
Rocky Enterprise Linux 9.2 Manual Pages on command 'keymaps.5'

$ man keymaps.5

KEYMAPS(5) File Formats Manual KEYMAPS(5)

NAME

 keymaps - keyboard table descriptions for loadkeys and dumpkeys

DESCRIPTION

 These files are used by loadkeys(1) to modify the translation tables

 used by the kernel keyboard driver and generated by dumpkeys(1) from

 those translation tables.

 The format of these files is vaguely similar to the one accepted by

 xmodmap(1). The file consists of charset or key or string definition

 lines interspersed with comments.

 Comments are introduced with ! or # characters and continue to the end

 of the line. Anything following one of these characters on that line is

 ignored. Note that comments need not begin from column one as with

 xmodmap(1).

 The syntax of keymap files is line oriented; a complete definition must

 fit on a single logical line. Logical lines can, however, be split into

 multiple physical lines by ending each subline with the backslash char?

 acter (\). Page 1/8

INCLUDE FILES

 A keymap can include other keymaps using the syntax

 include "pathname"

CHARSET DEFINITIONS

 A character set definition line is of the form:

 charset "iso-8859-x"

 It defines how following keysyms are to be interpreted. For example,

 in iso-8859-1 the symbol mu (or micro) has code 0265, while in

 iso-8859-7 the letter mu has code 0354.

COMPLETE KEYCODE DEFINITIONS

 Each complete key definition line is of the form:

 keycode keynumber = keysym keysym keysym...

 keynumber is the internal identification number of the key, roughly

 equivalent to the scan code of it. keynumber can be given in decimal,

 octal or hexadecimal notation. Octal is denoted by a leading zero and

 hexadecimal by the prefix 0x.

 Each of the keysyms represent keyboard actions, of which up to 256 can

 be bound to a single key. The actions available include outputting

 character codes or character sequences, switching consoles or keymaps,

 booting the machine etc. (The complete list can be obtained from dump?

 keys(1) by saying dumpkeys -l .)

 Each keysym may be prefixed by a '+' (plus sign), in wich case this

 keysym is treated as a "letter" and therefore affected by the "Cap?

 sLock" the same way as by "Shift" (to be correct, the CapsLock inverts

 the Shift state). The ASCII letters ('a'-'z' and 'A'-'Z') are made

 CapsLock'able by default. If Shift+CapsLock should not produce a lower

 case symbol, put lines like

 keycode 30 = +a A

 in the map file.

 Which of the actions bound to a given key is taken when it is pressed

 depends on what modifiers are in effect at that moment. The keyboard

 driver supports 9 modifiers. These modifiers are labeled (completely

 arbitrarily) Shift, AltGr, Control, Alt, ShiftL, ShiftR, CtrlL, CtrlR Page 2/8

 and CapsShift. Each of these modifiers has an associated weight of

 power of two according to the following table:

 modifier weight

 Shift 1

 AltGr 2

 Control 4

 Alt 8

 ShiftL 16

 ShiftR 32

 CtrlL 64

 CtrlR 128

 CapsShift 256

 The effective action of a key is found out by adding up the weights of

 all the modifiers in effect. By default, no modifiers are in effect, so

 action number zero, i.e. the one in the first column in a key defini?

 tion line, is taken when the key is pressed or released. When e.g.

 Shift and Alt modifiers are in effect, action number nine (from the

 10th column) is the effective one.

 Changing the state of what modifiers are in effect can be achieved by

 binding appropriate key actions to desired keys. For example, binding

 the symbol Shift to a key sets the Shift modifier in effect when that

 key is pressed and cancels the effect of that modifier when the key is

 released. Binding AltGr_Lock to a key sets AltGr in effect when the key

 is pressed and cancels the effect when the key is pressed again. (By

 default Shift, AltGr, Control and Alt are bound to the keys that bear a

 similar label; AltGr may denote the right Alt key.)

 Note that you should be very careful when binding the modifier keys,

 otherwise you can end up with an unusable keyboard mapping. If you for

 example define a key to have Control in its first column and leave the

 rest of the columns to be VoidSymbols, you're in trouble. This is be?

 cause pressing the key puts Control modifier in effect and the follow?

 ing actions are looked up from the fifth column (see the table above).

 So, when you release the key, the action from the fifth column is Page 3/8

 taken. It has VoidSymbol in it, so nothing happens. This means that the

 Control modifier is still in effect, although you have released the

 key. Re-pressing and releasing the key has no effect. To avoid this,

 you should always define all the columns to have the same modifier sym?

 bol. There is a handy short-hand notation for this, see below.

 keysyms can be given in decimal, octal, hexadecimal, unicode or sym?

 bolic notation. The numeric notations use the same format as with

 keynumber. Unicode notation is "U+" followed by four hexadecimal dig?

 its. The symbolic notation resembles that used by xmodmap(1). Notable

 differences are the number symbols. The numeric symbols '0', ..., '9'

 of xmodmap(1) are replaced with the corresponding words 'zero', 'one',

 ... 'nine' to avoid confusion with the numeric notation.

 It should be noted that using numeric notation for the keysyms is

 highly unportable as the key action numbers may vary from one kernel

 version to another and the use of numeric notations is thus strongly

 discouraged. They are intended to be used only when you know there is a

 supported keyboard action in your kernel for which your current version

 of loadkeys(1) has no symbolic name.

 There is a number of short-hand notations to add readability and reduce

 typing work and the probability of typing-errors.

 First of all, you can give a map specification line, of the form

 keymaps 0-2,4-5,8,12

 to indicate that the lines of the keymap will not specify all 256 col?

 umns, but only the indicated ones. (In the example: only the plain,

 Shift, AltGr, Control, Control+Shift, Alt and Control+Alt maps, that

 is, 7 columns instead of 256.) When no such line is given, the keymaps

 0-M will be defined, where M+1 is the maximum number of entries found

 in any definition line.

 Next, you can leave off any trailing VoidSymbol entries from a key def?

 inition line. VoidSymbol denotes a keyboard action which produces no

 output and has no other effects either. For example, to define key num?

 ber 30 to output 'a' unshifted, 'A' when pressed with Shift and do

 nothing when pressed with AltGr or other modifiers, you can write Page 4/8

 keycode 30 = a A

 instead of the more verbose

 keycode 30 = a A VoidSymbol VoidSymbol \

 VoidSymbol VoidSymbol VoidSymbol ...

 For added convenience, you can usually get off with still more terse

 definitions. If you enter a key definition line with only and exactly

 one action code after the equals sign, it has a special meaning. If the

 code (numeric or symbolic) is not an ASCII letter, it means the code is

 implicitly replicated through all columns being defined. If, on the

 other hand, the action code is an ASCII character in the range 'a',

 ..., 'z' or 'A', ..., 'Z' in the ASCII collating sequence, the follow?

 ing definitions are made for the different modifier combinations, pro?

 vided these are actually being defined. (The table lists the two pos?

 sible cases: either the single action code is a lower case letter, de?

 noted by 'x' or an upper case letter, denoted by 'Y'.)

 modifier symbol

 none x Y

 Shift X y

 AltGr x Y

 Shift+AltGr X y

 Control Control_x Control_y

 Shift+Control Control_x Control_y

 AltGr+Control Control_x Control_y

 Shift+AltGr+Control Control_x Control_y

 Alt Meta_x Meta_Y

 Shift+Alt Meta_X Meta_y

 AltGr+Alt Meta_x Meta_Y

 Shift+AltGr+Alt Meta_X Meta_y

 Control+Alt Meta_Control_x Meta_Control_y

 Shift+Control+Alt Meta_Control_x Meta_Control_y

 AltGr+Control+Alt Meta_Control_x Meta_Control_y

 Shift+AltGr+Control+Alt Meta_Control_x Meta_Control_y

SINGLE MODIFIER DEFINITIONS Page 5/8

 All the previous forms of key definition lines always define all the

 M+1 possible modifier combinations being defined, whether the line ac?

 tually contains that many action codes or not. There is, however, a

 variation of the definition syntax for defining only single actions to

 a particular modifier combination of a key. This is especially useful,

 if you load a keymap which doesn't match your needs in only some modi?

 fier combinations, like AltGr+function keys. You can then make a small

 local file redefining only those modifier combinations and loading it

 after the main file. The syntax of this form is:

 { plain | <modifier sequence> } keycode keynumber = keysym

 , e.g.,

 plain keycode 14 = BackSpace

 control alt keycode 83 = Boot

 alt keycode 105 = Decr_Console

 alt keycode 106 = Incr_Console

 Using "plain" will define only the base entry of a key (i.e. the one

 with no modifiers in effect) without affecting the bindings of other

 modifier combinations of that key.

STRING DEFINITIONS

 In addition to comments and key definition lines, a keymap can contain

 string definitions. These are used to define what each function key ac?

 tion code sends. The syntax of string definitions is:

 string keysym = "text"

 text can contain literal characters, octal character codes in the for?

 mat of backslash followed by up to three octal digits, and the three

 escape sequences \n, \\, and \", for newline, backslash and quote, re?

 spectively.

COMPOSE DEFINITIONS

 Then there may also be compose definitions. They have syntax

 compose 'char' 'char' to 'char'

 and describe how two bytes are combined to form a third one (when a

 dead accent or compose key is used). This is used to get accented let?

 ters and the like on a standard keyboard. Page 6/8

ABBREVIATIONS

 Various abbreviations can be used with kbd-0.96 and later.

 strings as usual

 Defines the usual values of the strings (but not the keys they

 are bound to).

 compose as usual for "iso-8859-1"

 Defines the usual compose combinations.

 To find out what keysyms there are available for use in keymaps, use

 the command

 dumpkeys --long-info

 Unfortunately, there is currently no description of what each symbol

 does. It has to be guessed from the name or figured out from the kernel

 sources.

EXAMPLES

 (Be careful to use a keymaps line, like the first line of `dumpkeys`,

 or "keymaps 0-15" or so.)

 The following entry exchanges the left Control key and the Caps Lock

 key on the keyboard:

 keycode 58 = Control

 keycode 29 = Caps_Lock

 Key number 58 is normally the Caps Lock key, and key number 29 is nor?

 mally the Control key.

 The following entry sets the Shift and Caps Lock keys to behave more

 nicely, like in older typewriters. That is, pressing Caps Lock key once

 or more sets the keyboard in CapsLock state and pressing either of the

 Shift keys releases it.

 keycode 42 = Uncaps_Shift

 keycode 54 = Uncaps_Shift

 keycode 58 = Caps_On

 The following entry sets the layout of the edit pad in the enhanced

 keyboard to be more like that in the VT200 series terminals:

 keycode 102 = Insert

 keycode 104 = Remove Page 7/8

 keycode 107 = Prior

 shift keycode 107 = Scroll_Backward

 keycode 110 = Find

 keycode 111 = Select

 control alt keycode 111 = Boot

 control altgr keycode 111 = Boot

 Here's an example to bind the string "du\ndf\n" to the key AltGr-D. We

 use the "spare" action code F100 not normally bound to any key.

 altgr keycode 32 = F100

 string F100 = "du\ndf\n"

SEE ALSO

 loadkeys(1), dumpkeys(1), showkey(1), xmodmap(1)

kbd 24 April 1998 KEYMAPS(5)

Page 8/8

