
Rocky Enterprise Linux 9.2 Manual Pages on command 'lchown32.2'

$ man lchown32.2

CHOWN(2) Linux Programmer's Manual CHOWN(2)

NAME

 chown, fchown, lchown, fchownat - change ownership of a file

SYNOPSIS

 #include <unistd.h>

 int chown(const char *pathname, uid_t owner, gid_t group);

 int fchown(int fd, uid_t owner, gid_t group);

 int lchown(const char *pathname, uid_t owner, gid_t group);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <unistd.h>

 int fchownat(int dirfd, const char *pathname,

 uid_t owner, gid_t group, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fchown(), lchown():

 /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 || _XOPEN_SOURCE >= 500

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 fchownat(): Page 1/7

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 These system calls change the owner and group of a file. The chown(),

 fchown(), and lchown() system calls differ only in how the file is

 specified:

 * chown() changes the ownership of the file specified by pathname,

 which is dereferenced if it is a symbolic link.

 * fchown() changes the ownership of the file referred to by the open

 file descriptor fd.

 * lchown() is like chown(), but does not dereference symbolic links.

 Only a privileged process (Linux: one with the CAP_CHOWN capability)

 may change the owner of a file. The owner of a file may change the

 group of the file to any group of which that owner is a member. A

 privileged process (Linux: with CAP_CHOWN) may change the group arbi?

 trarily.

 If the owner or group is specified as -1, then that ID is not changed.

 When the owner or group of an executable file is changed by an unprivi?

 leged user, the S_ISUID and S_ISGID mode bits are cleared. POSIX does

 not specify whether this also should happen when root does the chown();

 the Linux behavior depends on the kernel version, and since Linux

 2.2.13, root is treated like other users. In case of a non-group-exe?

 cutable file (i.e., one for which the S_IXGRP bit is not set) the S_IS?

 GID bit indicates mandatory locking, and is not cleared by a chown().

 When the owner or group of an executable file is changed (by any user),

 all capability sets for the file are cleared.

 fchownat()

 The fchownat() system call operates in exactly the same way as chown(),

 except for the differences described here.

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd Page 2/7

 (rather than relative to the current working directory of the calling

 process, as is done by chown() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then

 pathname is interpreted relative to the current working directory of

 the calling process (like chown()).

 If pathname is absolute, then dirfd is ignored.

 The flags argument is a bit mask created by ORing together 0 or more of

 the following values;

 AT_EMPTY_PATH (since Linux 2.6.39)

 If pathname is an empty string, operate on the file referred to

 by dirfd (which may have been obtained using the open(2) O_PATH

 flag). In this case, dirfd can refer to any type of file, not

 just a directory. If dirfd is AT_FDCWD, the call operates on

 the current working directory. This flag is Linux-specific; de?

 fine _GNU_SOURCE to obtain its definition.

 AT_SYMLINK_NOFOLLOW

 If pathname is a symbolic link, do not dereference it: instead

 operate on the link itself, like lchown(). (By default, fchow?

 nat() dereferences symbolic links, like chown().)

 See openat(2) for an explanation of the need for fchownat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 Depending on the filesystem, errors other than those listed below can

 be returned.

 The more general errors for chown() are listed below.

 EACCES Search permission is denied on a component of the path prefix.

 (See also path_resolution(7).)

 EFAULT pathname points outside your accessible address space.

 ELOOP Too many symbolic links were encountered in resolving pathname.

 ENAMETOOLONG

 pathname is too long. Page 3/7

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR

 A component of the path prefix is not a directory.

 EPERM The calling process did not have the required permissions (see

 above) to change owner and/or group.

 EPERM The file is marked immutable or append-only. (See

 ioctl_iflags(2).)

 EROFS The named file resides on a read-only filesystem.

 The general errors for fchown() are listed below:

 EBADF fd is not a valid open file descriptor.

 EIO A low-level I/O error occurred while modifying the inode.

 ENOENT See above.

 EPERM See above.

 EROFS See above.

 The same errors that occur for chown() can also occur for fchownat().

 The following additional errors can occur for fchownat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL Invalid flag specified in flags.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to

 a file other than a directory.

VERSIONS

 fchownat() was added to Linux in kernel 2.6.16; library support was

 added to glibc in version 2.4.

CONFORMING TO

 chown(), fchown(), lchown(): 4.4BSD, SVr4, POSIX.1-2001, POSIX.1-2008.

 The 4.4BSD version can be used only by the superuser (that is, ordinary

 users cannot give away files).

 fchownat(): POSIX.1-2008.

NOTES

 Ownership of new files

 When a new file is created (by, for example, open(2) or mkdir(2)), its Page 4/7

 owner is made the same as the filesystem user ID of the creating

 process. The group of the file depends on a range of factors, includ?

 ing the type of filesystem, the options used to mount the filesystem,

 and whether or not the set-group-ID mode bit is enabled on the parent

 directory. If the filesystem supports the -o grpid (or, synonymously

 -o bsdgroups) and -o nogrpid (or, synonymously -o sysvgroups) mount(8)

 options, then the rules are as follows:

 * If the filesystem is mounted with -o grpid, then the group of a new

 file is made the same as that of the parent directory.

 * If the filesystem is mounted with -o nogrpid and the set-group-ID bit

 is disabled on the parent directory, then the group of a new file is

 made the same as the process's filesystem GID.

 * If the filesystem is mounted with -o nogrpid and the set-group-ID bit

 is enabled on the parent directory, then the group of a new file is

 made the same as that of the parent directory.

 As at Linux 4.12, the -o grpid and -o nogrpid mount options are sup?

 ported by ext2, ext3, ext4, and XFS. Filesystems that don't support

 these mount options follow the -o nogrpid rules.

 Glibc notes

 On older kernels where fchownat() is unavailable, the glibc wrapper

 function falls back to the use of chown() and lchown(). When pathname

 is a relative pathname, glibc constructs a pathname based on the sym?

 bolic link in /proc/self/fd that corresponds to the dirfd argument.

 NFS

 The chown() semantics are deliberately violated on NFS filesystems

 which have UID mapping enabled. Additionally, the semantics of all

 system calls which access the file contents are violated, because

 chown() may cause immediate access revocation on already open files.

 Client side caching may lead to a delay between the time where owner?

 ship have been changed to allow access for a user and the time where

 the file can actually be accessed by the user on other clients.

 Historical details

 The original Linux chown(), fchown(), and lchown() system calls sup? Page 5/7

 ported only 16-bit user and group IDs. Subsequently, Linux 2.4 added

 chown32(), fchown32(), and lchown32(), supporting 32-bit IDs. The

 glibc chown(), fchown(), and lchown() wrapper functions transparently

 deal with the variations across kernel versions.

 In versions of Linux prior to 2.1.81 (and distinct from 2.1.46),

 chown() did not follow symbolic links. Since Linux 2.1.81, chown()

 does follow symbolic links, and there is a new system call lchown()

 that does not follow symbolic links. Since Linux 2.1.86, this new call

 (that has the same semantics as the old chown()) has got the same

 syscall number, and chown() got the newly introduced number.

EXAMPLES

 The following program changes the ownership of the file named in its

 second command-line argument to the value specified in its first com?

 mand-line argument. The new owner can be specified either as a numeric

 user ID, or as a username (which is converted to a user ID by using

 getpwnam(3) to perform a lookup in the system password file).

 Program source

 #include <pwd.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 int

 main(int argc, char *argv[])

 {

 uid_t uid;

 struct passwd *pwd;

 char *endptr;

 if (argc != 3 || argv[1][0] == '\0') {

 fprintf(stderr, "%s <owner> <file>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 uid = strtol(argv[1], &endptr, 10); /* Allow a numeric string */

 if (*endptr != '\0') { /* Was not pure numeric string */ Page 6/7

 pwd = getpwnam(argv[1]); /* Try getting UID for username */

 if (pwd == NULL) {

 perror("getpwnam");

 exit(EXIT_FAILURE);

 }

 uid = pwd->pw_uid;

 }

 if (chown(argv[2], uid, -1) == -1) {

 perror("chown");

 exit(EXIT_FAILURE);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 CHOWN(2)

Page 7/7

