic list file to the linker. This is

 typically used when creating shared libraries to specify a list of

 global symbols whose references shouldn't be bound to the

 definition within the shared library, or creating dynamically

 linked executables to specify a list of symbols which should be

 added to the symbol table in the executable. This option is only

 meaningful on ELF platforms which support shared libraries.

 The format of the dynamic list is the same as the version node

 without scope and node name. See VERSION for more information.

 --dynamic-list-data

 Include all global data symbols to the dynamic list.

 --dynamic-list-cpp-new

 Provide the builtin dynamic list for C++ operator new and delete.

 It is mainly useful for building shared libstdc++.

 --dynamic-list-cpp-typeinfo

 Provide the builtin dynamic list for C++ runtime type

 identification.

 --check-sections

 --no-check-sections

 Asks the linker not to check section addresses after they have been

 assigned to see if there are any overlaps. Normally the linker

 will perform this check, and if it finds any overlaps it will

 produce suitable error messages. The linker does know about, and

 does make allowances for sections in overlays. The default

 behaviour can be restored by using the command-line switch

 --check-sections. Section overlap is not usually checked for

 relocatable links. You can force checking in that case by using

 the --check-sections option.

 --copy-dt-needed-entries

 --no-copy-dt-needed-entries Page 29/67

 This option affects the treatment of dynamic libraries referred to

 by DT_NEEDED tags inside ELF dynamic libraries mentioned on the

 command line. Normally the linker won't add a DT_NEEDED tag to the

 output binary for each library mentioned in a DT_NEEDED tag in an

 input dynamic library. With --copy-dt-needed-entries specified on

 the command line however any dynamic libraries that follow it will

 have their DT_NEEDED entries added. The default behaviour can be

 restored with --no-copy-dt-needed-entries.

 This option also has an effect on the resolution of symbols in

 dynamic libraries. With --copy-dt-needed-entries dynamic libraries

 mentioned on the command line will be recursively searched,

 following their DT_NEEDED tags to other libraries, in order to

 resolve symbols required by the output binary. With the default

 setting however the searching of dynamic libraries that follow it

 will stop with the dynamic library itself. No DT_NEEDED links will

 be traversed to resolve symbols.

 --cref

 Output a cross reference table. If a linker map file is being

 generated, the cross reference table is printed to the map file.

 Otherwise, it is printed on the standard output.

 The format of the table is intentionally simple, so that it may be

 easily processed by a script if necessary. The symbols are printed

 out, sorted by name. For each symbol, a list of file names is

 given. If the symbol is defined, the first file listed is the

 location of the definition. If the symbol is defined as a common

 value then any files where this happens appear next. Finally any

 files that reference the symbol are listed.

 --no-define-common

 This option inhibits the assignment of addresses to common symbols.

 The script command "INHIBIT_COMMON_ALLOCATION" has the same effect.

 The --no-define-common option allows decoupling the decision to

 assign addresses to Common symbols from the choice of the output

 file type; otherwise a non-Relocatable output type forces assigning Page 30/67

 addresses to Common symbols. Using --no-define-common allows

 Common symbols that are referenced from a shared library to be

 assigned addresses only in the main program. This eliminates the

 unused duplicate space in the shared library, and also prevents any

 possible confusion over resolving to the wrong duplicate when there

 are many dynamic modules with specialized search paths for runtime

 symbol resolution.

 --force-group-allocation

 This option causes the linker to place section group members like

 normal input sections, and to delete the section groups. This is

 the default behaviour for a final link but this option can be used

 to change the behaviour of a relocatable link (-r). The script

 command "FORCE_GROUP_ALLOCATION" has the same effect.

 --defsym=symbol=expression

 Create a global symbol in the output file, containing the absolute

 address given by expression. You may use this option as many times

 as necessary to define multiple symbols in the command line. A

 limited form of arithmetic is supported for the expression in this

 context: you may give a hexadecimal constant or the name of an

 existing symbol, or use "+" and "-" to add or subtract hexadecimal

 constants or symbols. If you need more elaborate expressions,

 consider using the linker command language from a script. Note:

 there should be no white space between symbol, the equals sign

 ("="), and expression.

 --demangle[=style]

 --no-demangle

 These options control whether to demangle symbol names in error

 messages and other output. When the linker is told to demangle, it

 tries to present symbol names in a readable fashion: it strips

 leading underscores if they are used by the object file format, and

 converts C++ mangled symbol names into user readable names.

 Different compilers have different mangling styles. The optional

 demangling style argument can be used to choose an appropriate Page 31/67

 demangling style for your compiler. The linker will demangle by

 default unless the environment variable COLLECT_NO_DEMANGLE is set.

 These options may be used to override the default.

 -Ifile

 --dynamic-linker=file

 Set the name of the dynamic linker. This is only meaningful when

 generating dynamically linked ELF executables. The default dynamic

 linker is normally correct; don't use this unless you know what you

 are doing.

 --no-dynamic-linker

 When producing an executable file, omit the request for a dynamic

 linker to be used at load-time. This is only meaningful for ELF

 executables that contain dynamic relocations, and usually requires

 entry point code that is capable of processing these relocations.

 --embedded-relocs

 This option is similar to the --emit-relocs option except that the

 relocs are stored in a target-specific section. This option is

 only supported by the BFIN, CR16 and M68K targets.

 --disable-multiple-abs-defs

 Do not allow multiple definitions with symbols included in filename

 invoked by -R or --just-symbols

 --fatal-warnings

 --no-fatal-warnings

 Treat all warnings as errors. The default behaviour can be

 restored with the option --no-fatal-warnings.

 --force-exe-suffix

 Make sure that an output file has a .exe suffix.

 If a successfully built fully linked output file does not have a

 ".exe" or ".dll" suffix, this option forces the linker to copy the

 output file to one of the same name with a ".exe" suffix. This

 option is useful when using unmodified Unix makefiles on a

 Microsoft Windows host, since some versions of Windows won't run an

 image unless it ends in a ".exe" suffix. Page 32/67

 --gc-sections

 --no-gc-sections

 Enable garbage collection of unused input sections. It is ignored

 on targets that do not support this option. The default behaviour

 (of not performing this garbage collection) can be restored by

 specifying --no-gc-sections on the command line. Note that garbage

 collection for COFF and PE format targets is supported, but the

 implementation is currently considered to be experimental.

 --gc-sections decides which input sections are used by examining

 symbols and relocations. The section containing the entry symbol

 and all sections containing symbols undefined on the command-line

 will be kept, as will sections containing symbols referenced by

 dynamic objects. Note that when building shared libraries, the

 linker must assume that any visible symbol is referenced. Once

 this initial set of sections has been determined, the linker

 recursively marks as used any section referenced by their

 relocations. See --entry, --undefined, and --gc-keep-exported.

 This option can be set when doing a partial link (enabled with

 option -r). In this case the root of symbols kept must be

 explicitly specified either by one of the options --entry,

 --undefined, or --gc-keep-exported or by a "ENTRY" command in the

 linker script.

 --print-gc-sections

 --no-print-gc-sections

 List all sections removed by garbage collection. The listing is

 printed on stderr. This option is only effective if garbage

 collection has been enabled via the --gc-sections) option. The

 default behaviour (of not listing the sections that are removed)

 can be restored by specifying --no-print-gc-sections on the command

 line.

 --gc-keep-exported

 When --gc-sections is enabled, this option prevents garbage

 collection of unused input sections that contain global symbols Page 33/67

 having default or protected visibility. This option is intended to

 be used for executables where unreferenced sections would otherwise

 be garbage collected regardless of the external visibility of

 contained symbols. Note that this option has no effect when

 linking shared objects since it is already the default behaviour.

 This option is only supported for ELF format targets.

 --print-output-format

 Print the name of the default output format (perhaps influenced by

 other command-line options). This is the string that would appear

 in an "OUTPUT_FORMAT" linker script command.

 --print-memory-usage

 Print used size, total size and used size of memory regions created

 with the MEMORY command. This is useful on embedded targets to

 have a quick view of amount of free memory. The format of the

 output has one headline and one line per region. It is both human

 readable and easily parsable by tools. Here is an example of an

 output:

 Memory region Used Size Region Size %age Used

 ROM: 256 KB 1 MB 25.00%

 RAM: 32 B 2 GB 0.00%

 --help

 Print a summary of the command-line options on the standard output

 and exit.

 --target-help

 Print a summary of all target-specific options on the standard

 output and exit.

 -Map=mapfile

 Print a link map to the file mapfile. See the description of the

 -M option, above. Specifying a directory as mapfile causes the

 linker map to be written into a file inside the directory. The

 name of the file is based upon the output filename with ".map"

 appended.

 --no-keep-memory Page 34/67

 ld normally optimizes for speed over memory usage by caching the

 symbol tables of input files in memory. This option tells ld to

 instead optimize for memory usage, by rereading the symbol tables

 as necessary. This may be required if ld runs out of memory space

 while linking a large executable.

 --no-undefined

 -z defs

 Report unresolved symbol references from regular object files.

 This is done even if the linker is creating a non-symbolic shared

 library. The switch --[no-]allow-shlib-undefined controls the

 behaviour for reporting unresolved references found in shared

 libraries being linked in.

 The effects of this option can be reverted by using "-z undefs".

 --allow-multiple-definition

 -z muldefs

 Normally when a symbol is defined multiple times, the linker will

 report a fatal error. These options allow multiple definitions and

 the first definition will be used.

 --allow-shlib-undefined

 --no-allow-shlib-undefined

 Allows or disallows undefined symbols in shared libraries. This

 switch is similar to --no-undefined except that it determines the

 behaviour when the undefined symbols are in a shared library rather

 than a regular object file. It does not affect how undefined

 symbols in regular object files are handled.

 The default behaviour is to report errors for any undefined symbols

 referenced in shared libraries if the linker is being used to

 create an executable, but to allow them if the linker is being used

 to create a shared library.

 The reasons for allowing undefined symbol references in shared

 libraries specified at link time are that:

 ? A shared library specified at link time may not be the same as

 the one that is available at load time, so the symbol might Page 35/67

 actually be resolvable at load time.

 ? There are some operating systems, eg BeOS and HPPA, where

 undefined symbols in shared libraries are normal.

 The BeOS kernel for example patches shared libraries at load

 time to select whichever function is most appropriate for the

 current architecture. This is used, for example, to

 dynamically select an appropriate memset function.

 --no-undefined-version

 Normally when a symbol has an undefined version, the linker will

 ignore it. This option disallows symbols with undefined version and

 a fatal error will be issued instead.

 --default-symver

 Create and use a default symbol version (the soname) for

 unversioned exported symbols.

 --default-imported-symver

 Create and use a default symbol version (the soname) for

 unversioned imported symbols.

 --no-warn-mismatch

 Normally ld will give an error if you try to link together input

 files that are mismatched for some reason, perhaps because they

 have been compiled for different processors or for different

 endiannesses. This option tells ld that it should silently permit

 such possible errors. This option should only be used with care,

 in cases when you have taken some special action that ensures that

 the linker errors are inappropriate.

 --no-warn-search-mismatch

 Normally ld will give a warning if it finds an incompatible library

 during a library search. This option silences the warning.

 --no-whole-archive

 Turn off the effect of the --whole-archive option for subsequent

 archive files.

 --noinhibit-exec

 Retain the executable output file whenever it is still usable. Page 36/67

 Normally, the linker will not produce an output file if it

 encounters errors during the link process; it exits without writing

 an output file when it issues any error whatsoever.

 -nostdlib

 Only search library directories explicitly specified on the command

 line. Library directories specified in linker scripts (including

 linker scripts specified on the command line) are ignored.

 --oformat=output-format

 ld may be configured to support more than one kind of object file.

 If your ld is configured this way, you can use the --oformat option

 to specify the binary format for the output object file. Even when

 ld is configured to support alternative object formats, you don't

 usually need to specify this, as ld should be configured to produce

 as a default output format the most usual format on each machine.

 output-format is a text string, the name of a particular format

 supported by the BFD libraries. (You can list the available binary

 formats with objdump -i.) The script command "OUTPUT_FORMAT" can

 also specify the output format, but this option overrides it.

 --out-implib file

 Create an import library in file corresponding to the executable

 the linker is generating (eg. a DLL or ELF program). This import

 library (which should be called "*.dll.a" or "*.a" for DLLs) may be

 used to link clients against the generated executable; this

 behaviour makes it possible to skip a separate import library

 creation step (eg. "dlltool" for DLLs). This option is only

 available for the i386 PE and ELF targetted ports of the linker.

 -pie

 --pic-executable

 Create a position independent executable. This is currently only

 supported on ELF platforms. Position independent executables are

 similar to shared libraries in that they are relocated by the

 dynamic linker to the virtual address the OS chooses for them

 (which can vary between invocations). Like normal dynamically Page 37/67

 linked executables they can be executed and symbols defined in the

 executable cannot be overridden by shared libraries.

 -qmagic

 This option is ignored for Linux compatibility.

 -Qy This option is ignored for SVR4 compatibility.

 --relax

 --no-relax

 An option with machine dependent effects. This option is only

 supported on a few targets.

 On some platforms the --relax option performs target-specific,

 global optimizations that become possible when the linker resolves

 addressing in the program, such as relaxing address modes,

 synthesizing new instructions, selecting shorter version of current

 instructions, and combining constant values.

 On some platforms these link time global optimizations may make

 symbolic debugging of the resulting executable impossible. This is

 known to be the case for the Matsushita MN10200 and MN10300 family

 of processors.

 On platforms where this is not supported, --relax is accepted, but

 ignored.

 On platforms where --relax is accepted the option --no-relax can be

 used to disable the feature.

 --retain-symbols-file=filename

 Retain only the symbols listed in the file filename, discarding all

 others. filename is simply a flat file, with one symbol name per

 line. This option is especially useful in environments (such as

 VxWorks) where a large global symbol table is accumulated

 gradually, to conserve run-time memory.

 --retain-symbols-file does not discard undefined symbols, or

 symbols needed for relocations.

 You may only specify --retain-symbols-file once in the command

 line. It overrides -s and -S.

 -rpath=dir Page 38/67

 Add a directory to the runtime library search path. This is used

 when linking an ELF executable with shared objects. All -rpath

 arguments are concatenated and passed to the runtime linker, which

 uses them to locate shared objects at runtime.

 The -rpath option is also used when locating shared objects which

 are needed by shared objects explicitly included in the link; see

 the description of the -rpath-link option. Searching -rpath in

 this way is only supported by native linkers and cross linkers

 which have been configured with the --with-sysroot option.

 If -rpath is not used when linking an ELF executable, the contents

 of the environment variable "LD_RUN_PATH" will be used if it is

 defined.

 The -rpath option may also be used on SunOS. By default, on SunOS,

 the linker will form a runtime search path out of all the -L

 options it is given. If a -rpath option is used, the runtime

 search path will be formed exclusively using the -rpath options,

 ignoring the -L options. This can be useful when using gcc, which

 adds many -L options which may be on NFS mounted file systems.

 For compatibility with other ELF linkers, if the -R option is

 followed by a directory name, rather than a file name, it is

 treated as the -rpath option.

 -rpath-link=dir

 When using ELF or SunOS, one shared library may require another.

 This happens when an "ld -shared" link includes a shared library as

 one of the input files.

 When the linker encounters such a dependency when doing a non-

 shared, non-relocatable link, it will automatically try to locate

 the required shared library and include it in the link, if it is

 not included explicitly. In such a case, the -rpath-link option

 specifies the first set of directories to search. The -rpath-link

 option may specify a sequence of directory names either by

 specifying a list of names separated by colons, or by appearing

 multiple times. Page 39/67

 The tokens $ORIGIN and $LIB can appear in these search directories.

 They will be replaced by the full path to the directory containing

 the program or shared object in the case of $ORIGIN and either lib

 - for 32-bit binaries - or lib64 - for 64-bit binaries - in the

 case of $LIB.

 The alternative form of these tokens - ${ORIGIN} and ${LIB} can

 also be used. The token $PLATFORM is not supported.

 This option should be used with caution as it overrides the search

 path that may have been hard compiled into a shared library. In

 such a case it is possible to use unintentionally a different

 search path than the runtime linker would do.

 The linker uses the following search paths to locate required

 shared libraries:

 1. Any directories specified by -rpath-link options.

 2. Any directories specified by -rpath options. The difference

 between -rpath and -rpath-link is that directories specified by

 -rpath options are included in the executable and used at

 runtime, whereas the -rpath-link option is only effective at

 link time. Searching -rpath in this way is only supported by

 native linkers and cross linkers which have been configured

 with the --with-sysroot option.

 3. On an ELF system, for native linkers, if the -rpath and

 -rpath-link options were not used, search the contents of the

 environment variable "LD_RUN_PATH".

 4. On SunOS, if the -rpath option was not used, search any

 directories specified using -L options.

 5. For a native linker, search the contents of the environment

 variable "LD_LIBRARY_PATH".

 6. For a native ELF linker, the directories in "DT_RUNPATH" or

 "DT_RPATH" of a shared library are searched for shared

 libraries needed by it. The "DT_RPATH" entries are ignored if

 "DT_RUNPATH" entries exist.

 7. The default directories, normally /lib and /usr/lib. Page 40/67

 8. For a linker for a Linux system, if the file /etc/ld.so.conf

 exists, the list of directories found in that file. Note: the

 path to this file is prefixed with the "sysroot" value, if that

 is defined, and then any "prefix" string if the linker was

 configured with the --prefix=<path> option.

 9. For a native linker on a FreeBSD system, any directories

 specified by the "_PATH_ELF_HINTS" macro defined in the

 elf-hints.h header file.

 10. Any directories specifed by a "SEARCH_DIR" command in the

 linker script being used.

 If the required shared library is not found, the linker will issue

 a warning and continue with the link.

 -shared

 -Bshareable

 Create a shared library. This is currently only supported on ELF,

 XCOFF and SunOS platforms. On SunOS, the linker will automatically

 create a shared library if the -e option is not used and there are

 undefined symbols in the link.

 --sort-common

 --sort-common=ascending

 --sort-common=descending

 This option tells ld to sort the common symbols by alignment in

 ascending or descending order when it places them in the

 appropriate output sections. The symbol alignments considered are

 sixteen-byte or larger, eight-byte, four-byte, two-byte, and one-

 byte. This is to prevent gaps between symbols due to alignment

 constraints. If no sorting order is specified, then descending

 order is assumed.

 --sort-section=name

 This option will apply "SORT_BY_NAME" to all wildcard section

 patterns in the linker script.

 --sort-section=alignment

 This option will apply "SORT_BY_ALIGNMENT" to all wildcard section Page 41/67

 patterns in the linker script.

 --spare-dynamic-tags=count

 This option specifies the number of empty slots to leave in the

 .dynamic section of ELF shared objects. Empty slots may be needed

 by post processing tools, such as the prelinker. The default is 5.

 --split-by-file[=size]

 Similar to --split-by-reloc but creates a new output section for

 each input file when size is reached. size defaults to a size of 1

 if not given.

 --split-by-reloc[=count]

 Tries to creates extra sections in the output file so that no

 single output section in the file contains more than count

 relocations. This is useful when generating huge relocatable files

 for downloading into certain real time kernels with the COFF object

 file format; since COFF cannot represent more than 65535

 relocations in a single section. Note that this will fail to work

 with object file formats which do not support arbitrary sections.

 The linker will not split up individual input sections for

 redistribution, so if a single input section contains more than

 count relocations one output section will contain that many

 relocations. count defaults to a value of 32768.

 --stats

 Compute and display statistics about the operation of the linker,

 such as execution time and memory usage.

 --sysroot=directory

 Use directory as the location of the sysroot, overriding the

 configure-time default. This option is only supported by linkers

 that were configured using --with-sysroot.

 --task-link

 This is used by COFF/PE based targets to create a task-linked

 object file where all of the global symbols have been converted to

 statics.

 --traditional-format Page 42/67

 For some targets, the output of ld is different in some ways from

 the output of some existing linker. This switch requests ld to use

 the traditional format instead.

 For example, on SunOS, ld combines duplicate entries in the symbol

 string table. This can reduce the size of an output file with full

 debugging information by over 30 percent. Unfortunately, the SunOS

 "dbx" program can not read the resulting program ("gdb" has no

 trouble). The --traditional-format switch tells ld to not combine

 duplicate entries.

 --section-start=sectionname=org

 Locate a section in the output file at the absolute address given

 by org. You may use this option as many times as necessary to

 locate multiple sections in the command line. org must be a single

 hexadecimal integer; for compatibility with other linkers, you may

 omit the leading 0x usually associated with hexadecimal values.

 Note: there should be no white space between sectionname, the

 equals sign ("="), and org.

 -Tbss=org

 -Tdata=org

 -Ttext=org

 Same as --section-start, with ".bss", ".data" or ".text" as the

 sectionname.

 -Ttext-segment=org

 When creating an ELF executable, it will set the address of the

 first byte of the text segment.

 -Trodata-segment=org

 When creating an ELF executable or shared object for a target where

 the read-only data is in its own segment separate from the

 executable text, it will set the address of the first byte of the

 read-only data segment.

 -Tldata-segment=org

 When creating an ELF executable or shared object for x86-64 medium

 memory model, it will set the address of the first byte of the Page 43/67

 ldata segment.

 --unresolved-symbols=method

 Determine how to handle unresolved symbols. There are four

 possible values for method:

 ignore-all

 Do not report any unresolved symbols.

 report-all

 Report all unresolved symbols. This is the default.

 ignore-in-object-files

 Report unresolved symbols that are contained in shared

 libraries, but ignore them if they come from regular object

 files.

 ignore-in-shared-libs

 Report unresolved symbols that come from regular object files,

 but ignore them if they come from shared libraries. This can

 be useful when creating a dynamic binary and it is known that

 all the shared libraries that it should be referencing are

 included on the linker's command line.

 The behaviour for shared libraries on their own can also be

 controlled by the --[no-]allow-shlib-undefined option.

 Normally the linker will generate an error message for each

 reported unresolved symbol but the option --warn-unresolved-symbols

 can change this to a warning.

 --dll-verbose

 --verbose[=NUMBER]

 Display the version number for ld and list the linker emulations

 supported. Display which input files can and cannot be opened.

 Display the linker script being used by the linker. If the optional

 NUMBER argument > 1, plugin symbol status will also be displayed.

 --version-script=version-scriptfile

 Specify the name of a version script to the linker. This is

 typically used when creating shared libraries to specify additional

 information about the version hierarchy for the library being Page 44/67

 created. This option is only fully supported on ELF platforms

 which support shared libraries; see VERSION. It is partially

 supported on PE platforms, which can use version scripts to filter

 symbol visibility in auto-export mode: any symbols marked local in

 the version script will not be exported.

 --warn-common

 Warn when a common symbol is combined with another common symbol or

 with a symbol definition. Unix linkers allow this somewhat sloppy

 practice, but linkers on some other operating systems do not. This

 option allows you to find potential problems from combining global

 symbols. Unfortunately, some C libraries use this practice, so you

 may get some warnings about symbols in the libraries as well as in

 your programs.

 There are three kinds of global symbols, illustrated here by C

 examples:

 int i = 1;

 A definition, which goes in the initialized data section of the

 output file.

 extern int i;

 An undefined reference, which does not allocate space. There

 must be either a definition or a common symbol for the variable

 somewhere.

 int i;

 A common symbol. If there are only (one or more) common

 symbols for a variable, it goes in the uninitialized data area

 of the output file. The linker merges multiple common symbols

 for the same variable into a single symbol. If they are of

 different sizes, it picks the largest size. The linker turns a

 common symbol into a declaration, if there is a definition of

 the same variable.

 The --warn-common option can produce five kinds of warnings. Each

 warning consists of a pair of lines: the first describes the symbol

 just encountered, and the second describes the previous symbol Page 45/67

 encountered with the same name. One or both of the two symbols

 will be a common symbol.

 1. Turning a common symbol into a reference, because there is

 already a definition for the symbol.

 <file>(<section>): warning: common of `<symbol>'

 overridden by definition

 <file>(<section>): warning: defined here

 2. Turning a common symbol into a reference, because a later

 definition for the symbol is encountered. This is the same as

 the previous case, except that the symbols are encountered in a

 different order.

 <file>(<section>): warning: definition of `<symbol>'

 overriding common

 <file>(<section>): warning: common is here

 3. Merging a common symbol with a previous same-sized common

 symbol.

 <file>(<section>): warning: multiple common

 of `<symbol>'

 <file>(<section>): warning: previous common is here

 4. Merging a common symbol with a previous larger common symbol.

 <file>(<section>): warning: common of `<symbol>'

 overridden by larger common

 <file>(<section>): warning: larger common is here

 5. Merging a common symbol with a previous smaller common symbol.

 This is the same as the previous case, except that the symbols

 are encountered in a different order.

 <file>(<section>): warning: common of `<symbol>'

 overriding smaller common

 <file>(<section>): warning: smaller common is here

 --warn-constructors

 Warn if any global constructors are used. This is only useful for

 a few object file formats. For formats like COFF or ELF, the

 linker can not detect the use of global constructors. Page 46/67

 --warn-multiple-gp

 Warn if multiple global pointer values are required in the output

 file. This is only meaningful for certain processors, such as the

 Alpha. Specifically, some processors put large-valued constants in

 a special section. A special register (the global pointer) points

 into the middle of this section, so that constants can be loaded

 efficiently via a base-register relative addressing mode. Since

 the offset in base-register relative mode is fixed and relatively

 small (e.g., 16 bits), this limits the maximum size of the constant

 pool. Thus, in large programs, it is often necessary to use

 multiple global pointer values in order to be able to address all

 possible constants. This option causes a warning to be issued

 whenever this case occurs.

 --warn-once

 Only warn once for each undefined symbol, rather than once per

 module which refers to it.

 --warn-section-align

 Warn if the address of an output section is changed because of

 alignment. Typically, the alignment will be set by an input

 section. The address will only be changed if it not explicitly

 specified; that is, if the "SECTIONS" command does not specify a

 start address for the section.

 --warn-textrel

 Warn if the linker adds DT_TEXTREL to a position-independent

 executable or shared object.

 --warn-alternate-em

 Warn if an object has alternate ELF machine code.

 --warn-unresolved-symbols

 If the linker is going to report an unresolved symbol (see the

 option --unresolved-symbols) it will normally generate an error.

 This option makes it generate a warning instead.

 --error-unresolved-symbols

 This restores the linker's default behaviour of generating errors Page 47/67

 when it is reporting unresolved symbols.

 --whole-archive

 For each archive mentioned on the command line after the

 --whole-archive option, include every object file in the archive in

 the link, rather than searching the archive for the required object

 files. This is normally used to turn an archive file into a shared

 library, forcing every object to be included in the resulting

 shared library. This option may be used more than once.

 Two notes when using this option from gcc: First, gcc doesn't know

 about this option, so you have to use -Wl,-whole-archive. Second,

 don't forget to use -Wl,-no-whole-archive after your list of

 archives, because gcc will add its own list of archives to your

 link and you may not want this flag to affect those as well.

 --wrap=symbol

 Use a wrapper function for symbol. Any undefined reference to

 symbol will be resolved to "__wrap_symbol". Any undefined

 reference to "__real_symbol" will be resolved to symbol.

 This can be used to provide a wrapper for a system function. The

 wrapper function should be called "__wrap_symbol". If it wishes to

 call the system function, it should call "__real_symbol".

 Here is a trivial example:

 void *

 __wrap_malloc (size_t c)

 {

 printf ("malloc called with %zu\n", c);

 return __real_malloc (c);

 }

 If you link other code with this file using --wrap malloc, then all

 calls to "malloc" will call the function "__wrap_malloc" instead.

 The call to "__real_malloc" in "__wrap_malloc" will call the real

 "malloc" function.

 You may wish to provide a "__real_malloc" function as well, so that

 links without the --wrap option will succeed. If you do this, you Page 48/67

 should not put the definition of "__real_malloc" in the same file

 as "__wrap_malloc"; if you do, the assembler may resolve the call

 before the linker has a chance to wrap it to "malloc".

 Only undefined references are replaced by the linker. So,

 translation unit internal references to symbol are not resolved to

 "__wrap_symbol". In the next example, the call to "f" in "g" is

 not resolved to "__wrap_f".

 int

 f (void)

 {

 return 123;

 }

 int

 g (void)

 {

 return f();

 }

 --eh-frame-hdr

 --no-eh-frame-hdr

 Request (--eh-frame-hdr) or suppress (--no-eh-frame-hdr) the

 creation of ".eh_frame_hdr" section and ELF "PT_GNU_EH_FRAME"

 segment header.

 --no-ld-generated-unwind-info

 Request creation of ".eh_frame" unwind info for linker generated

 code sections like PLT. This option is on by default if linker

 generated unwind info is supported.

 --enable-new-dtags

 --disable-new-dtags

 This linker can create the new dynamic tags in ELF. But the older

 ELF systems may not understand them. If you specify

 --enable-new-dtags, the new dynamic tags will be created as needed

 and older dynamic tags will be omitted. If you specify

 --disable-new-dtags, no new dynamic tags will be created. By Page 49/67

 default, the new dynamic tags are not created. Note that those

 options are only available for ELF systems.

 --hash-size=number

 Set the default size of the linker's hash tables to a prime number

 close to number. Increasing this value can reduce the length of

 time it takes the linker to perform its tasks, at the expense of

 increasing the linker's memory requirements. Similarly reducing

 this value can reduce the memory requirements at the expense of

 speed.

 --hash-style=style

 Set the type of linker's hash table(s). style can be either "sysv"

 for classic ELF ".hash" section, "gnu" for new style GNU

 ".gnu.hash" section or "both" for both the classic ELF ".hash" and

 new style GNU ".gnu.hash" hash tables. The default depends upon

 how the linker was configured, but for most Linux based systems it

 will be "both".

 --compress-debug-sections=none

 --compress-debug-sections=zlib

 --compress-debug-sections=zlib-gnu

 --compress-debug-sections=zlib-gabi

 On ELF platforms, these options control how DWARF debug sections

 are compressed using zlib.

 --compress-debug-sections=none doesn't compress DWARF debug

 sections. --compress-debug-sections=zlib-gnu compresses DWARF

 debug sections and renames them to begin with .zdebug instead of

 .debug. --compress-debug-sections=zlib-gabi also compresses DWARF

 debug sections, but rather than renaming them it sets the

 SHF_COMPRESSED flag in the sections' headers.

 The --compress-debug-sections=zlib option is an alias for

 --compress-debug-sections=zlib-gabi.

 Note that this option overrides any compression in input debug

 sections, so if a binary is linked with

 --compress-debug-sections=none for example, then any compressed Page 50/67

 debug sections in input files will be uncompressed before they are

 copied into the output binary.

 The default compression behaviour varies depending upon the target

 involved and the configure options used to build the toolchain.

 The default can be determined by examining the output from the

 linker's --help option.

 --reduce-memory-overheads

 This option reduces memory requirements at ld runtime, at the

 expense of linking speed. This was introduced to select the old

 O(n^2) algorithm for link map file generation, rather than the new

 O(n) algorithm which uses about 40% more memory for symbol storage.

 Another effect of the switch is to set the default hash table size

 to 1021, which again saves memory at the cost of lengthening the

 linker's run time. This is not done however if the --hash-size

 switch has been used.

 The --reduce-memory-overheads switch may be also be used to enable

 other tradeoffs in future versions of the linker.

 --build-id

 --build-id=style

 Request the creation of a ".note.gnu.build-id" ELF note section or

 a ".buildid" COFF section. The contents of the note are unique

 bits identifying this linked file. style can be "uuid" to use 128

 random bits, "sha1" to use a 160-bit SHA1 hash on the normative

 parts of the output contents, "md5" to use a 128-bit MD5 hash on

 the normative parts of the output contents, or "0xhexstring" to use

 a chosen bit string specified as an even number of hexadecimal

 digits ("-" and ":" characters between digit pairs are ignored).

 If style is omitted, "sha1" is used.

 The "md5" and "sha1" styles produces an identifier that is always

 the same in an identical output file, but will be unique among all

 nonidentical output files. It is not intended to be compared as a

 checksum for the file's contents. A linked file may be changed

 later by other tools, but the build ID bit string identifying the Page 51/67

 original linked file does not change.

 Passing "none" for style disables the setting from any "--build-id"

 options earlier on the command line.

 The i386 PE linker supports the -shared option, which causes the output

 to be a dynamically linked library (DLL) instead of a normal

 executable. You should name the output "*.dll" when you use this

 option. In addition, the linker fully supports the standard "*.def"

 files, which may be specified on the linker command line like an object

 file (in fact, it should precede archives it exports symbols from, to

 ensure that they get linked in, just like a normal object file).

 In addition to the options common to all targets, the i386 PE linker

 support additional command-line options that are specific to the i386

 PE target. Options that take values may be separated from their values

 by either a space or an equals sign.

 --add-stdcall-alias

 If given, symbols with a stdcall suffix (@nn) will be exported as-

 is and also with the suffix stripped. [This option is specific to

 the i386 PE targeted port of the linker]

 --base-file file

 Use file as the name of a file in which to save the base addresses

 of all the relocations needed for generating DLLs with dlltool.

 [This is an i386 PE specific option]

 --dll

 Create a DLL instead of a regular executable. You may also use

 -shared or specify a "LIBRARY" in a given ".def" file. [This

 option is specific to the i386 PE targeted port of the linker]

 --enable-long-section-names

 --disable-long-section-names

 The PE variants of the COFF object format add an extension that

 permits the use of section names longer than eight characters, the

 normal limit for COFF. By default, these names are only allowed in

 object files, as fully-linked executable images do not carry the

 COFF string table required to support the longer names. As a GNU Page 52/67

 extension, it is possible to allow their use in executable images

 as well, or to (probably pointlessly!) disallow it in object

 files, by using these two options. Executable images generated

 with these long section names are slightly non-standard, carrying

 as they do a string table, and may generate confusing output when

 examined with non-GNU PE-aware tools, such as file viewers and

 dumpers. However, GDB relies on the use of PE long section names

 to find Dwarf-2 debug information sections in an executable image

 at runtime, and so if neither option is specified on the command-

 line, ld will enable long section names, overriding the default and

 technically correct behaviour, when it finds the presence of debug

 information while linking an executable image and not stripping

 symbols. [This option is valid for all PE targeted ports of the

 linker]

 --enable-stdcall-fixup

 --disable-stdcall-fixup

 If the link finds a symbol that it cannot resolve, it will attempt

 to do "fuzzy linking" by looking for another defined symbol that

 differs only in the format of the symbol name (cdecl vs stdcall)

 and will resolve that symbol by linking to the match. For example,

 the undefined symbol "_foo" might be linked to the function

 "_foo@12", or the undefined symbol "_bar@16" might be linked to the

 function "_bar". When the linker does this, it prints a warning,

 since it normally should have failed to link, but sometimes import

 libraries generated from third-party dlls may need this feature to

 be usable. If you specify --enable-stdcall-fixup, this feature is

 fully enabled and warnings are not printed. If you specify

 --disable-stdcall-fixup, this feature is disabled and such

 mismatches are considered to be errors. [This option is specific

 to the i386 PE targeted port of the linker]

 --leading-underscore

 --no-leading-underscore

 For most targets default symbol-prefix is an underscore and is Page 53/67

 defined in target's description. By this option it is possible to

 disable/enable the default underscore symbol-prefix.

 --export-all-symbols

 If given, all global symbols in the objects used to build a DLL

 will be exported by the DLL. Note that this is the default if

 there otherwise wouldn't be any exported symbols. When symbols are

 explicitly exported via DEF files or implicitly exported via

 function attributes, the default is to not export anything else

 unless this option is given. Note that the symbols "DllMain@12",

 "DllEntryPoint@0", "DllMainCRTStartup@12", and "impure_ptr" will

 not be automatically exported. Also, symbols imported from other

 DLLs will not be re-exported, nor will symbols specifying the DLL's

 internal layout such as those beginning with "_head_" or ending

 with "_iname". In addition, no symbols from "libgcc", "libstd++",

 "libmingw32", or "crtX.o" will be exported. Symbols whose names

 begin with "__rtti_" or "__builtin_" will not be exported, to help

 with C++ DLLs. Finally, there is an extensive list of cygwin-

 private symbols that are not exported (obviously, this applies on

 when building DLLs for cygwin targets). These cygwin-excludes are:

 "_cygwin_dll_entry@12", "_cygwin_crt0_common@8",

 "_cygwin_noncygwin_dll_entry@12", "_fmode", "_impure_ptr",

 "cygwin_attach_dll", "cygwin_premain0", "cygwin_premain1",

 "cygwin_premain2", "cygwin_premain3", and "environ". [This option

 is specific to the i386 PE targeted port of the linker]

 --exclude-symbols symbol,symbol,...

 Specifies a list of symbols which should not be automatically

 exported. The symbol names may be delimited by commas or colons.

 [This option is specific to the i386 PE targeted port of the

 linker]

 --exclude-all-symbols

 Specifies no symbols should be automatically exported. [This

 option is specific to the i386 PE targeted port of the linker]

 --file-alignment Page 54/67

 Specify the file alignment. Sections in the file will always begin

 at file offsets which are multiples of this number. This defaults

 to 512. [This option is specific to the i386 PE targeted port of

 the linker]

 --heap reserve

 --heap reserve,commit

 Specify the number of bytes of memory to reserve (and optionally

 commit) to be used as heap for this program. The default is 1MB

 reserved, 4K committed. [This option is specific to the i386 PE

 targeted port of the linker]

 --image-base value

 Use value as the base address of your program or dll. This is the

 lowest memory location that will be used when your program or dll

 is loaded. To reduce the need to relocate and improve performance

 of your dlls, each should have a unique base address and not

 overlap any other dlls. The default is 0x400000 for executables,

 and 0x10000000 for dlls. [This option is specific to the i386 PE

 targeted port of the linker]

 --kill-at

 If given, the stdcall suffixes (@nn) will be stripped from symbols

 before they are exported. [This option is specific to the i386 PE

 targeted port of the linker]

 --large-address-aware

 If given, the appropriate bit in the "Characteristics" field of the

 COFF header is set to indicate that this executable supports

 virtual addresses greater than 2 gigabytes. This should be used in

 conjunction with the /3GB or /USERVA=value megabytes switch in the

 "[operating systems]" section of the BOOT.INI. Otherwise, this bit

 has no effect. [This option is specific to PE targeted ports of

 the linker]

 --disable-large-address-aware

 Reverts the effect of a previous --large-address-aware option.

 This is useful if --large-address-aware is always set by the Page 55/67

 compiler driver (e.g. Cygwin gcc) and the executable does not

 support virtual addresses greater than 2 gigabytes. [This option

 is specific to PE targeted ports of the linker]

 --major-image-version value

 Sets the major number of the "image version". Defaults to 1.

 [This option is specific to the i386 PE targeted port of the

 linker]

 --major-os-version value

 Sets the major number of the "os version". Defaults to 4. [This

 option is specific to the i386 PE targeted port of the linker]

 --major-subsystem-version value

 Sets the major number of the "subsystem version". Defaults to 4.

 [This option is specific to the i386 PE targeted port of the

 linker]

 --minor-image-version value

 Sets the minor number of the "image version". Defaults to 0.

 [This option is specific to the i386 PE targeted port of the

 linker]

 --minor-os-version value

 Sets the minor number of the "os version". Defaults to 0. [This

 option is specific to the i386 PE targeted port of the linker]

 --minor-subsystem-version value

 Sets the minor number of the "subsystem version". Defaults to 0.

 [This option is specific to the i386 PE targeted port of the

 linker]

 --output-def file

 The linker will create the file file which will contain a DEF file

 corresponding to the DLL the linker is generating. This DEF file

 (which should be called "*.def") may be used to create an import

 library with "dlltool" or may be used as a reference to

 automatically or implicitly exported symbols. [This option is

 specific to the i386 PE targeted port of the linker]

 --enable-auto-image-base Page 56/67

 --enable-auto-image-base=value

 Automatically choose the image base for DLLs, optionally starting

 with base value, unless one is specified using the "--image-base"

 argument. By using a hash generated from the dllname to create

 unique image bases for each DLL, in-memory collisions and

 relocations which can delay program execution are avoided. [This

 option is specific to the i386 PE targeted port of the linker]

 --disable-auto-image-base

 Do not automatically generate a unique image base. If there is no

 user-specified image base ("--image-base") then use the platform

 default. [This option is specific to the i386 PE targeted port of

 the linker]

 --dll-search-prefix string

 When linking dynamically to a dll without an import library, search

 for "<string><basename>.dll" in preference to "lib<basename>.dll".

 This behaviour allows easy distinction between DLLs built for the

 various "subplatforms": native, cygwin, uwin, pw, etc. For

 instance, cygwin DLLs typically use "--dll-search-prefix=cyg".

 [This option is specific to the i386 PE targeted port of the

 linker]

 --enable-auto-import

 Do sophisticated linking of "_symbol" to "__imp__symbol" for DATA

 imports from DLLs, thus making it possible to bypass the dllimport

 mechanism on the user side and to reference unmangled symbol names.

 [This option is specific to the i386 PE targeted port of the

 linker]

 The following remarks pertain to the original implementation of the

 feature and are obsolete nowadays for Cygwin and MinGW targets.

 Note: Use of the 'auto-import' extension will cause the text

 section of the image file to be made writable. This does not

 conform to the PE-COFF format specification published by Microsoft.

 Note - use of the 'auto-import' extension will also cause read only

 data which would normally be placed into the .rdata section to be Page 57/67

 placed into the .data section instead. This is in order to work

 around a problem with consts that is described here:

 http://www.cygwin.com/ml/cygwin/2004-09/msg01101.html

 Using 'auto-import' generally will 'just work' -- but sometimes you

 may see this message:

 "variable '<var>' can't be auto-imported. Please read the

 documentation for ld's "--enable-auto-import" for details."

 This message occurs when some (sub)expression accesses an address

 ultimately given by the sum of two constants (Win32 import tables

 only allow one). Instances where this may occur include accesses

 to member fields of struct variables imported from a DLL, as well

 as using a constant index into an array variable imported from a

 DLL. Any multiword variable (arrays, structs, long long, etc) may

 trigger this error condition. However, regardless of the exact

 data type of the offending exported variable, ld will always detect

 it, issue the warning, and exit.

 There are several ways to address this difficulty, regardless of

 the data type of the exported variable:

 One way is to use --enable-runtime-pseudo-reloc switch. This leaves

 the task of adjusting references in your client code for runtime

 environment, so this method works only when runtime environment

 supports this feature.

 A second solution is to force one of the 'constants' to be a

 variable -- that is, unknown and un-optimizable at compile time.

 For arrays, there are two possibilities: a) make the indexee (the

 array's address) a variable, or b) make the 'constant' index a

 variable. Thus:

 extern type extern_array[];

 extern_array[1] -->

 { volatile type *t=extern_array; t[1] }

 or

 extern type extern_array[];

 extern_array[1] --> Page 58/67

 { volatile int t=1; extern_array[t] }

 For structs (and most other multiword data types) the only option

 is to make the struct itself (or the long long, or the ...)

 variable:

 extern struct s extern_struct;

 extern_struct.field -->

 { volatile struct s *t=&extern_struct; t->field }

 or

 extern long long extern_ll;

 extern_ll -->

 { volatile long long * local_ll=&extern_ll; *local_ll }

 A third method of dealing with this difficulty is to abandon

 'auto-import' for the offending symbol and mark it with

 "__declspec(dllimport)". However, in practice that requires using

 compile-time #defines to indicate whether you are building a DLL,

 building client code that will link to the DLL, or merely

 building/linking to a static library. In making the choice

 between the various methods of resolving the 'direct address with

 constant offset' problem, you should consider typical real-world

 usage:

 Original:

 --foo.h

 extern int arr[];

 --foo.c

 #include "foo.h"

 void main(int argc, char **argv){

 printf("%d\n",arr[1]);

 }

 Solution 1:

 --foo.h

 extern int arr[];

 --foo.c

 #include "foo.h" Page 59/67

 void main(int argc, char **argv){

 /* This workaround is for win32 and cygwin; do not "optimize" */

 volatile int *parr = arr;

 printf("%d\n",parr[1]);

 }

 Solution 2:

 --foo.h

 /* Note: auto-export is assumed (no __declspec(dllexport)) */

 #if (defined(_WIN32) || defined(__CYGWIN__)) && \

 !(defined(FOO_BUILD_DLL) || defined(FOO_STATIC))

 #define FOO_IMPORT __declspec(dllimport)

 #else

 #define FOO_IMPORT

 #endif

 extern FOO_IMPORT int arr[];

 --foo.c

 #include "foo.h"

 void main(int argc, char **argv){

 printf("%d\n",arr[1]);

 }

 A fourth way to avoid this problem is to re-code your library to

 use a functional interface rather than a data interface for the

 offending variables (e.g. set_foo() and get_foo() accessor

 functions).

 --disable-auto-import

 Do not attempt to do sophisticated linking of "_symbol" to

 "__imp__symbol" for DATA imports from DLLs. [This option is

 specific to the i386 PE targeted port of the linker]

 --enable-runtime-pseudo-reloc

 If your code contains expressions described in --enable-auto-import

 section, that is, DATA imports from DLL with non-zero offset, this

 switch will create a vector of 'runtime pseudo relocations' which

 can be used by runtime environment to adjust references to such Page 60/67

 data in your client code. [This option is specific to the i386 PE

 targeted port of the linker]

 --disable-runtime-pseudo-reloc

 Do not create pseudo relocations for non-zero offset DATA imports

 from DLLs. [This option is specific to the i386 PE targeted port

 of the linker]

 --enable-extra-pe-debug

 Show additional debug info related to auto-import symbol thunking.

 [This option is specific to the i386 PE targeted port of the

 linker]

 --section-alignment

 Sets the section alignment. Sections in memory will always begin

 at addresses which are a multiple of this number. Defaults to

 0x1000. [This option is specific to the i386 PE targeted port of

 the linker]

 --stack reserve

 --stack reserve,commit

 Specify the number of bytes of memory to reserve (and optionally

 commit) to be used as stack for this program. The default is 2MB

 reserved, 4K committed. [This option is specific to the i386 PE

 targeted port of the linker]

 --subsystem which

 --subsystem which:major

 --subsystem which:major.minor

 Specifies the subsystem under which your program will execute. The

 legal values for which are "native", "windows", "console", "posix",

 and "xbox". You may optionally set the subsystem version also.

 Numeric values are also accepted for which. [This option is

 specific to the i386 PE targeted port of the linker]

 The following options set flags in the "DllCharacteristics" field

 of the PE file header: [These options are specific to PE targeted

 ports of the linker]

 --high-entropy-va Page 61/67

 Image is compatible with 64-bit address space layout randomization

 (ASLR). This option also implies --dynamicbase and

 --enable-reloc-section.

 --dynamicbase

 The image base address may be relocated using address space layout

 randomization (ASLR). This feature was introduced with MS Windows

 Vista for i386 PE targets. This option also implies

 --enable-reloc-section.

 --forceinteg

 Code integrity checks are enforced.

 --nxcompat

 The image is compatible with the Data Execution Prevention. This

 feature was introduced with MS Windows XP SP2 for i386 PE targets.

 --no-isolation

 Although the image understands isolation, do not isolate the image.

 --no-seh

 The image does not use SEH. No SE handler may be called from this

 image.

 --no-bind

 Do not bind this image.

 --wdmdriver

 The driver uses the MS Windows Driver Model.

 --tsaware

 The image is Terminal Server aware.

 --insert-timestamp

 --no-insert-timestamp

 Insert a real timestamp into the image. This is the default

 behaviour as it matches legacy code and it means that the image

 will work with other, proprietary tools. The problem with this

 default is that it will result in slightly different images being

 produced each time the same sources are linked. The option

 --no-insert-timestamp can be used to insert a zero value for the

 timestamp, this ensuring that binaries produced from identical Page 62/67

 sources will compare identically.

 --enable-reloc-section

 Create the base relocation table, which is necessary if the image

 is loaded at a different image base than specified in the PE

 header.

 The C6X uClinux target uses a binary format called DSBT to support

 shared libraries. Each shared library in the system needs to have a

 unique index; all executables use an index of 0.

 --dsbt-size size

 This option sets the number of entries in the DSBT of the current

 executable or shared library to size. The default is to create a

 table with 64 entries.

 --dsbt-index index

 This option sets the DSBT index of the current executable or shared

 library to index. The default is 0, which is appropriate for

 generating executables. If a shared library is generated with a

 DSBT index of 0, the "R_C6000_DSBT_INDEX" relocs are copied into

 the output file.

 The --no-merge-exidx-entries switch disables the merging of

 adjacent exidx entries in frame unwind info.

 --branch-stub

 This option enables linker branch relaxation by inserting branch

 stub sections when needed to extend the range of branches. This

 option is usually not required since C-SKY supports branch and call

 instructions that can access the full memory range and branch

 relaxation is normally handled by the compiler or assembler.

 --stub-group-size=N

 This option allows finer control of linker branch stub creation.

 It sets the maximum size of a group of input sections that can be

 handled by one stub section. A negative value of N locates stub

 sections after their branches, while a positive value allows stub

 sections to appear either before or after the branches. Values of

 1 or -1 indicate that the linker should choose suitable defaults. Page 63/67

 The 68HC11 and 68HC12 linkers support specific options to control the

 memory bank switching mapping and trampoline code generation.

 --no-trampoline

 This option disables the generation of trampoline. By default a

 trampoline is generated for each far function which is called using

 a "jsr" instruction (this happens when a pointer to a far function

 is taken).

 --bank-window name

 This option indicates to the linker the name of the memory region

 in the MEMORY specification that describes the memory bank window.

 The definition of such region is then used by the linker to compute

 paging and addresses within the memory window.

 The following options are supported to control handling of GOT

 generation when linking for 68K targets.

 --got=type

 This option tells the linker which GOT generation scheme to use.

 type should be one of single, negative, multigot or target. For

 more information refer to the Info entry for ld.

 The following options are supported to control microMIPS instruction

 generation and branch relocation checks for ISA mode transitions when

 linking for MIPS targets.

 --insn32

 --no-insn32

 These options control the choice of microMIPS instructions used in

 code generated by the linker, such as that in the PLT or lazy

 binding stubs, or in relaxation. If --insn32 is used, then the

 linker only uses 32-bit instruction encodings. By default or if

 --no-insn32 is used, all instruction encodings are used, including

 16-bit ones where possible.

 --ignore-branch-isa

 --no-ignore-branch-isa

 These options control branch relocation checks for invalid ISA mode

 transitions. If --ignore-branch-isa is used, then the linker Page 64/67

 accepts any branch relocations and any ISA mode transition required

 is lost in relocation calculation, except for some cases of "BAL"

 instructions which meet relaxation conditions and are converted to

 equivalent "JALX" instructions as the associated relocation is

 calculated. By default or if --no-ignore-branch-isa is used a

 check is made causing the loss of an ISA mode transition to produce

 an error.

 --compact-branches

 --no-compact-branches

 These options control the generation of compact instructions by the

 linker in the PLT entries for MIPS R6.

 For the pdp11-aout target, three variants of the output format can be

 produced as selected by the following options. The default variant for

 pdp11-aout is the --omagic option, whereas for other targets --nmagic

 is the default. The --imagic option is defined only for the pdp11-aout

 target, while the others are described here as they apply to the

 pdp11-aout target.

 -N

 --omagic

 Mark the output as "OMAGIC" (0407) in the a.out header to indicate

 that the text segment is not to be write-protected and shared.

 Since the text and data sections are both readable and writable,

 the data section is allocated immediately contiguous after the text

 segment. This is the oldest format for PDP11 executable programs

 and is the default for ld on PDP11 Unix systems from the beginning

 through 2.11BSD.

 -n

 --nmagic

 Mark the output as "NMAGIC" (0410) in the a.out header to indicate

 that when the output file is executed, the text portion will be

 read-only and shareable among all processes executing the same

 file. This involves moving the data areas up to the first possible

 8K byte page boundary following the end of the text. This option Page 65/67

 creates a pure executable format.

 -z

 --imagic

 Mark the output as "IMAGIC" (0411) in the a.out header to indicate

 that when the output file is executed, the program text and data

 areas will be loaded into separate address spaces using the split

 instruction and data space feature of the memory management unit in

 larger models of the PDP11. This doubles the address space

 available to the program. The text segment is again pure, write-

 protected, and shareable. The only difference in the output format

 between this option and the others, besides the magic number, is

 that both the text and data sections start at location 0. The -z

 option selected this format in 2.11BSD. This option creates a

 separate executable format.

 --no-omagic

 Equivalent to --nmagic for pdp11-aout.

ENVIRONMENT

 You can change the behaviour of ld with the environment variables

 "GNUTARGET", "LDEMULATION" and "COLLECT_NO_DEMANGLE".

 "GNUTARGET" determines the input-file object format if you don't use -b

 (or its synonym --format). Its value should be one of the BFD names

 for an input format. If there is no "GNUTARGET" in the environment, ld

 uses the natural format of the target. If "GNUTARGET" is set to

 "default" then BFD attempts to discover the input format by examining

 binary input files; this method often succeeds, but there are potential

 ambiguities, since there is no method of ensuring that the magic number

 used to specify object-file formats is unique. However, the

 configuration procedure for BFD on each system places the conventional

 format for that system first in the search-list, so ambiguities are

 resolved in favor of convention.

 "LDEMULATION" determines the default emulation if you don't use the -m

 option. The emulation can affect various aspects of linker behaviour,

 particularly the default linker script. You can list the available Page 66/67

 emulations with the --verbose or -V options. If the -m option is not

 used, and the "LDEMULATION" environment variable is not defined, the

 default emulation depends upon how the linker was configured.

 Normally, the linker will default to demangling symbols. However, if

 "COLLECT_NO_DEMANGLE" is set in the environment, then it will default

 to not demangling symbols. This environment variable is used in a

 similar fashion by the "gcc" linker wrapper program. The default may

 be overridden by the --demangle and --no-demangle options.

SEE ALSO

 ar(1), nm(1), objcopy(1), objdump(1), readelf(1) and the Info entries

 for binutils and ld.

COPYRIGHT

 Copyright (c) 1991-2020 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document

 under the terms of the GNU Free Documentation License, Version 1.3 or

 any later version published by the Free Software Foundation; with no

 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

 Texts. A copy of the license is included in the section entitled "GNU

 Free Documentation License".

binutils-2.35.2 2023-01-20 LD(1)

Page 67/67

