
Rocky Enterprise Linux 9.2 Manual Pages on command 'keytool-java-20-openjdk-20.0.2.0.9-1.rolling.el9.x86_64.1'

$ man keytool-java-20-openjdk-20.0.2.0.9-1.rolling.el9.x86_64.1

KEYTOOL(1) JDK Commands KEYTOOL(1)

NAME

 keytool - a key and certificate management utility

SYNOPSIS

 keytool [commands]

 commands

 Commands for keytool include the following:

 ? -certreq: Generates a certificate request

 ? -changealias: Changes an entry's alias

 ? -delete: Deletes an entry

 ? -exportcert: Exports certificate

 ? -genkeypair: Generates a key pair

 ? -genseckey: Generates a secret key

 ? -gencert: Generates a certificate from a certificate request

 ? -importcert: Imports a certificate or a certificate chain

 ? -importpass: Imports a password

 ? -importkeystore: Imports one or all entries from another key?

 store Page 1/56

 ? -keypasswd: Changes the key password of an entry

 ? -list: Lists entries in a keystore

 ? -printcert: Prints the content of a certificate

 ? -printcertreq: Prints the content of a certificate request

 ? -printcrl: Prints the content of a Certificate Revocation List

 (CRL) file

 ? -storepasswd: Changes the store password of a keystore

 ? -showinfo: Displays security-related information

 ? -version: Prints the program version

 See Commands and Options for a description of these commands

 with their options.

DESCRIPTION

 The keytool command is a key and certificate management utility. It

 enables users to administer their own public/private key pairs and as?

 sociated certificates for use in self-authentication (where a user au?

 thenticates themselves to other users and services) or data integrity

 and authentication services, by using digital signatures. The keytool

 command also enables users to cache the public keys (in the form of

 certificates) of their communicating peers.

 A certificate is a digitally signed statement from one entity (person,

 company, and so on), which says that the public key (and some other in?

 formation) of some other entity has a particular value. When data is

 digitally signed, the signature can be verified to check the data in?

 tegrity and authenticity. Integrity means that the data hasn't been

 modified or tampered with, and authenticity means that the data comes

 from the individual who claims to have created and signed it.

 The keytool command also enables users to administer secret keys and

 passphrases used in symmetric encryption and decryption (Data Encryp?

 tion Standard). It can also display other security-related informa?

 tion.

 The keytool command stores the keys and certificates in a keystore.

 The keytool command uses the jdk.certpath.disabledAlgorithms and

 jdk.security.legacyAlgorithms security properties to determine which Page 2/56

 algorithms are considered a security risk. It emits warnings when dis?

 abled or legacy algorithms are being used. The jdk.certpath.dis?

 abledAlgorithms and jdk.security.legacyAlgorithms security properties

 are defined in the java.security file (located in the JDK's $JA?

 VA_HOME/conf/security directory).

COMMAND AND OPTION NOTES

 The following notes apply to the descriptions in Commands and Options:

 ? All command and option names are preceded by a hyphen sign (-).

 ? Only one command can be provided.

 ? Options for each command can be provided in any order.

 ? There are two kinds of options, one is single-valued which should be

 only provided once. If a single-valued option is provided multiple

 times, the value of the last one is used. The other type is multi-

 valued, which can be provided multiple times and all values are used.

 The only multi-valued option currently supported is the -ext option

 used to generate X.509v3 certificate extensions.

 ? All items not italicized or in braces ({ }) or brackets ([]) are re?

 quired to appear as is.

 ? Braces surrounding an option signify that a default value is used

 when the option isn't specified on the command line. Braces are also

 used around the -v, -rfc, and -J options, which have meaning only

 when they appear on the command line. They don't have any default

 values.

 ? Brackets surrounding an option signify that the user is prompted for

 the values when the option isn't specified on the command line. For

 the -keypass option, if you don't specify the option on the command

 line, then the keytool command first attempts to use the keystore

 password to recover the private/secret key. If this attempt fails,

 then the keytool command prompts you for the private/secret key pass?

 word.

 ? Items in italics (option values) represent the actual values that

 must be supplied. For example, here is the format of the -printcert

 command: Page 3/56

 keytool -printcert {-file cert_file} {-v}

 When you specify a -printcert command, replace cert_file with the ac?

 tual file name, as follows: keytool -printcert -file VScert.cer

 ? Option values must be enclosed in quotation marks when they contain a

 blank (space).

COMMANDS AND OPTIONS

 The keytool commands and their options can be grouped by the tasks that

 they perform.

 Commands for Creating or Adding Data to the Keystore:

 ? -gencert

 ? -genkeypair

 ? -genseckey

 ? -importcert

 ? -importpass

 Commands for Importing Contents from Another Keystore:

 ? -importkeystore

 Commands for Generating a Certificate Request:

 ? -certreq

 Commands for Exporting Data:

 ? -exportcert

 Commands for Displaying Data:

 ? -list

 ? -printcert

 ? -printcertreq

 ? -printcrl

 Commands for Managing the Keystore:

 ? -storepasswd

 ? -keypasswd

 ? -delete

 ? -changealias

 Commands for Displaying Security-related Information:

 ? -showinfo

 Commands for Displaying Program Version: Page 4/56

 ? -version

COMMANDS FOR CREATING OR ADDING DATA TO THE KEYSTORE

 -gencert

 The following are the available options for the -gencert com?

 mand:

 ? {-rfc}: Output in RFC (Request For Comment) style

 ? {-infile infile}: Input file name

 ? {-outfile outfile}: Output file name

 ? {-alias alias}: Alias name of the entry to process

 ? {-sigalg sigalg}: Signature algorithm name

 ? {-dname dname}: Distinguished name

 ? {-startdate startdate}: Certificate validity start date and

 time

 ? {-ext ext}*: X.509 extension

 ? {-validity days}: Validity number of days

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Adds a security

 provider by name (such as SunPKCS11) with an optional config?

 ure argument. The value of the security provider is the name

 of a security provider that is defined in a module.

 For example,

 keytool -addprovider SunPKCS11 -providerarg some.cfg

 ...

 Note:

 For compatibility reasons, the SunPKCS11 provider can still be

 loaded with -providerclass sun.security.pkcs11.SunPKCS11 even

 if it is now defined in a module. This is the only module in?

 cluded in the JDK that needs a configuration, and therefore

 the most widely used with the -providerclass option. For Page 5/56

 legacy security providers located on classpath and loaded by

 reflection, -providerclass should still be used.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 For example, if MyProvider is a legacy provider loaded via re?

 flection,

 keytool -providerclass com.example.MyProvider ...

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -gencert command to generate a certificate as a response

 to a certificate request file (which can be created by the key?

 tool -certreq command). The command reads the request either

 from infile or, if omitted, from the standard input, signs it by

 using the alias's private key, and outputs the X.509 certificate

 into either outfile or, if omitted, to the standard output.

 When -rfc is specified, the output format is Base64-encoded PEM;

 otherwise, a binary DER is created.

 The -sigalg value specifies the algorithm that should be used to

 sign the certificate. The startdate argument is the start time

 and date that the certificate is valid. The days argument tells

 the number of days for which the certificate should be consid?

 ered valid.

 When dname is provided, it is used as the subject of the gener?

 ated certificate. Otherwise, the one from the certificate re?

 quest is used.

 The -ext value shows what X.509 extensions will be embedded in

 the certificate. Read Common Command Options for the grammar of

 -ext.

 The -gencert option enables you to create certificate chains.

 The following example creates a certificate, e1, that contains

 three certificates in its certificate chain. Page 6/56

 The following commands creates four key pairs named ca, ca1,

 ca2, and e1:

 keytool -alias ca -dname CN=CA -genkeypair -keyalg rsa

 keytool -alias ca1 -dname CN=CA -genkeypair -keyalg rsa

 keytool -alias ca2 -dname CN=CA -genkeypair -keyalg rsa

 keytool -alias e1 -dname CN=E1 -genkeypair -keyalg rsa

 The following two commands create a chain of signed certifi?

 cates; ca signs ca1 and ca1 signs ca2, all of which are self-is?

 sued:

 keytool -alias ca1 -certreq |

 keytool -alias ca -gencert -ext san=dns:ca1 |

 keytool -alias ca1 -importcert

 keytool -alias ca2 -certreq |

 keytool -alias ca1 -gencert -ext san=dns:ca2 |

 keytool -alias ca2 -importcert

 The following command creates the certificate e1 and stores it

 in the e1.cert file, which is signed by ca2. As a result, e1

 should contain ca, ca1, and ca2 in its certificate chain:

 keytool -alias e1 -certreq | keytool -alias ca2 -gencert

 > e1.cert

 -genkeypair

 The following are the available options for the -genkeypair com?

 mand:

 ? {-alias alias}: Alias name of the entry to process

 ? -keyalg alg: Key algorithm name

 ? {-keysize size}: Key bit size

 ? {-groupname name}: Group name. For example, an Elliptic Curve

 name.

 ? {-sigalg alg}: Signature algorithm name

 ? {-signer alias}: Signer alias

 ? [-signerkeypass arg]: Signer key password

 ? [-dname name]: Distinguished name

 ? {-startdate date}: Certificate validity start date and time Page 7/56

 ? {-ext value}*: X.509 extension

 ? {-validity days}: Validity number of days

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg] }: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -genkeypair command to generate a key pair (a public key

 and associated private key). When the -signer option is not

 specified, the public key is wrapped in an X.509 v3 self-signed

 certificate and stored as a single-element certificate chain.

 When the -signer option is specified, a new certificate is gen?

 erated and signed by the designated signer and stored as a mul?

 tiple-element certificate chain (containing the generated cer?

 tificate itself, and the signer?s certificate chain). The cer?

 tificate chain and private key are stored in a new keystore en?

 try that is identified by its alias.

 The -keyalg value specifies the algorithm to be used to generate

 the key pair, and the -keysize value specifies the size of each

 key to be generated. The -sigalg value specifies the algorithm

 that should be used to sign the certificate. This algorithm

 must be compatible with the -keyalg value.

 The -groupname value specifies the named group (for example, the

 standard or predefined name of an Elliptic Curve) of the key to Page 8/56

 be generated. Only one of -groupname and -keysize can be speci?

 fied.

 The -signer value specifies the alias of a PrivateKeyEntry for

 the signer that already exists in the keystore. This option is

 used to sign the certificate with the signer?s private key.

 This is especially useful for key agreement algorithms (i.e.

 the -keyalg value is XDH, X25519, X448, or DH) as these keys

 cannot be used for digital signatures, and therefore a self-

 signed certificate cannot be created.

 The -signerkeypass value specifies the password of the signer?s

 private key. It can be specified if the private key of the

 signer entry is protected by a password different from the store

 password.

 The -dname value specifies the X.500 Distinguished Name to be

 associated with the value of -alias. If the -signer option is

 not specified, the issuer and subject fields of the self-signed

 certificate are populated with the specified distinguished name.

 If the -signer option is specified, the subject field of the

 certificate is populated with the specified distinguished name

 and the issuer field is populated with the subject field of the

 signer's certificate. If a distinguished name is not provided

 at the command line, then the user is prompted for one.

 The value of -keypass is a password used to protect the private

 key of the generated key pair. If a password is not provided,

 then the user is prompted for it. If you press the Return key

 at the prompt, then the key password is set to the same password

 as the keystore password. The -keypass value must have at least

 six characters.

 The value of -startdate specifies the issue time of the certifi?

 cate, also known as the "Not Before" value of the X.509 certifi?

 cate's Validity field.

 The option value can be set in one of these two forms:

 ([+-]nnn[ymdHMS])+ Page 9/56

 [yyyy/mm/dd] [HH:MM:SS]

 With the first form, the issue time is shifted by the specified

 value from the current time. The value is a concatenation of a

 sequence of subvalues. Inside each subvalue, the plus sign (+)

 means shift forward, and the minus sign (-) means shift back?

 ward. The time to be shifted is nnn units of years, months,

 days, hours, minutes, or seconds (denoted by a single character

 of y, m, d, H, M, or S respectively). The exact value of the

 issue time is calculated by using the java.util.GregorianCalen?

 dar.add(int field, int amount) method on each subvalue, from

 left to right. For example, the issue time can be specified by:

 Calendar c = new GregorianCalendar();

 c.add(Calendar.YEAR, -1);

 c.add(Calendar.MONTH, 1);

 c.add(Calendar.DATE, -1);

 return c.getTime()

 With the second form, the user sets the exact issue time in two

 parts, year/month/day and hour:minute:second (using the local

 time zone). The user can provide only one part, which means the

 other part is the same as the current date (or time). The user

 must provide the exact number of digits shown in the format def?

 inition (padding with 0 when shorter). When both date and time

 are provided, there is one (and only one) space character be?

 tween the two parts. The hour should always be provided in

 24-hour format.

 When the option isn't provided, the start date is the current

 time. The option can only be provided one time.

 The value of date specifies the number of days (starting at the

 date specified by -startdate, or the current date when -start?

 date isn't specified) for which the certificate should be con?

 sidered valid.

 -genseckey

 The following are the available options for the -genseckey com? Page 10/56

 mand:

 ? {-alias alias}: Alias name of the entry to process

 ? [-keypass arg]: Key password

 ? -keyalg alg: Key algorithm name

 ? {-keysize size}: Key bit size

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -genseckey command to generate a secret key and store it

 in a new KeyStore.SecretKeyEntry identified by alias.

 The value of -keyalg specifies the algorithm to be used to gen?

 erate the secret key, and the value of -keysize specifies the

 size of the key that is generated. The -keypass value is a

 password that protects the secret key. If a password is not

 provided, then the user is prompted for it. If you press the

 Return key at the prompt, then the key password is set to the

 same password that is used for the -keystore. The -keypass val?

 ue must contain at least six characters.

 -importcert

 The following are the available options for the -importcert com?

 mand:

 ? {-noprompt}: Do not prompt

 ? {-trustcacerts}: Trust certificates from cacerts Page 11/56

 ? {-protected}: Password is provided through protected mechanism

 ? {-alias alias}: Alias name of the entry to process

 ? {-file file}: Input file name

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Use the -importcert command to read the certificate or certifi?

 cate chain (where the latter is supplied in a PKCS#7 formatted

 reply or in a sequence of X.509 certificates) from -file file,

 and store it in the keystore entry identified by -alias. If

 -file file is not specified, then the certificate or certificate

 chain is read from stdin.

 The keytool command can import X.509 v1, v2, and v3 certifi?

 cates, and PKCS#7 formatted certificate chains consisting of

 certificates of that type. The data to be imported must be pro?

 vided either in binary encoding format or in printable encoding

 format (also known as Base64 encoding) as defined by the Inter?

 net RFC 1421 standard. In the latter case, the encoding must be

 bounded at the beginning by a string that starts with -----BE?

 GIN, and bounded at the end by a string that starts with

 -----END.

 You import a certificate for two reasons: To add it to the list Page 12/56

 of trusted certificates, and to import a certificate reply re?

 ceived from a certificate authority (CA) as the result of sub?

 mitting a Certificate Signing Request (CSR) to that CA. See the

 -certreq command in Commands for Generating a Certificate Re?

 quest.

 The type of import is indicated by the value of the -alias op?

 tion. If the alias doesn't point to a key entry, then the key?

 tool command assumes you are adding a trusted certificate entry.

 In this case, the alias shouldn't already exist in the keystore.

 If the alias does exist, then the keytool command outputs an er?

 ror because a trusted certificate already exists for that alias,

 and doesn't import the certificate. If -alias points to a key

 entry, then the keytool command assumes that you're importing a

 certificate reply.

 -importpass

 The following are the available options for the -importpass com?

 mand:

 ? {-alias alias}: Alias name of the entry to process

 ? [-keypass arg]: Key password

 ? {-keyalg alg}: Key algorithm name

 ? {-keysize size}: Key bit size

 ? {-keystore keystore}: Keystore name

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output Page 13/56

 ? {-protected}: Password provided through a protected mechanism

 Use the -importpass command to imports a passphrase and store it

 in a new KeyStore.SecretKeyEntry identified by -alias. The

 passphrase may be supplied via the standard input stream; other?

 wise the user is prompted for it. The -keypass option provides

 a password to protect the imported passphrase. If a password is

 not provided, then the user is prompted for it. If you press

 the Return key at the prompt, then the key password is set to

 the same password as that used for the keystore. The -keypass

 value must contain at least six characters.

COMMANDS FOR IMPORTING CONTENTS FROM ANOTHER KEYSTORE

 -importkeystore

 The following are the available options for the -importkeystore

 command:

 ? -srckeystore keystore: Source keystore name

 ? {-destkeystore keystore}: Destination keystore name

 ? {-srcstoretype type}: Source keystore type

 ? {-deststoretype type}: Destination keystore type

 ? [-srcstorepass arg]: Source keystore password

 ? [-deststorepass arg]: Destination keystore password

 ? {-srcprotected}: Source keystore password protected

 ? {-destprotected}: Destination keystore password protected

 ? {-srcprovidername name}: Source keystore provider name

 ? {-destprovidername name}: Destination keystore provider name

 ? {-srcalias alias}: Source alias

 ? {-destalias alias}: Destination alias

 ? [-srckeypass arg]: Source key password

 ? [-destkeypass arg]: Destination key password

 ? {-noprompt}: Do not prompt

 ? {-addprovider name [-providerarg arg]: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security Page 14/56

 provider by fully qualified class name with an optional con?

 figure argument

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Note:

 This is the first line of all options:

 -srckeystore keystore -destkeystore keystore

 Use the -importkeystore command to import a single entry or all

 entries from a source keystore to a destination keystore.

 Note:

 If you do not specify -destkeystore when using the keytool -im?

 portkeystore command, then the default keystore used is

 $HOME/.keystore.

 When the -srcalias option is provided, the command imports the

 single entry identified by the alias to the destination key?

 store. If a destination alias isn't provided with -destalias,

 then -srcalias is used as the destination alias. If the source

 entry is protected by a password, then -srckeypass is used to

 recover the entry. If -srckeypass isn't provided, then the key?

 tool command attempts to use -srcstorepass to recover the entry.

 If -srcstorepass is not provided or is incorrect, then the user

 is prompted for a password. The destination entry is protected

 with -destkeypass. If -destkeypass isn't provided, then the

 destination entry is protected with the source entry password.

 For example, most third-party tools require storepass and key?

 pass in a PKCS #12 keystore to be the same. To create a PKCS#12

 keystore for these tools, always specify a -destkeypass that is

 the same as -deststorepass.

 If the -srcalias option isn't provided, then all entries in the

 source keystore are imported into the destination keystore.

 Each destination entry is stored under the alias from the source

 entry. If the source entry is protected by a password, then

 -srcstorepass is used to recover the entry. If -srcstorepass is Page 15/56

 not provided or is incorrect, then the user is prompted for a

 password. If a source keystore entry type isn't supported in

 the destination keystore, or if an error occurs while storing an

 entry into the destination keystore, then the user is prompted

 either to skip the entry and continue or to quit. The destina?

 tion entry is protected with the source entry password.

 If the destination alias already exists in the destination key?

 store, then the user is prompted either to overwrite the entry

 or to create a new entry under a different alias name.

 If the -noprompt option is provided, then the user isn't prompt?

 ed for a new destination alias. Existing entries are overwrit?

 ten with the destination alias name. Entries that can't be im?

 ported are skipped and a warning is displayed.

COMMANDS FOR GENERATING A CERTIFICATE REQUEST

 -certreq

 The following are the available options for the -certreq com?

 mand:

 ? {-alias alias}: Alias name of the entry to process

 ? {-sigalg alg}: Signature algorithm name

 ? {-file file}: Output file name

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? {-dname name}: Distinguished name

 ? {-ext value}: X.509 extension

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument. Page 16/56

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -certreq command to generate a Certificate Signing Re?

 quest (CSR) using the PKCS #10 format.

 A CSR is intended to be sent to a CA. The CA authenticates the

 certificate requestor (usually offline) and returns a certifi?

 cate or certificate chain to replace the existing certificate

 chain (initially a self-signed certificate) in the keystore.

 The private key associated with alias is used to create the PKCS

 #10 certificate request. To access the private key, the correct

 password must be provided. If -keypass isn't provided at the

 command line and is different from the password used to protect

 the integrity of the keystore, then the user is prompted for it.

 If -dname is provided, then it is used as the subject in the

 CSR. Otherwise, the X.500 Distinguished Name associated with

 alias is used.

 The -sigalg value specifies the algorithm that should be used to

 sign the CSR.

 The CSR is stored in the -file file. If a file is not speci?

 fied, then the CSR is output to -stdout.

 Use the -importcert command to import the response from the CA.

COMMANDS FOR EXPORTING DATA

 -exportcert

 The following are the available options for the -exportcert com?

 mand:

 ? {-rfc}: Output in RFC style

 ? {-alias alias}: Alias name of the entry to process

 ? {-file file}: Output file name

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type Page 17/56

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg] }: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -exportcert command to read a certificate from the key?

 store that is associated with -alias alias and store it in the

 -file file. When a file is not specified, the certificate is

 output to stdout.

 By default, the certificate is output in binary encoding. If

 the -rfc option is specified, then the output in the printable

 encoding format defined by the Internet RFC 1421 Certificate En?

 coding Standard.

 If -alias refers to a trusted certificate, then that certificate

 is output. Otherwise, -alias refers to a key entry with an as?

 sociated certificate chain. In that case, the first certificate

 in the chain is returned. This certificate authenticates the

 public key of the entity addressed by -alias.

COMMANDS FOR DISPLAYING DATA

 -list The following are the available options for the -list command:

 ? {-rfc}: Output in RFC style

 ? {-alias alias}: Alias name of the entry to process

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider Page 18/56

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg] }: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -list command to print the contents of the keystore en?

 try identified by -alias to stdout. If -alias alias is not

 specified, then the contents of the entire keystore are printed.

 By default, this command prints the SHA-256 fingerprint of a

 certificate. If the -v option is specified, then the certifi?

 cate is printed in human-readable format, with additional infor?

 mation such as the owner, issuer, serial number, and any exten?

 sions. If the -rfc option is specified, then the certificate

 contents are printed by using the printable encoding format, as

 defined by the Internet RFC 1421 Certificate Encoding Standard.

 Note:

 You can't specify both -v and -rfc in the same command. Other?

 wise, an error is reported.

 -printcert

 The following are the available options for the -printcert com?

 mand:

 ? {-rfc}: Output in RFC style

 ? {-file cert_file}: Input file name

 ? {-sslserver server[:port]}:: Secure Sockets Layer (SSL) server

 host and port

 ? {-jarfile JAR_file}: Signed .jar file

 ? {-keystore keystore}: Keystore name

 ? {-trustcacerts}: Trust certificates from cacerts

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type Page 19/56

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-protected}: Password is provided through protected mechanism

 ? {-v}: Verbose output

 Use the -printcert command to read and print the certificate

 from -file cert_file, the SSL server located at -sslserver serv?

 er[:port], or the signed JAR file specified by -jarfile

 JAR_file. It prints its contents in a human-readable format.

 When a port is not specified, the standard HTTPS port 443 is as?

 sumed.

 Note:

 The -sslserver and -file options can't be provided in the same

 command. Otherwise, an error is reported. If you don't specify

 either option, then the certificate is read from stdin.

 When-rfc is specified, the keytool command prints the certifi?

 cate in PEM mode as defined by the Internet RFC 1421 Certificate

 Encoding standard.

 If the certificate is read from a file or stdin, then it might

 be either binary encoded or in printable encoding format, as de?

 fined by the RFC 1421 Certificate Encoding standard.

 If the SSL server is behind a firewall, then the -J-Dhttps.prox?

 yHost=proxyhost and -J-Dhttps.proxyPort=proxyport options can be

 specified on the command line for proxy tunneling.

 Note:

 This command can be used independently of a keystore. This com?

 mand does not check for the weakness of a certificate's signa?

 ture algorithm if it is a trusted certificate in the user key? Page 20/56

 store (specified by -keystore) or in the cacerts keystore (if

 -trustcacerts is specified).

 -printcertreq

 The following are the available options for the -printcertreq

 command:

 ? {-file file}: Input file name

 ? {-v}: Verbose output

 Use the -printcertreq command to print the contents of a PKCS

 #10 format certificate request, which can be generated by the

 keytool -certreq command. The command reads the request from

 file. If there is no file, then the request is read from the

 standard input.

 -printcrl

 The following are the available options for the -printcrl com?

 mand:

 ? {-file crl}: Input file name

 ? {-keystore keystore}: Keystore name

 ? {-trustcacerts}: Trust certificates from cacerts

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-protected}: Password is provided through protected mechanism

 ? {-v}: Verbose output

 Use the -printcrl command to read the Certificate Revocation

 List (CRL) from -file crl . A CRL is a list of the digital cer?

 tificates that were revoked by the CA that issued them. The CA Page 21/56

 generates the crl file.

 Note:

 This command can be used independently of a keystore. This com?

 mand attempts to verify the CRL using a certificate from the us?

 er keystore (specified by -keystore) or the cacerts keystore (if

 -trustcacerts is specified), and will print out a warning if it

 cannot be verified.

COMMANDS FOR MANAGING THE KEYSTORE

 -storepasswd

 The following are the available options for the -storepasswd

 command:

 ? [-new arg]: New password

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Use the -storepasswd command to change the password used to pro?

 tect the integrity of the keystore contents. The new password

 is set by -new arg and must contain at least six characters.

 -keypasswd

 The following are the available options for the -keypasswd com?

 mand:

 ? {-alias alias}: Alias name of the entry to process

 ? [-keypass old_keypass]: Key password Page 22/56

 ? [-new new_keypass]: New password

 ? {-keystore keystore}: Keystore name

 ? {-storepass arg}: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 Use the -keypasswd command to change the password (under which

 private/secret keys identified by -alias are protected) from

 -keypass old_keypass to -new new_keypass. The password value

 must contain at least six characters.

 If the -keypass option isn't provided at the command line and

 the -keypass password is different from the keystore password

 (-storepass arg), then the user is prompted for it.

 If the -new option isn't provided at the command line, then the

 user is prompted for it.

 -delete

 The following are the available options for the -delete command:

 ? [-alias alias]: Alias name of the entry to process

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment. Page 23/56

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -delete command to delete the -alias alias entry from

 the keystore. When not provided at the command line, the user

 is prompted for the alias.

 -changealias

 The following are the available options for the -changealias

 command:

 ? {-alias alias}: Alias name of the entry to process

 ? [-destalias alias]: Destination alias

 ? [-keypass arg]: Key password

 ? {-keystore keystore}: Keystore name

 ? {-cacerts}: Access the cacerts keystore

 ? [-storepass arg]: Keystore password

 ? {-storetype type}: Keystore type

 ? {-providername name}: Provider name

 ? {-addprovider name [-providerarg arg]}: Add security provider

 by name (such as SunPKCS11) with an optional configure argu?

 ment.

 ? {-providerclass class [-providerarg arg]}: Add security

 provider by fully qualified class name with an optional con?

 figure argument.

 ? {-providerpath list}: Provider classpath

 ? {-v}: Verbose output

 ? {-protected}: Password provided through a protected mechanism

 Use the -changealias command to move an existing keystore entry

 from -alias alias to a new -destalias alias. If a destination

 alias is not provided, then the command prompts you for one. If

 the original entry is protected with an entry password, then the Page 24/56

 password can be supplied with the -keypass option. If a key

 password is not provided, then the -storepass (if provided) is

 attempted first. If the attempt fails, then the user is prompt?

 ed for a password.

COMMANDS FOR DISPLAYING SECURITY-RELATED INFORMATION

 -showinfo

 The following are the available options for the -showinfo com?

 mand:

 ? {-tls}: Displays TLS configuration information

 ? {-v}: Verbose output

 Use the -showinfo command to display various security-related

 information. The -tls option displays TLS configurations, such

 as the list of enabled protocols and cipher suites.

COMMANDS FOR DISPLAYING PROGRAM VERSION

 You can use -version to print the program version of keytool.

COMMANDS FOR DISPLAYING HELP INFORMATION

 You can use --help to display a list of keytool commands or to display

 help information about a specific keytool command.

 ? To display a list of keytool commands, enter:

 keytool --help

 ? To display help information about a specific keytool command, enter:

 keytool -<command> --help

COMMON COMMAND OPTIONS

 The -v option can appear for all commands except --help. When the -v

 option appears, it signifies verbose mode, which means that more infor?

 mation is provided in the output.

 The -Joption argument can appear for any command. When the -Joption is

 used, the specified option string is passed directly to the Java inter?

 preter. This option doesn't contain any spaces. It's useful for ad?

 justing the execution environment or memory usage. For a list of pos?

 sible interpreter options, enter java -h or java -X at the command

 line.

 These options can appear for all commands operating on a keystore: Page 25/56

 -storetype storetype

 This qualifier specifies the type of keystore to be instantiat?

 ed.

 -keystore keystore

 The keystore location.

 If the JKS storetype is used and a keystore file doesn't yet ex?

 ist, then certain keytool commands can result in a new keystore

 file being created. For example, if keytool -genkeypair is

 called and the -keystore option isn't specified, the default

 keystore file named .keystore is created in the user's home di?

 rectory if it doesn't already exist. Similarly, if the -key?

 store ks_file option is specified but ks_file doesn't exist,

 then it is created. For more information on the JKS storetype,

 see the KeyStore Implementation section in KeyStore aliases.

 Note that the input stream from the -keystore option is passed

 to the KeyStore.load method. If NONE is specified as the URL,

 then a null stream is passed to the KeyStore.load method. NONE

 should be specified if the keystore isn't file-based. For exam?

 ple, when the keystore resides on a hardware token device.

 -cacerts cacerts

 Operates on the cacerts keystore . This option is equivalent to

 -keystore path_to_cacerts -storetype type_of_cacerts. An error

 is reported if the -keystore or -storetype option is used with

 the -cacerts option.

 -storepass [:env | :file] argument

 The password that is used to protect the integrity of the key?

 store.

 If the modifier env or file isn't specified, then the password

 has the value argument, which must contain at least six charac?

 ters. Otherwise, the password is retrieved as follows:

 ? env: Retrieve the password from the environment variable named

 argument.

 ? file: Retrieve the password from the file named argument. Page 26/56

 Note: All other options that require passwords, such as -key?

 pass, -srckeypass, -destkeypass, -srcstorepass, and -dest?

 storepass, accept the env and file modifiers. Remember to sepa?

 rate the password option and the modifier with a colon (:).

 The password must be provided to all commands that access the

 keystore contents. For such commands, when the -storepass op?

 tion isn't provided at the command line, the user is prompted

 for it.

 When retrieving information from the keystore, the password is

 optional. If a password is not specified, then the integrity of

 the retrieved information can't be verified and a warning is

 displayed.

 -providername name

 Used to identify a cryptographic service provider's name when

 listed in the security properties file.

 -addprovider name

 Used to add a security provider by name (such as SunPKCS11) .

 -providerclass class

 Used to specify the name of a cryptographic service provider's

 master class file when the service provider isn't listed in the

 security properties file.

 -providerpath list

 Used to specify the provider classpath.

 -providerarg arg

 Used with the -addprovider or -providerclass option to represent

 an optional string input argument for the constructor of class

 name.

 -protected=true|false

 Specify this value as true when a password must be specified by

 way of a protected authentication path, such as a dedicated PIN

 reader. Because there are two keystores involved in the -im?

 portkeystore command, the following two options, -srcprotected

 and -destprotected, are provided for the source keystore and the Page 27/56

 destination keystore respectively.

 -ext {name{:critical} {=value}}

 Denotes an X.509 certificate extension. The option can be used

 in -genkeypair and -gencert to embed extensions into the gener?

 ated certificate, or in -certreq to show what extensions are re?

 quested in the certificate request. The option can appear mul?

 tiple times. The name argument can be a supported extension

 name (see Supported Named Extensions) or an arbitrary OID num?

 ber. The value argument, when provided, denotes the argument

 for the extension. When value is omitted, the default value of

 the extension or the extension itself requires no argument. The

 :critical modifier, when provided, means the extension's isCrit?

 ical attribute is true; otherwise, it is false. You can use :c

 in place of :critical.

 -conf file

 Specifies a pre-configured options file.

PRE-CONFIGURED OPTIONS FILE

 A pre-configured options file is a Java properties file that can be

 specified with the -conf option. Each property represents the default

 option(s) for a keytool command using "keytool.command_name" as the

 property name. A special property named "keytool.all" represents the

 default option(s) applied to all commands. A property value can in?

 clude ${prop} which will be expanded to the system property associated

 with it. If an option value includes white spaces inside, it should be

 surrounded by quotation marks (" or '). All property names must be in

 lower case.

 When keytool is launched with a pre-configured options file, the value

 for "keytool.all" (if it exists) is prepended to the keytool command

 line first, with the value for the command name (if it exists) comes

 next, and the existing options on the command line at last. For a sin?

 gle-valued option, this allows the property for a specific command to

 override the "keytool.all" value, and the value specified on the com?

 mand line to override both. For multiple-valued options, all of them Page 28/56

 will be used by keytool.

 For example, given the following file named preconfig:

 # A tiny pre-configured options file

 keytool.all = -keystore ${user.home}/ks

 keytool.list = -v

 keytool.genkeypair = -keyalg rsa

 keytool -conf preconfig -list is identical to

 keytool -keystore ~/ks -v -list

 keytool -conf preconfig -genkeypair -alias me is identical to

 keytool -keystore ~/ks -keyalg rsa -genkeypair -alias me

 keytool -conf preconfig -genkeypair -alias you -keyalg ec is identical

 to

 keytool -keystore ~/ks -keyalg rsa -genkeypair -alias you

 -keyalg ec

 which is equivalent to

 keytool -keystore ~/ks -genkeypair -alias you -keyalg ec

 because -keyalg is a single-valued option and the ec value specified on

 the command line overrides the preconfigured options file.

EXAMPLES OF OPTION VALUES

 The following examples show the defaults for various option values:

 -alias "mykey"

 -keysize

 2048 (when using -genkeypair and -keyalg is "DSA")

 3072 (when using -genkeypair and -keyalg is "RSA", "RSASSA-PSS", or "DH")

 384 (when using -genkeypair and -keyalg is "EC")

 255 (when using -genkeypair and -keyalg is "EdDSA", or "XDH)

 56 (when using -genseckey and -keyalg is "DES")

 168 (when using -genseckey and -keyalg is "DESede")

 -validity 90

 -keystore <the file named .keystore in the user's home directory>

 -destkeystore <the file named .keystore in the user's home directory>

 -storetype <the value of the "keystore.type" property in the

 security properties file, which is returned by the static Page 29/56

 getDefaultType method in java.security.KeyStore>

 -file

 stdin (if reading)

 stdout (if writing)

 -protected false

 When generating a certificate or a certificate request, the default

 signature algorithm (-sigalg option) is derived from the algorithm of

 the underlying private key to provide an appropriate level of security

 strength as follows:

 Default Signature Algorithms

 keyalg keysize default sigalg

 ??

 DSA any size SHA256withDSA

 RSA < 624 SHA256withRSA (key?

 size is too small

 for using SHA-384)

 <= 7680 SHA384withRSA

 > 7680 SHA512withRSA

 EC < 512 SHA384withECDSA

 >= 512 SHA512withECDSA

 RSASSA-PSS < 624 RSASSA-PSS (with

 SHA-256, keysize is

 too small for

 using SHA-384)

 <= 7680 RSASSA-PSS (with

 SHA-384)

 > 7680 RSASSA-PSS (with

 SHA-512)

 EdDSA 255 Ed25519

 448 Ed448

 Ed25519 255 Ed25519

 Ed448 448 Ed448

 ? An RSASSA-PSS signature algorithm uses a MessageDigest algorithm as Page 30/56

 its hash and MGF1 algorithms.

 ? EdDSA supports 2 key sizes: Ed25519 and Ed448. When generating an

 EdDSA key pair using -keyalg EdDSA, a user can specify -keysize 255

 or -keysize 448 to generate Ed25519 or Ed448 key pairs. When no

 -keysize is specified, an Ed25519 key pair is generated. A user can

 also directly specify -keyalg Ed25519 or -keyalg Ed448 to generate a

 key pair with the expected key size.

 Note:

 To improve out of the box security, default key size and signature al?

 gorithm names are periodically updated to stronger values with each re?

 lease of the JDK. If interoperability with older releases of the JDK

 is important, make sure that the defaults are supported by those re?

 leases. Alternatively, you can use the -keysize or -sigalg options to

 override the default values at your own risk.

SUPPORTED NAMED EXTENSIONS

 The keytool command supports these named extensions. The names aren't

 case-sensitive.

 BC or BasicContraints

 Values:

 The full form is ca:{true|false}[,pathlen:len] or len, which is

 short for ca:true,pathlen:len.

 When len is omitted, the resulting value is ca:true.

 KU or KeyUsage

 Values:

 usage(, usage)*

 usage can be one of the following:

 ? digitalSignature

 ? nonRepudiation (contentCommitment)

 ? keyEncipherment

 ? dataEncipherment

 ? keyAgreement

 ? keyCertSign

 ? cRLSign Page 31/56

 ? encipherOnly

 ? decipherOnly

 Provided there is no ambiguity, the usage argument can be abbre?

 viated with the first few letters (such as dig for digitalSigna?

 ture) or in camel-case style (such as dS for digitalSignature or

 cRLS for cRLSign). The usage values are case-sensitive.

 EKU or ExtendedKeyUsage

 Values:

 usage(, usage)*

 usage can be one of the following:

 ? anyExtendedKeyUsage

 ? serverAuth

 ? clientAuth

 ? codeSigning

 ? emailProtection

 ? timeStamping

 ? OCSPSigning

 ? Any OID string

 Provided there is no ambiguity, the usage argument can be abbre?

 viated with the first few letters or in camel-case style. The

 usage values are case-sensitive.

 SAN or SubjectAlternativeName

 Values:

 type:value(, type:value)*

 type can be one of the following:

 ? EMAIL

 ? URI

 ? DNS

 ? IP

 ? OID

 The value argument is the string format value for the type.

 IAN or IssuerAlternativeName

 Values: Page 32/56

 Same as SAN or SubjectAlternativeName.

 SIA or SubjectInfoAccess

 Values:

 method:location-type:location-value(, method:location-type:loca?

 tion-value)*

 method can be one of the following:

 ? timeStamping

 ? caRepository

 ? Any OID

 The location-type and location-value arguments can be any

 type:value supported by the SubjectAlternativeName extension.

 AIA or AuthorityInfoAccess

 Values:

 Same as SIA or SubjectInfoAccess.

 The method argument can be one of the following:

 ? ocsp

 ? caIssuers

 ? Any OID

 When name is OID, the value is the hexadecimal dumped Definite Encoding

 Rules (DER) encoding of the extnValue for the extension excluding the

 OCTET STRING type and length bytes. Other than standard hexadecimal

 numbers (0-9, a-f, A-F), any extra characters are ignored in the HEX

 string. Therefore, both 01:02:03:04 and 01020304 are accepted as iden?

 tical values. When there is no value, the extension has an empty value

 field.

 A special name honored, used only in -gencert, denotes how the exten?

 sions included in the certificate request should be honored. The value

 for this name is a comma-separated list of all (all requested exten?

 sions are honored), name{:[critical|non-critical]} (the named extension

 is honored, but it uses a different isCritical attribute), and -name

 (used with all, denotes an exception). Requested extensions aren't

 honored by default.

 If, besides the-ext honored option, another named or OID -ext option is Page 33/56

 provided, this extension is added to those already honored. However,

 if this name (or OID) also appears in the honored value, then its value

 and criticality override that in the request. If an extension of the

 same type is provided multiple times through either a name or an OID,

 only the last extension is used.

 The subjectKeyIdentifier extension is always created. For non-self-

 signed certificates, the authorityKeyIdentifier is created.

 CAUTION:

 Users should be aware that some combinations of extensions (and other

 certificate fields) may not conform to the Internet standard. See Cer?

 tificate Conformance Warning.

EXAMPLES OF TASKS IN CREATING A KEYSTORE

 The following examples describe the sequence actions in creating a key?

 store for managing public/private key pairs and certificates from

 trusted entities.

 ? Generating the Key Pair

 ? Requesting a Signed Certificate from a CA

 ? Importing a Certificate for the CA

 ? Importing the Certificate Reply from the CA

 ? Exporting a Certificate That Authenticates the Public Key

 ? Importing the Keystore

 ? Generating Certificates for an SSL Server

GENERATING THE KEY PAIR

 Create a keystore and then generate the key pair.

 You can enter the command as a single line such as the following:

 keytool -genkeypair -dname "cn=myname, ou=mygroup, o=mycompany,

 c=mycountry" -alias business -keyalg rsa -keypass password -key?

 store /working/mykeystore -storepass password -validity 180

 The command creates the keystore named mykeystore in the working direc?

 tory (provided it doesn't already exist), and assigns it the password

 specified by -keypass. It generates a public/private key pair for the

 entity whose distinguished name is myname, mygroup, mycompany, and a

 two-letter country code of mycountry. It uses the RSA key generation Page 34/56

 algorithm to create the keys; both are 3072 bits.

 The command uses the default SHA384withRSA signature algorithm to cre?

 ate a self-signed certificate that includes the public key and the dis?

 tinguished name information. The certificate is valid for 180 days,

 and is associated with the private key in a keystore entry referred to

 by -alias business. The private key is assigned the password specified

 by -keypass.

 The command is significantly shorter when the option defaults are ac?

 cepted. In this case, only -keyalg is required, and the defaults are

 used for unspecified options that have default values. You are prompt?

 ed for any required values. You could have the following:

 keytool -genkeypair -keyalg rsa

 In this case, a keystore entry with the alias mykey is created, with a

 newly generated key pair and a certificate that is valid for 90 days.

 This entry is placed in your home directory in a keystore named .key?

 store . .keystore is created if it doesn't already exist. You are

 prompted for the distinguished name information, the keystore password,

 and the private key password.

 Note:

 The rest of the examples assume that you responded to the prompts with

 values equal to those specified in the first -genkeypair command. For

 example, a distinguished name of cn=myname, ou=mygroup, o=mycompany,

 c=mycountry).

REQUESTING A SIGNED CERTIFICATE FROM A CA

 Note:

 Generating the key pair created a self-signed certificate; however, a

 certificate is more likely to be trusted by others when it is signed by

 a CA.

 To get a CA signature, complete the following process:

 1. Generate a CSR:

 keytool -certreq -file myname.csr

 This creates a CSR for the entity identified by the default alias

 mykey and puts the request in the file named myname.csr. Page 35/56

 2. Submit myname.csr to a CA, such as DigiCert.

 The CA authenticates you, the requestor (usually offline), and returns

 a certificate, signed by them, authenticating your public key. In some

 cases, the CA returns a chain of certificates, each one authenticating

 the public key of the signer of the previous certificate in the chain.

IMPORTING A CERTIFICATE FOR THE CA

 To import a certificate for the CA, complete the following process:

 1. Before you import the certificate reply from a CA, you need one or

 more trusted certificates either in your keystore or in the cacerts

 keystore file. See -importcert in Commands.

 ? If the certificate reply is a certificate chain, then you need

 the top certificate of the chain. The root CA certificate that

 authenticates the public key of the CA.

 ? If the certificate reply is a single certificate, then you need a

 certificate for the issuing CA (the one that signed it). If that

 certificate isn't self-signed, then you need a certificate for

 its signer, and so on, up to a self-signed root CA certificate.

 The cacerts keystore ships with a set of root certificates issued

 by the CAs of the Oracle Java Root Certificate program

 [http://www.oracle.com/technetwork/java/javase/javasecarootcert?

 sprogram-1876540.html]. If you request a signed certificate from a

 CA, and a certificate authenticating that CA's public key hasn't

 been added to cacerts, then you must import a certificate from that

 CA as a trusted certificate.

 A certificate from a CA is usually self-signed or signed by another

 CA. If it is signed by another CA, you need a certificate that au?

 thenticates that CA's public key.

 For example, you have obtained a X.cer file from a company that is

 a CA and the file is supposed to be a self-signed certificate that

 authenticates that CA's public key. Before you import it as a

 trusted certificate, you should ensure that the certificate is

 valid by:

 1. Viewing it with the keytool -printcert command or the keytool Page 36/56

 -importcert command without using the -noprompt option. Make

 sure that the displayed certificate fingerprints match the ex?

 pected fingerprints.

 2. Calling the person who sent the certificate, and comparing the

 fingerprints that you see with the ones that they show or that a

 secure public key repository shows.

 Only when the fingerprints are equal is it assured that the cer?

 tificate wasn't replaced in transit with somebody else's certifi?

 cate (such as an attacker's certificate). If such an attack takes

 place, and you didn't check the certificate before you imported it,

 then you would be trusting anything that the attacker signed.

 2. Replace the self-signed certificate with a certificate chain, where

 each certificate in the chain authenticates the public key of the

 signer of the previous certificate in the chain, up to a root CA.

 If you trust that the certificate is valid, then you can add it to

 your keystore by entering the following command:

 keytool -importcert -alias alias -file *X*.cer`

 This command creates a trusted certificate entry in the keystore

 from the data in the CA certificate file and assigns the values of

 the alias to the entry.

IMPORTING THE CERTIFICATE REPLY FROM THE CA

 After you import a certificate that authenticates the public key of the

 CA that you submitted your certificate signing request to (or there is

 already such a certificate in the cacerts file), you can import the

 certificate reply and replace your self-signed certificate with a cer?

 tificate chain.

 The certificate chain is one of the following:

 ? Returned by the CA when the CA reply is a chain.

 ? Constructed when the CA reply is a single certificate. This certifi?

 cate chain is constructed by using the certificate reply and trusted

 certificates available either in the keystore where you import the

 reply or in the cacerts keystore file.

 For example, if you sent your certificate signing request to DigiCert, Page 37/56

 then you can import their reply by entering the following command:

 Note:

 In this example, the returned certificate is named DCmyname.cer.

 keytool -importcert -trustcacerts -file DCmyname.cer

EXPORTING A CERTIFICATE THAT AUTHENTICATES THE PUBLIC KEY

 Note:

 If you used the jarsigner command to sign a Java Archive (JAR) file,

 then clients that use the file will want to authenticate your signa?

 ture.

 One way that clients can authenticate you is by importing your public

 key certificate into their keystore as a trusted entry. You can then

 export the certificate and supply it to your clients.

 For example:

 1. Copy your certificate to a file named myname.cer by entering the

 following command:

 Note:

 In this example, the entry has an alias of mykey.

 keytool -exportcert -alias mykey -file myname.cer

 2. With the certificate and the signed JAR file, a client can use the

 jarsigner command to authenticate your signature.

IMPORTING THE KEYSTORE

 Use the importkeystore command to import an entire keystore into anoth?

 er keystore. This imports all entries from the source keystore, in?

 cluding keys and certificates, to the destination keystore with a sin?

 gle command. You can use this command to import entries from a differ?

 ent type of keystore. During the import, all new entries in the desti?

 nation keystore will have the same alias names and protection passwords

 (for secret keys and private keys). If the keytool command can't re?

 cover the private keys or secret keys from the source keystore, then it

 prompts you for a password. If it detects alias duplication, then it

 asks you for a new alias, and you can specify a new alias or simply al?

 low the keytool command to overwrite the existing one.

 For example, import entries from a typical JKS type keystore key.jks Page 38/56

 into a PKCS #11 type hardware-based keystore, by entering the following

 command:

 keytool -importkeystore -srckeystore key.jks -destkeystore NONE

 -srcstoretype JKS -deststoretype PKCS11 -srcstorepass password

 -deststorepass password

 The importkeystore command can also be used to import a single entry

 from a source keystore to a destination keystore. In this case, be?

 sides the options you used in the previous example, you need to specify

 the alias you want to import. With the -srcalias option specified, you

 can also specify the destination alias name, protection password for a

 secret or private key, and the destination protection password you want

 as follows:

 keytool -importkeystore -srckeystore key.jks -destkeystore NONE

 -srcstoretype JKS -deststoretype PKCS11 -srcstorepass password

 -deststorepass password -srcalias myprivatekey -destalias myold?

 privatekey -srckeypass password -destkeypass password -noprompt

GENERATING CERTIFICATES FOR AN SSL SERVER

 The following are keytool commands used to generate key pairs and cer?

 tificates for three entities:

 ? Root CA (root)

 ? Intermediate CA (ca)

 ? SSL server (server)

 Ensure that you store all the certificates in the same keystore.

 keytool -genkeypair -keystore root.jks -alias root -ext bc:c -keyalg rsa

 keytool -genkeypair -keystore ca.jks -alias ca -ext bc:c -keyalg rsa

 keytool -genkeypair -keystore server.jks -alias server -keyalg rsa

 keytool -keystore root.jks -alias root -exportcert -rfc > root.pem

 keytool -storepass password -keystore ca.jks -certreq -alias ca |

 keytool -storepass password -keystore root.jks

 -gencert -alias root -ext BC=0 -rfc > ca.pem

 keytool -keystore ca.jks -importcert -alias ca -file ca.pem

 keytool -storepass password -keystore server.jks -certreq -alias server |

 keytool -storepass password -keystore ca.jks -gencert -alias ca Page 39/56

 -ext ku:c=dig,kE -rfc > server.pem

 cat root.pem ca.pem server.pem |

 keytool -keystore server.jks -importcert -alias server

TERMS

 Keystore

 A keystore is a storage facility for cryptographic keys and cer?

 tificates.

 Keystore entries

 Keystores can have different types of entries. The two most ap?

 plicable entry types for the keytool command include the follow?

 ing:

 Key entries: Each entry holds very sensitive cryptographic key

 information, which is stored in a protected format to prevent

 unauthorized access. Typically, a key stored in this type of

 entry is a secret key, or a private key accompanied by the cer?

 tificate chain for the corresponding public key. See Certifi?

 cate Chains. The keytool command can handle both types of en?

 tries, while the jarsigner tool only handles the latter type of

 entry, that is private keys and their associated certificate

 chains.

 Trusted certificate entries: Each entry contains a single public

 key certificate that belongs to another party. The entry is

 called a trusted certificate because the keystore owner trusts

 that the public key in the certificate belongs to the identity

 identified by the subject (owner) of the certificate. The is?

 suer of the certificate vouches for this, by signing the cer?

 tificate.

 Keystore aliases

 All keystore entries (key and trusted certificate entries) are

 accessed by way of unique aliases.

 An alias is specified when you add an entity to the keystore

 with the -genseckey command to generate a secret key, the

 -genkeypair command to generate a key pair (public and private Page 40/56

 key), or the -importcert command to add a certificate or cer?

 tificate chain to the list of trusted certificates. Subsequent

 keytool commands must use this same alias to refer to the enti?

 ty.

 For example, you can use the alias duke to generate a new pub?

 lic/private key pair and wrap the public key into a self-signed

 certificate with the following command. See Certificate Chains.

 keytool -genkeypair -alias duke -keyalg rsa -keypass

 passwd

 This example specifies an initial passwd required by subsequent

 commands to access the private key associated with the alias

 duke. If you later want to change Duke's private key password,

 use a command such as the following:

 keytool -keypasswd -alias duke -keypass passwd -new new?

 passwd

 This changes the initial passwd to newpasswd. A password

 shouldn't be specified on a command line or in a script unless

 it is for testing purposes, or you are on a secure system. If

 you don't specify a required password option on a command line,

 then you are prompted for it.

 Keystore implementation

 The KeyStore class provided in the java.security package sup?

 plies well-defined interfaces to access and modify the informa?

 tion in a keystore. It is possible for there to be multiple

 different concrete implementations, where each implementation is

 that for a particular type of keystore.

 Currently, two command-line tools (keytool and jarsigner) make

 use of keystore implementations. Because the KeyStore class is

 public, users can write additional security applications that

 use it.

 In JDK 9 and later, the default keystore implementation is

 PKCS12. This is a cross platform keystore based on the RSA

 PKCS12 Personal Information Exchange Syntax Standard. This Page 41/56

 standard is primarily meant for storing or transporting a user's

 private keys, certificates, and miscellaneous secrets. There is

 another built-in implementation, provided by Oracle. It imple?

 ments the keystore as a file with a proprietary keystore type

 (format) named JKS. It protects each private key with its indi?

 vidual password, and also protects the integrity of the entire

 keystore with a (possibly different) password.

 Keystore implementations are provider-based. More specifically,

 the application interfaces supplied by KeyStore are implemented

 in terms of a Service Provider Interface (SPI). That is, there

 is a corresponding abstract KeystoreSpi class, also in the ja?

 va.security package, which defines the Service Provider Inter?

 face methods that providers must implement. The term provider

 refers to a package or a set of packages that supply a concrete

 implementation of a subset of services that can be accessed by

 the Java Security API. To provide a keystore implementation,

 clients must implement a provider and supply a KeystoreSpi sub?

 class implementation, as described in Steps to Implement and In?

 tegrate a Provider.

 Applications can choose different types of keystore implementa?

 tions from different providers, using the getInstance factory

 method supplied in the KeyStore class. A keystore type defines

 the storage and data format of the keystore information, and the

 algorithms used to protect private/secret keys in the keystore

 and the integrity of the keystore. Keystore implementations of

 different types aren't compatible.

 The keytool command works on any file-based keystore implementa?

 tion. It treats the keystore location that is passed to it at

 the command line as a file name and converts it to a FileInput?

 Stream, from which it loads the keystore information.)The jar?

 signer commands can read a keystore from any location that can

 be specified with a URL.

 For keytool and jarsigner, you can specify a keystore type at Page 42/56

 the command line, with the -storetype option.

 If you don't explicitly specify a keystore type, then the tools

 choose a keystore implementation based on the value of the key?

 store.type property specified in the security properties file.

 The security properties file is called java.security, and re?

 sides in the security properties directory:

 ? Linux and OS X: java.home/lib/security

 ? Windows: java.home\lib\security

 Each tool gets the keystore.type value and then examines all the

 currently installed providers until it finds one that implements

 a keystores of that type. It then uses the keystore implementa?

 tion from that provider.The KeyStore class defines a static

 method named getDefaultType that lets applications retrieve the

 value of the keystore.type property. The following line of code

 creates an instance of the default keystore type as specified in

 the keystore.type property:

 KeyStore keyStore = KeyStore.getInstance(KeyStore.getDe?

 faultType());

 The default keystore type is pkcs12, which is a cross-platform

 keystore based on the RSA PKCS12 Personal Information Exchange

 Syntax Standard. This is specified by the following line in the

 security properties file:

 keystore.type=pkcs12

 To have the tools utilize a keystore implementation other than

 the default, you can change that line to specify a different

 keystore type. For example, if you want to use the Oracle's jks

 keystore implementation, then change the line to the following:

 keystore.type=jks

 Note:

 Case doesn't matter in keystore type designations. For example,

 JKS would be considered the same as jks.

 Certificate

 A certificate (or public-key certificate) is a digitally signed Page 43/56

 statement from one entity (the issuer), saying that the public

 key and some other information of another entity (the subject)

 has some specific value. The following terms are related to

 certificates:

 ? Public Keys: These are numbers associated with a particular

 entity, and are intended to be known to everyone who needs to

 have trusted interactions with that entity. Public keys are

 used to verify signatures.

 ? Digitally Signed: If some data is digitally signed, then it is

 stored with the identity of an entity and a signature that

 proves that entity knows about the data. The data is rendered

 unforgeable by signing with the entity's private key.

 ? Identity: A known way of addressing an entity. In some sys?

 tems, the identity is the public key, and in others it can be

 anything from an Oracle Solaris UID to an email address to an

 X.509 distinguished name.

 ? Signature: A signature is computed over some data using the

 private key of an entity. The signer, which in the case of a

 certificate is also known as the issuer.

 ? Private Keys: These are numbers, each of which is supposed to

 be known only to the particular entity whose private key it is

 (that is, it is supposed to be kept secret). Private and pub?

 lic keys exist in pairs in all public key cryptography systems

 (also referred to as public key crypto systems). In a typical

 public key crypto system, such as DSA, a private key corre?

 sponds to exactly one public key. Private keys are used to

 compute signatures.

 ? Entity: An entity is a person, organization, program, comput?

 er, business, bank, or something else you are trusting to some

 degree.

 Public key cryptography requires access to users' public keys.

 In a large-scale networked environment, it is impossible to

 guarantee that prior relationships between communicating enti? Page 44/56

 ties were established or that a trusted repository exists with

 all used public keys. Certificates were invented as a solution

 to this public key distribution problem. Now a Certification

 Authority (CA) can act as a trusted third party. CAs are enti?

 ties such as businesses that are trusted to sign (issue) cer?

 tificates for other entities. It is assumed that CAs only cre?

 ate valid and reliable certificates because they are bound by

 legal agreements. There are many public Certification Authori?

 ties, such as DigiCert, Comodo, Entrust, and so on.

 You can also run your own Certification Authority using products

 such as Microsoft Certificate Server or the Entrust CA product

 for your organization. With the keytool command, it is possible

 to display, import, and export certificates. It is also possi?

 ble to generate self-signed certificates.

 The keytool command currently handles X.509 certificates.

 X.509 Certificates

 The X.509 standard defines what information can go into a cer?

 tificate and describes how to write it down (the data format).

 All the data in a certificate is encoded with two related stan?

 dards called ASN.1/DER. Abstract Syntax Notation 1 describes

 data. The Definite Encoding Rules describe a single way to

 store and transfer that data.

 All X.509 certificates have the following data, in addition to

 the signature:

 ? Version: This identifies which version of the X.509 standard

 applies to this certificate, which affects what information

 can be specified in it. Thus far, three versions are defined.

 The keytool command can import and export v1, v2, and v3 cer?

 tificates. It generates v3 certificates.

 ? X.509 Version 1 has been available since 1988, is widely de?

 ployed, and is the most generic.

 ? X.509 Version 2 introduced the concept of subject and issuer

 unique identifiers to handle the possibility of reuse of Page 45/56

 subject or issuer names over time. Most certificate profile

 documents strongly recommend that names not be reused and

 that certificates shouldn't make use of unique identifiers.

 Version 2 certificates aren't widely used.

 ? X.509 Version 3 is the most recent (1996) and supports the

 notion of extensions where anyone can define an extension

 and include it in the certificate. Some common extensions

 are: KeyUsage (limits the use of the keys to particular pur?

 poses such as signing-only) and AlternativeNames (allows

 other identities to also be associated with this public key,

 for example. DNS names, email addresses, IP addresses).

 Extensions can be marked critical to indicate that the ex?

 tension should be checked and enforced or used. For exam?

 ple, if a certificate has the KeyUsage extension marked

 critical and set to keyCertSign, then when this certificate

 is presented during SSL communication, it should be rejected

 because the certificate extension indicates that the associ?

 ated private key should only be used for signing certifi?

 cates and not for SSL use.

 ? Serial number: The entity that created the certificate is re?

 sponsible for assigning it a serial number to distinguish it

 from other certificates it issues. This information is used

 in numerous ways. For example, when a certificate is revoked

 its serial number is placed in a Certificate Revocation List

 (CRL).

 ? Signature algorithm identifier: This identifies the algorithm

 used by the CA to sign the certificate.

 ? Issuer name: The X.500 Distinguished Name of the entity that

 signed the certificate. This is typically a CA. Using this

 certificate implies trusting the entity that signed this cer?

 tificate. In some cases, such as root or top-level CA cer?

 tificates, the issuer signs its own certificate.

 ? Validity period: Each certificate is valid only for a limited Page 46/56

 amount of time. This period is described by a start date and

 time and an end date and time, and can be as short as a few

 seconds or almost as long as a century. The validity period

 chosen depends on a number of factors, such as the strength of

 the private key used to sign the certificate, or the amount

 one is willing to pay for a certificate. This is the expected

 period that entities can rely on the public value, when the

 associated private key has not been compromised.

 ? Subject name: The name of the entity whose public key the cer?

 tificate identifies. This name uses the X.500 standard, so it

 is intended to be unique across the Internet. This is the

 X.500 Distinguished Name (DN) of the entity. For example,

 CN=Java Duke, OU=Java Software Division, O=Oracle Cor?

 poration, C=US

 These refer to the subject's common name (CN), organizational

 unit (OU), organization (O), and country (C).

 ? Subject public key information: This is the public key of the

 entity being named with an algorithm identifier that specifies

 which public key crypto system this key belongs to and any as?

 sociated key parameters.

 Certificate Chains

 The keytool command can create and manage keystore key entries

 that each contain a private key and an associated certificate

 chain. The first certificate in the chain contains the public

 key that corresponds to the private key.

 When keys are first generated, the chain usually starts off con?

 taining a single element, a self-signed certificate. See

 -genkeypair in Commands. A self-signed certificate is one for

 which the issuer (signer) is the same as the subject. The sub?

 ject is the entity whose public key is being authenticated by

 the certificate. When the -genkeypair command is called to gen?

 erate a new public/private key pair, it also wraps the public

 key into a self-signed certificate (unless the -signer option is Page 47/56

 specified).

 Later, after a Certificate Signing Request (CSR) was generated

 with the -certreq command and sent to a Certification Authority

 (CA), the response from the CA is imported with -importcert, and

 the self-signed certificate is replaced by a chain of certifi?

 cates. At the bottom of the chain is the certificate (reply)

 issued by the CA authenticating the subject's public key. The

 next certificate in the chain is one that authenticates the CA's

 public key.

 In many cases, this is a self-signed certificate, which is a

 certificate from the CA authenticating its own public key, and

 the last certificate in the chain. In other cases, the CA might

 return a chain of certificates. In this case, the bottom cer?

 tificate in the chain is the same (a certificate signed by the

 CA, authenticating the public key of the key entry), but the

 second certificate in the chain is a certificate signed by a

 different CA that authenticates the public key of the CA you

 sent the CSR to. The next certificate in the chain is a cer?

 tificate that authenticates the second CA's key, and so on, un?

 til a self-signed root certificate is reached. Each certificate

 in the chain (after the first) authenticates the public key of

 the signer of the previous certificate in the chain.

 Many CAs only return the issued certificate, with no supporting

 chain, especially when there is a flat hierarchy (no intermedi?

 ates CAs). In this case, the certificate chain must be estab?

 lished from trusted certificate information already stored in

 the keystore.

 A different reply format (defined by the PKCS #7 standard) in?

 cludes the supporting certificate chain in addition to the is?

 sued certificate. Both reply formats can be handled by the key?

 tool command.

 The top-level (root) CA certificate is self-signed. However,

 the trust into the root's public key doesn't come from the root Page 48/56

 certificate itself, but from other sources such as a newspaper.

 This is because anybody could generate a self-signed certificate

 with the distinguished name of, for example, the DigiCert root

 CA. The root CA public key is widely known. The only reason it

 is stored in a certificate is because this is the format under?

 stood by most tools, so the certificate in this case is only

 used as a vehicle to transport the root CA's public key. Before

 you add the root CA certificate to your keystore, you should

 view it with the -printcert option and compare the displayed

 fingerprint with the well-known fingerprint obtained from a

 newspaper, the root CA's Web page, and so on.

 cacerts Certificates File

 A certificates file named cacerts resides in the security prop?

 erties directory:

 ? Linux and OS X: JAVA_HOME/lib/security

 ? Windows: JAVA_HOME\lib\security

 The cacerts file represents a system-wide keystore with CA cer?

 tificates. System administrators can configure and manage that

 file with the keytool command by specifying jks as the keystore

 type. The cacerts keystore file ships with a default set of

 root CA certificates. For Linux, OS X, and Windows, you can

 list the default certificates with the following command:

 keytool -list -cacerts

 The initial password of the cacerts keystore file is changeit.

 System administrators should change that password and the de?

 fault access permission of that file upon installing the SDK.

 Note:

 It is important to verify your cacerts file. Because you trust

 the CAs in the cacerts file as entities for signing and issuing

 certificates to other entities, you must manage the cacerts file

 carefully. The cacerts file should contain only certificates of

 the CAs you trust. It is your responsibility to verify the

 trusted root CA certificates bundled in the cacerts file and Page 49/56

 make your own trust decisions.

 To remove an untrusted CA certificate from the cacerts file, use

 the -delete option of the keytool command. You can find the

 cacerts file in the JDK's $JAVA_HOME/lib/security directory.

 Contact your system administrator if you don't have permission

 to edit this file.

 Internet RFC 1421 Certificate Encoding Standard

 Certificates are often stored using the printable encoding for?

 mat defined by the Internet RFC 1421 standard, instead of their

 binary encoding. This certificate format, also known as Base64

 encoding, makes it easy to export certificates to other applica?

 tions by email or through some other mechanism.

 Certificates read by the -importcert and -printcert commands can

 be in either this format or binary encoded. The -exportcert

 command by default outputs a certificate in binary encoding, but

 will instead output a certificate in the printable encoding for?

 mat, when the -rfc option is specified.

 The -list command by default prints the SHA-256 fingerprint of a

 certificate. If the -v option is specified, then the certifi?

 cate is printed in human-readable format. If the -rfc option is

 specified, then the certificate is output in the printable en?

 coding format.

 In its printable encoding format, the encoded certificate is

 bounded at the beginning and end by the following text:

 -----BEGIN CERTIFICATE-----

 encoded certificate goes here.

 -----END CERTIFICATE-----

 X.500 Distinguished Names

 X.500 Distinguished Names are used to identify entities, such as

 those that are named by the subject and issuer (signer) fields

 of X.509 certificates. The keytool command supports the follow?

 ing subparts:

 ? commonName: The common name of a person such as Susan Jones. Page 50/56

 ? organizationUnit: The small organization (such as department

 or division) name. For example, Purchasing.

 ? localityName: The locality (city) name, for example, Palo Al?

 to.

 ? stateName: State or province name, for example, California.

 ? country: Two-letter country code, for example, CH.

 When you supply a distinguished name string as the value of a

 -dname option, such as for the -genkeypair command, the string

 must be in the following format:

 CN=cName, OU=orgUnit, O=org, L=city, S=state, C=coun?

 tryCode

 All the following items represent actual values and the previous

 keywords are abbreviations for the following:

 CN=commonName

 OU=organizationUnit

 O=organizationName

 L=localityName

 S=stateName

 C=country

 A sample distinguished name string is:

 CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino, S=Califor?

 nia, C=US

 A sample command using such a string is:

 keytool -genkeypair -dname "CN=Mark Smith, OU=Java, O=Or?

 acle, L=Cupertino, S=California, C=US" -alias mark

 -keyalg rsa

 Case doesn't matter for the keyword abbreviations. For example,

 CN, cn, and Cn are all treated the same.

 Order matters; each subcomponent must appear in the designated

 order. However, it isn't necessary to have all the subcompo?

 nents. You can use a subset, for example:

 CN=Smith, OU=Java, O=Oracle, C=US

 If a distinguished name string value contains a comma, then the Page 51/56

 comma must be escaped by a backslash (\) character when you

 specify the string on a command line, as in:

 cn=Jack, ou=Java\, Product Development, o=Oracle, c=US

 It is never necessary to specify a distinguished name string on

 a command line. When the distinguished name is needed for a

 command, but not supplied on the command line, the user is

 prompted for each of the subcomponents. In this case, a comma

 doesn't need to be escaped by a backslash (\).

WARNINGS

IMPORTING TRUSTED CERTIFICATES WARNING

 Important: Be sure to check a certificate very carefully before import?

 ing it as a trusted certificate.

 Windows Example:

 View the certificate first with the -printcert command or the -im?

 portcert command without the -noprompt option. Ensure that the dis?

 played certificate fingerprints match the expected ones. For example,

 suppose someone sends or emails you a certificate that you put it in a

 file named \tmp\cert. Before you consider adding the certificate to

 your list of trusted certificates, you can execute a -printcert command

 to view its fingerprints, as follows:

 keytool -printcert -file \tmp\cert

 Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Serial Number: 59092b34

 Valid from: Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST 2016

 Certificate Fingerprints:

 SHA-1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

 SHA-256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:

 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

 Linux Example:

 View the certificate first with the -printcert command or the -im?

 portcert command without the -noprompt option. Ensure that the dis?

 played certificate fingerprints match the expected ones. For example, Page 52/56

 suppose someone sends or emails you a certificate that you put it in a

 file named /tmp/cert. Before you consider adding the certificate to

 your list of trusted certificates, you can execute a -printcert command

 to view its fingerprints, as follows:

 keytool -printcert -file /tmp/cert

 Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll

 Serial Number: 59092b34

 Valid from: Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST 2016

 Certificate Fingerprints:

 SHA-1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

 SHA-256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:

 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4

 Then call or otherwise contact the person who sent the certificate and

 compare the fingerprints that you see with the ones that they show.

 Only when the fingerprints are equal is it guaranteed that the certifi?

 cate wasn't replaced in transit with somebody else's certificate such

 as an attacker's certificate. If such an attack took place, and you

 didn't check the certificate before you imported it, then you would be

 trusting anything the attacker signed, for example, a JAR file with ma?

 licious class files inside.

 Note:

 It isn't required that you execute a -printcert command before import?

 ing a certificate. This is because before you add a certificate to the

 list of trusted certificates in the keystore, the -importcert command

 prints out the certificate information and prompts you to verify it.

 You can then stop the import operation. However, you can do this only

 when you call the -importcert command without the -noprompt option. If

 the -noprompt option is specified, then there is no interaction with

 the user.

PASSWORDS WARNING

 Most commands that operate on a keystore require the store password.

 Some commands require a private/secret key password. Passwords can be Page 53/56

 specified on the command line in the -storepass and -keypass options.

 However, a password shouldn't be specified on a command line or in a

 script unless it is for testing, or you are on a secure system. When

 you don't specify a required password option on a command line, you are

 prompted for it.

CERTIFICATE CONFORMANCE WARNING

 Internet X.509 Public Key Infrastructure Certificate and Certificate

 Revocation List (CRL) Profile [https://tools.ietf.org/rfc/rfc5280.txt]

 defined a profile on conforming X.509 certificates, which includes what

 values and value combinations are valid for certificate fields and ex?

 tensions.

 The keytool command doesn't enforce all of these rules so it can gener?

 ate certificates that don't conform to the standard, such as self-

 signed certificates that would be used for internal testing purposes.

 Certificates that don't conform to the standard might be rejected by

 the JDK or other applications. Users should ensure that they provide

 the correct options for -dname, -ext, and so on.

IMPORT A NEW TRUSTED CERTIFICATE

 Before you add the certificate to the keystore, the keytool command

 verifies it by attempting to construct a chain of trust from that cer?

 tificate to a self-signed certificate (belonging to a root CA), using

 trusted certificates that are already available in the keystore.

 If the -trustcacerts option was specified, then additional certificates

 are considered for the chain of trust, namely the certificates in a

 file named cacerts.

 If the keytool command fails to establish a trust path from the cer?

 tificate to be imported up to a self-signed certificate (either from

 the keystore or the cacerts file), then the certificate information is

 printed, and the user is prompted to verify it by comparing the dis?

 played certificate fingerprints with the fingerprints obtained from

 some other (trusted) source of information, which might be the certifi?

 cate owner. Be very careful to ensure the certificate is valid before

 importing it as a trusted certificate. The user then has the option of Page 54/56

 stopping the import operation. If the -noprompt option is specified,

 then there is no interaction with the user.

IMPORT A CERTIFICATE REPLY

 When you import a certificate reply, the certificate reply is validated

 with trusted certificates from the keystore, and optionally, the cer?

 tificates configured in the cacerts keystore file when the -trustcac?

 erts option is specified.

 The methods of determining whether the certificate reply is trusted are

 as follows:

 ? If the reply is a single X.509 certificate, then the keytool command

 attempts to establish a trust chain, starting at the certificate re?

 ply and ending at a self-signed certificate (belonging to a root CA).

 The certificate reply and the hierarchy of certificates is used to

 authenticate the certificate reply from the new certificate chain of

 aliases. If a trust chain can't be established, then the certificate

 reply isn't imported. In this case, the keytool command doesn't

 print the certificate and prompt the user to verify it, because it is

 very difficult for a user to determine the authenticity of the cer?

 tificate reply.

 ? If the reply is a PKCS #7 formatted certificate chain or a sequence

 of X.509 certificates, then the chain is ordered with the user cer?

 tificate first followed by zero or more CA certificates. If the

 chain ends with a self-signed root CA certificate and the-trustcac?

 erts option was specified, the keytool command attempts to match it

 with any of the trusted certificates in the keystore or the cacerts

 keystore file. If the chain doesn't end with a self-signed root CA

 certificate and the -trustcacerts option was specified, the keytool

 command tries to find one from the trusted certificates in the key?

 store or the cacerts keystore file and add it to the end of the

 chain. If the certificate isn't found and the -noprompt option isn't

 specified, the information of the last certificate in the chain is

 printed, and the user is prompted to verify it.

 If the public key in the certificate reply matches the user's public Page 55/56

 key already stored with alias, then the old certificate chain is re?

 placed with the new certificate chain in the reply. The old chain can

 only be replaced with a valid keypass, and so the password used to pro?

 tect the private key of the entry is supplied. If no password is pro?

 vided, and the private key password is different from the keystore

 password, the user is prompted for it.

 This command was named -import in earlier releases. This old name is

 still supported in this release. The new name, -importcert, is pre?

 ferred.

JDK 20 2023 KEYTOOL(1)

Page 56/56

