
Rocky Enterprise Linux 9.2 Manual Pages on command 'keyctl.2'

$ man keyctl.2

KEYCTL(2) Linux Key Management Calls KEYCTL(2)

NAME

 keyctl - manipulate the kernel's key management facility

SYNOPSIS

 #include <sys/types.h>

 #include <keyutils.h>

 long keyctl(int operation, ...);

 /* For direct call via syscall(2): */

 #include <asm/unistd.h>

 #include <linux/keyctl.h>

 #include <unistd.h>

 long syscall(__NR_keyctl, int operation, __kernel_ulong_t arg2,

 __kernel_ulong_t arg3, __kernel_ulong_t arg4,

 __kernel_ulong_t arg5);

 No glibc wrapper is provided for this system call; see NOTES.

DESCRIPTION

 keyctl() allows user-space programs to perform key manipulation.

 The operation performed by keyctl() is determined by the value of the Page 1/33

 operation argument. Each of these operations is wrapped by the

 libkeyutils library (provided by the keyutils package) into individual

 functions (noted below) to permit the compiler to check types.

 The permitted values for operation are:

 KEYCTL_GET_KEYRING_ID (since Linux 2.6.10)

 Map a special key ID to a real key ID for this process.

 This operation looks up the special key whose ID is provided in

 arg2 (cast to key_serial_t). If the special key is found, the

 ID of the corresponding real key is returned as the function re?

 sult. The following values may be specified in arg2:

 KEY_SPEC_THREAD_KEYRING

 This specifies the calling thread's thread-specific

 keyring. See thread-keyring(7).

 KEY_SPEC_PROCESS_KEYRING

 This specifies the caller's process-specific keyring.

 See process-keyring(7).

 KEY_SPEC_SESSION_KEYRING

 This specifies the caller's session-specific keyring.

 See session-keyring(7).

 KEY_SPEC_USER_KEYRING

 This specifies the caller's UID-specific keyring. See

 user-keyring(7).

 KEY_SPEC_USER_SESSION_KEYRING

 This specifies the caller's UID-session keyring. See

 user-session-keyring(7).

 KEY_SPEC_REQKEY_AUTH_KEY (since Linux 2.6.16)

 This specifies the authorization key created by re?

 quest_key(2) and passed to the process it spawns to gen?

 erate a key. This key is available only in a re?

 quest-key(8)-style program that was passed an authoriza?

 tion key by the kernel and ceases to be available once

 the requested key has been instantiated; see re?

 quest_key(2). Page 2/33

 KEY_SPEC_REQUESTOR_KEYRING (since Linux 2.6.29)

 This specifies the key ID for the request_key(2) destina?

 tion keyring. This keyring is available only in a re?

 quest-key(8)-style program that was passed an authoriza?

 tion key by the kernel and ceases to be available once

 the requested key has been instantiated; see re?

 quest_key(2).

 The behavior if the key specified in arg2 does not exist depends

 on the value of arg3 (cast to int). If arg3 contains a nonzero

 value, then?if it is appropriate to do so (e.g., when looking up

 the user, user-session, or session key)?a new key is created and

 its real key ID returned as the function result. Otherwise, the

 operation fails with the error ENOKEY.

 If a valid key ID is specified in arg2, and the key exists, then

 this operation simply returns the key ID. If the key does not

 exist, the call fails with error ENOKEY.

 The caller must have search permission on a keyring in order for

 it to be found.

 The arguments arg4 and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_get_keyring_ID(3).

 KEYCTL_JOIN_SESSION_KEYRING (since Linux 2.6.10)

 Replace the session keyring this process subscribes to with a

 new session keyring.

 If arg2 is NULL, an anonymous keyring with the description

 "_ses" is created and the process is subscribed to that keyring

 as its session keyring, displacing the previous session keyring.

 Otherwise, arg2 (cast to char *) is treated as the description

 (name) of a keyring, and the behavior is as follows:

 * If a keyring with a matching description exists, the process

 will attempt to subscribe to that keyring as its session

 keyring if possible; if that is not possible, an error is re?

 turned. In order to subscribe to the keyring, the caller Page 3/33

 must have search permission on the keyring.

 * If a keyring with a matching description does not exist, then

 a new keyring with the specified description is created, and

 the process is subscribed to that keyring as its session

 keyring.

 The arguments arg3, arg4, and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_join_session_keyring(3).

 KEYCTL_UPDATE (since Linux 2.6.10)

 Update a key's data payload.

 The arg2 argument (cast to key_serial_t) specifies the ID of the

 key to be updated. The arg3 argument (cast to void *) points to

 the new payload and arg4 (cast to size_t) contains the new pay?

 load size in bytes.

 The caller must have write permission on the key specified and

 the key type must support updating.

 A negatively instantiated key (see the description of KEYCTL_RE?

 JECT) can be positively instantiated with this operation.

 The arg5 argument is ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_update(3).

 KEYCTL_REVOKE (since Linux 2.6.10)

 Revoke the key with the ID provided in arg2 (cast to key_se?

 rial_t). The key is scheduled for garbage collection; it will

 no longer be findable, and will be unavailable for further oper?

 ations. Further attempts to use the key will fail with the er?

 ror EKEYREVOKED.

 The caller must have write or setattr permission on the key.

 The arguments arg3, arg4, and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_revoke(3).

 KEYCTL_CHOWN (since Linux 2.6.10)

 Change the ownership (user and group ID) of a key. Page 4/33

 The arg2 argument (cast to key_serial_t) contains the key ID.

 The arg3 argument (cast to uid_t) contains the new user ID (or

 -1 in case the user ID shouldn't be changed). The arg4 argument

 (cast to gid_t) contains the new group ID (or -1 in case the

 group ID shouldn't be changed).

 The key must grant the caller setattr permission.

 For the UID to be changed, or for the GID to be changed to a

 group the caller is not a member of, the caller must have the

 CAP_SYS_ADMIN capability (see capabilities(7)).

 If the UID is to be changed, the new user must have sufficient

 quota to accept the key. The quota deduction will be removed

 from the old user to the new user should the UID be changed.

 The arg5 argument is ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_chown(3).

 KEYCTL_SETPERM (since Linux 2.6.10)

 Change the permissions of the key with the ID provided in the

 arg2 argument (cast to key_serial_t) to the permissions provided

 in the arg3 argument (cast to key_perm_t).

 If the caller doesn't have the CAP_SYS_ADMIN capability, it can

 change permissions only for the keys it owns. (More precisely:

 the caller's filesystem UID must match the UID of the key.)

 The key must grant setattr permission to the caller regardless

 of the caller's capabilities.

 The permissions in arg3 specify masks of available operations

 for each of the following user categories:

 possessor (since Linux 2.6.14)

 This is the permission granted to a process that pos?

 sesses the key (has it attached searchably to one of the

 process's keyrings); see keyrings(7).

 user This is the permission granted to a process whose

 filesystem UID matches the UID of the key.

 group This is the permission granted to a process whose Page 5/33

 filesystem GID or any of its supplementary GIDs matches

 the GID of the key.

 other This is the permission granted to other processes that do

 not match the user and group categories.

 The user, group, and other categories are exclusive: if a

 process matches the user category, it will not receive permis?

 sions granted in the group category; if a process matches the

 user or group category, then it will not receive permissions

 granted in the other category.

 The possessor category grants permissions that are cumulative

 with the grants from the user, group, or other category.

 Each permission mask is eight bits in size, with only six bits

 currently used. The available permissions are:

 view This permission allows reading attributes of a key.

 This permission is required for the KEYCTL_DESCRIBE oper?

 ation.

 The permission bits for each category are KEY_POS_VIEW,

 KEY_USR_VIEW, KEY_GRP_VIEW, and KEY_OTH_VIEW.

 read This permission allows reading a key's payload.

 This permission is required for the KEYCTL_READ opera?

 tion.

 The permission bits for each category are KEY_POS_READ,

 KEY_USR_READ, KEY_GRP_READ, and KEY_OTH_READ.

 write This permission allows update or instantiation of a key's

 payload. For a keyring, it allows keys to be linked and

 unlinked from the keyring,

 This permission is required for the KEYCTL_UPDATE,

 KEYCTL_REVOKE, KEYCTL_CLEAR, KEYCTL_LINK, and KEYCTL_UN?

 LINK operations.

 The permission bits for each category are KEY_POS_WRITE,

 KEY_USR_WRITE, KEY_GRP_WRITE, and KEY_OTH_WRITE.

 search This permission allows keyrings to be searched and keys

 to be found. Searches can recurse only into nested Page 6/33

 keyrings that have search permission set.

 This permission is required for the

 KEYCTL_GET_KEYRING_ID, KEYCTL_JOIN_SESSION_KEYRING,

 KEYCTL_SEARCH, and KEYCTL_INVALIDATE operations.

 The permission bits for each category are KEY_POS_SEARCH,

 KEY_USR_SEARCH, KEY_GRP_SEARCH, and KEY_OTH_SEARCH.

 link This permission allows a key or keyring to be linked to.

 This permission is required for the KEYCTL_LINK and

 KEYCTL_SESSION_TO_PARENT operations.

 The permission bits for each category are KEY_POS_LINK,

 KEY_USR_LINK, KEY_GRP_LINK, and KEY_OTH_LINK.

 setattr (since Linux 2.6.15).

 This permission allows a key's UID, GID, and permissions

 mask to be changed.

 This permission is required for the KEYCTL_REVOKE,

 KEYCTL_CHOWN, and KEYCTL_SETPERM operations.

 The permission bits for each category are KEY_POS_SE?

 TATTR, KEY_USR_SETATTR, KEY_GRP_SETATTR, and KEY_OTH_SE?

 TATTR.

 As a convenience, the following macros are defined as masks for

 all of the permission bits in each of the user categories:

 KEY_POS_ALL, KEY_USR_ALL, KEY_GRP_ALL, and KEY_OTH_ALL.

 The arg4 and arg5 arguments are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_setperm(3).

 KEYCTL_DESCRIBE (since Linux 2.6.10)

 Obtain a string describing the attributes of a specified key.

 The ID of the key to be described is specified in arg2 (cast to

 key_serial_t). The descriptive string is returned in the buffer

 pointed to by arg3 (cast to char *); arg4 (cast to size_t) spec?

 ifies the size of that buffer in bytes.

 The key must grant the caller view permission.

 The returned string is null-terminated and contains the follow? Page 7/33

 ing information about the key:

 type;uid;gid;perm;description

 In the above, type and description are strings, uid and gid are

 decimal strings, and perm is a hexadecimal permissions mask.

 The descriptive string is written with the following format:

 %s;%d;%d;%08x;%s

 Note: the intention is that the descriptive string should be ex?

 tensible in future kernel versions. In particular, the descrip?

 tion field will not contain semicolons; it should be parsed by

 working backwards from the end of the string to find the last

 semicolon. This allows future semicolon-delimited fields to be

 inserted in the descriptive string in the future.

 Writing to the buffer is attempted only when arg3 is non-NULL

 and the specified buffer size is large enough to accept the de?

 scriptive string (including the terminating null byte). In or?

 der to determine whether the buffer size was too small, check to

 see if the return value of the operation is greater than arg4.

 The arg5 argument is ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_describe(3).

 KEYCTL_CLEAR

 Clear the contents of (i.e., unlink all keys from) a keyring.

 The ID of the key (which must be of keyring type) is provided in

 arg2 (cast to key_serial_t).

 The caller must have write permission on the keyring.

 The arguments arg3, arg4, and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_clear(3).

 KEYCTL_LINK (since Linux 2.6.10)

 Create a link from a keyring to a key.

 The key to be linked is specified in arg2 (cast to key_se?

 rial_t); the keyring is specified in arg3 (cast to key_se?

 rial_t). Page 8/33

 If a key with the same type and description is already linked in

 the keyring, then that key is displaced from the keyring.

 Before creating the link, the kernel checks the nesting of the

 keyrings and returns appropriate errors if the link would pro?

 duce a cycle or if the nesting of keyrings would be too deep

 (The limit on the nesting of keyrings is determined by the ker?

 nel constant KEYRING_SEARCH_MAX_DEPTH, defined with the value 6,

 and is necessary to prevent overflows on the kernel stack when

 recursively searching keyrings).

 The caller must have link permission on the key being added and

 write permission on the keyring.

 The arguments arg4 and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_link(3).

 KEYCTL_UNLINK (since Linux 2.6.10)

 Unlink a key from a keyring.

 The ID of the key to be unlinked is specified in arg2 (cast to

 key_serial_t); the ID of the keyring from which it is to be un?

 linked is specified in arg3 (cast to key_serial_t).

 If the key is not currently linked into the keyring, an error

 results.

 The caller must have write permission on the keyring from which

 the key is being removed.

 If the last link to a key is removed, then that key will be

 scheduled for destruction.

 The arguments arg4 and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_unlink(3).

 KEYCTL_SEARCH (since Linux 2.6.10)

 Search for a key in a keyring tree, returning its ID and option?

 ally linking it to a specified keyring.

 The tree to be searched is specified by passing the ID of the

 head keyring in arg2 (cast to key_serial_t). The search is per? Page 9/33

 formed breadth-first and recursively.

 The arg3 and arg4 arguments specify the key to be searched for:

 arg3 (cast as char *) contains the key type (a null-terminated

 character string up to 32 bytes in size, including the terminat?

 ing null byte), and arg4 (cast as char *) contains the descrip?

 tion of the key (a null-terminated character string up to 4096

 bytes in size, including the terminating null byte).

 The source keyring must grant search permission to the caller.

 When performing the recursive search, only keyrings that grant

 the caller search permission will be searched. Only keys with

 for which the caller has search permission can be found.

 If the key is found, its ID is returned as the function result.

 If the key is found and arg5 (cast to key_serial_t) is nonzero,

 then, subject to the same constraints and rules as KEYCTL_LINK,

 the key is linked into the keyring whose ID is specified in

 arg5. If the destination keyring specified in arg5 already con?

 tains a link to a key that has the same type and description,

 then that link will be displaced by a link to the key found by

 this operation.

 Instead of valid existing keyring IDs, the source (arg2) and

 destination (arg5) keyrings can be one of the special keyring

 IDs listed under KEYCTL_GET_KEYRING_ID.

 This operation is exposed by libkeyutils via the function

 keyctl_search(3).

 KEYCTL_READ (since Linux 2.6.10)

 Read the payload data of a key.

 The ID of the key whose payload is to be read is specified in

 arg2 (cast to key_serial_t). This can be the ID of an existing

 key, or any of the special key IDs listed for

 KEYCTL_GET_KEYRING_ID.

 The payload is placed in the buffer pointed by arg3 (cast to

 char *); the size of that buffer must be specified in arg4 (cast

 to size_t). Page 10/33

 The returned data will be processed for presentation according

 to the key type. For example, a keyring will return an array of

 key_serial_t entries representing the IDs of all the keys that

 are linked to it. The user key type will return its data as is.

 If a key type does not implement this function, the operation

 fails with the error EOPNOTSUPP.

 If arg3 is not NULL, as much of the payload data as will fit is

 copied into the buffer. On a successful return, the return

 value is always the total size of the payload data. To deter?

 mine whether the buffer was of sufficient size, check to see

 that the return value is less than or equal to the value sup?

 plied in arg4.

 The key must either grant the caller read permission, or grant

 the caller search permission when searched for from the process

 keyrings (i.e., the key is possessed).

 The arg5 argument is ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_read(3).

 KEYCTL_INSTANTIATE (since Linux 2.6.10)

 (Positively) instantiate an uninstantiated key with a specified

 payload.

 The ID of the key to be instantiated is provided in arg2 (cast

 to key_serial_t).

 The key payload is specified in the buffer pointed to by arg3

 (cast to void *); the size of that buffer is specified in arg4

 (cast to size_t).

 The payload may be a NULL pointer and the buffer size may be 0

 if this is supported by the key type (e.g., it is a keyring).

 The operation may be fail if the payload data is in the wrong

 format or is otherwise invalid.

 If arg5 (cast to key_serial_t) is nonzero, then, subject to the

 same constraints and rules as KEYCTL_LINK, the instantiated key

 is linked into the keyring whose ID specified in arg5. Page 11/33

 The caller must have the appropriate authorization key, and once

 the uninstantiated key has been instantiated, the authorization

 key is revoked. In other words, this operation is available

 only from a request-key(8)-style program. See request_key(2)

 for an explanation of uninstantiated keys and key instantiation.

 This operation is exposed by libkeyutils via the function

 keyctl_instantiate(3).

 KEYCTL_NEGATE (since Linux 2.6.10)

 Negatively instantiate an uninstantiated key.

 This operation is equivalent to the call:

 keyctl(KEYCTL_REJECT, arg2, arg3, ENOKEY, arg4);

 The arg5 argument is ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_negate(3).

 KEYCTL_SET_REQKEY_KEYRING (since Linux 2.6.13)

 Set the default keyring to which implicitly requested keys will

 be linked for this thread, and return the previous setting. Im?

 plicit key requests are those made by internal kernel compo?

 nents, such as can occur when, for example, opening files on an

 AFS or NFS filesystem. Setting the default keyring also has an

 effect when requesting a key from user space; see request_key(2)

 for details.

 The arg2 argument (cast to int) should contain one of the fol?

 lowing values, to specify the new default keyring:

 KEY_REQKEY_DEFL_NO_CHANGE

 Don't change the default keyring. This can be used to

 discover the current default keyring (without changing

 it).

 KEY_REQKEY_DEFL_DEFAULT

 This selects the default behaviour, which is to use the

 thread-specific keyring if there is one, otherwise the

 process-specific keyring if there is one, otherwise the

 session keyring if there is one, otherwise the UID-spe? Page 12/33

 cific session keyring, otherwise the user-specific

 keyring.

 KEY_REQKEY_DEFL_THREAD_KEYRING

 Use the thread-specific keyring (thread-keyring(7)) as

 the new default keyring.

 KEY_REQKEY_DEFL_PROCESS_KEYRING

 Use the process-specific keyring (process-keyring(7)) as

 the new default keyring.

 KEY_REQKEY_DEFL_SESSION_KEYRING

 Use the session-specific keyring (session-keyring(7)) as

 the new default keyring.

 KEY_REQKEY_DEFL_USER_KEYRING

 Use the UID-specific keyring (user-keyring(7)) as the new

 default keyring.

 KEY_REQKEY_DEFL_USER_SESSION_KEYRING

 Use the UID-specific session keyring (user-session-

 keyring(7)) as the new default keyring.

 KEY_REQKEY_DEFL_REQUESTOR_KEYRING (since Linux 2.6.29)

 Use the requestor keyring.

 All other values are invalid.

 The arguments arg3, arg4, and arg5 are ignored.

 The setting controlled by this operation is inherited by the

 child of fork(2) and preserved across execve(2).

 This operation is exposed by libkeyutils via the function

 keyctl_set_reqkey_keyring(3).

 KEYCTL_SET_TIMEOUT (since Linux 2.6.16)

 Set a timeout on a key.

 The ID of the key is specified in arg2 (cast to key_serial_t).

 The timeout value, in seconds from the current time, is speci?

 fied in arg3 (cast to unsigned int). The timeout is measured

 against the realtime clock.

 Specifying the timeout value as 0 clears any existing timeout on

 the key. Page 13/33

 The /proc/keys file displays the remaining time until each key

 will expire. (This is the only method of discovering the time?

 out on a key.)

 The caller must either have the setattr permission on the key or

 hold an instantiation authorization token for the key (see re?

 quest_key(2)).

 The key and any links to the key will be automatically garbage

 collected after the timeout expires. Subsequent attempts to ac?

 cess the key will then fail with the error EKEYEXPIRED.

 This operation cannot be used to set timeouts on revoked, ex?

 pired, or negatively instantiated keys.

 The arguments arg4 and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_set_timeout(3).

 KEYCTL_ASSUME_AUTHORITY (since Linux 2.6.16)

 Assume (or divest) the authority for the calling thread to in?

 stantiate a key.

 The arg2 argument (cast to key_serial_t) specifies either a non?

 zero key ID to assume authority, or the value 0 to divest au?

 thority.

 If arg2 is nonzero, then it specifies the ID of an uninstanti?

 ated key for which authority is to be assumed. That key can

 then be instantiated using one of KEYCTL_INSTANTIATE, KEYCTL_IN?

 STANTIATE_IOV, KEYCTL_REJECT, or KEYCTL_NEGATE. Once the key

 has been instantiated, the thread is automatically divested of

 authority to instantiate the key.

 Authority over a key can be assumed only if the calling thread

 has present in its keyrings the authorization key that is asso?

 ciated with the specified key. (In other words, the KEYCTL_AS?

 SUME_AUTHORITY operation is available only from a re?

 quest-key(8)-style program; see request_key(2) for an explana?

 tion of how this operation is used.) The caller must have

 search permission on the authorization key. Page 14/33

 If the specified key has a matching authorization key, then the

 ID of that key is returned. The authorization key can be read

 (KEYCTL_READ) to obtain the callout information passed to re?

 quest_key(2).

 If the ID given in arg2 is 0, then the currently assumed author?

 ity is cleared (divested), and the value 0 is returned.

 The KEYCTL_ASSUME_AUTHORITY mechanism allows a program such as

 request-key(8) to assume the necessary authority to instantiate

 a new uninstantiated key that was created as a consequence of a

 call to request_key(2). For further information, see re?

 quest_key(2) and the kernel source file Documentation/secu?

 rity/keys-request-key.txt.

 The arguments arg3, arg4, and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_assume_authority(3).

 KEYCTL_GET_SECURITY (since Linux 2.6.26)

 Get the LSM (Linux Security Module) security label of the speci?

 fied key.

 The ID of the key whose security label is to be fetched is spec?

 ified in arg2 (cast to key_serial_t). The security label (ter?

 minated by a null byte) will be placed in the buffer pointed to

 by arg3 argument (cast to char *); the size of the buffer must

 be provided in arg4 (cast to size_t).

 If arg3 is specified as NULL or the buffer size specified in

 arg4 is too small, the full size of the security label string

 (including the terminating null byte) is returned as the func?

 tion result, and nothing is copied to the buffer.

 The caller must have view permission on the specified key.

 The returned security label string will be rendered in a form

 appropriate to the LSM in force. For example, with SELinux, it

 may look like:

 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

 If no LSM is currently in force, then an empty string is placed Page 15/33

 in the buffer.

 The arg5 argument is ignored.

 This operation is exposed by libkeyutils via the functions

 keyctl_get_security(3) and keyctl_get_security_alloc(3).

 KEYCTL_SESSION_TO_PARENT (since Linux 2.6.32)

 Replace the session keyring to which the parent of the calling

 process subscribes with the session keyring of the calling

 process.

 The keyring will be replaced in the parent process at the point

 where the parent next transitions from kernel space to user

 space.

 The keyring must exist and must grant the caller link permis?

 sion. The parent process must be single-threaded and have the

 same effective ownership as this process and must not be set-

 user-ID or set-group-ID. The UID of the parent process's exist?

 ing session keyring (f it has one), as well as the UID of the

 caller's session keyring much match the caller's effective UID.

 The fact that it is the parent process that is affected by this

 operation allows a program such as the shell to start a child

 process that uses this operation to change the shell's session

 keyring. (This is what the keyctl(1) new_session command does.)

 The arguments arg2, arg3, arg4, and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_session_to_parent(3).

 KEYCTL_REJECT (since Linux 2.6.39)

 Mark a key as negatively instantiated and set an expiration

 timer on the key. This operation provides a superset of the

 functionality of the earlier KEYCTL_NEGATE operation.

 The ID of the key that is to be negatively instantiated is spec?

 ified in arg2 (cast to key_serial_t). The arg3 (cast to un?

 signed int) argument specifies the lifetime of the key, in sec?

 onds. The arg4 argument (cast to unsigned int) specifies the

 error to be returned when a search hits this key; typically, Page 16/33

 this is one of EKEYREJECTED, EKEYREVOKED, or EKEYEXPIRED.

 If arg5 (cast to key_serial_t) is nonzero, then, subject to the

 same constraints and rules as KEYCTL_LINK, the negatively in?

 stantiated key is linked into the keyring whose ID is specified

 in arg5.

 The caller must have the appropriate authorization key. In

 other words, this operation is available only from a re?

 quest-key(8)-style program. See request_key(2).

 The caller must have the appropriate authorization key, and once

 the uninstantiated key has been instantiated, the authorization

 key is revoked. In other words, this operation is available

 only from a request-key(8)-style program. See request_key(2)

 for an explanation of uninstantiated keys and key instantiation.

 This operation is exposed by libkeyutils via the function

 keyctl_reject(3).

 KEYCTL_INSTANTIATE_IOV (since Linux 2.6.39)

 Instantiate an uninstantiated key with a payload specified via a

 vector of buffers.

 This operation is the same as KEYCTL_INSTANTIATE, but the pay?

 load data is specified as an array of iovec structures:

 struct iovec {

 void *iov_base; /* Starting address of buffer */

 size_t iov_len; /* Size of buffer (in bytes) */

 };

 The pointer to the payload vector is specified in arg3 (cast as

 const struct iovec *). The number of items in the vector is

 specified in arg4 (cast as unsigned int).

 The arg2 (key ID) and arg5 (keyring ID) are interpreted as for

 KEYCTL_INSTANTIATE.

 This operation is exposed by libkeyutils via the function

 keyctl_instantiate_iov(3).

 KEYCTL_INVALIDATE (since Linux 3.5)

 Mark a key as invalid. Page 17/33

 The ID of the key to be invalidated is specified in arg2 (cast

 to key_serial_t).

 To invalidate a key, the caller must have search permission on

 the key.

 This operation marks the key as invalid and schedules immediate

 garbage collection. The garbage collector removes the invali?

 dated key from all keyrings and deletes the key when its refer?

 ence count reaches zero. After this operation, the key will be

 ignored by all searches, even if it is not yet deleted.

 Keys that are marked invalid become invisible to normal key op?

 erations immediately, though they are still visible in

 /proc/keys (marked with an 'i' flag) until they are actually re?

 moved.

 The arguments arg3, arg4, and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_invalidate(3).

 KEYCTL_GET_PERSISTENT (since Linux 3.13)

 Get the persistent keyring (persistent-keyring(7)) for a speci?

 fied user and link it to a specified keyring.

 The user ID is specified in arg2 (cast to uid_t). If the value

 -1 is specified, the caller's real user ID is used. The ID of

 the destination keyring is specified in arg3 (cast to key_se?

 rial_t).

 The caller must have the CAP_SETUID capability in its user name?

 space in order to fetch the persistent keyring for a user ID

 that does not match either the real or effective user ID of the

 caller.

 If the call is successful, a link to the persistent keyring is

 added to the keyring whose ID was specified in arg3.

 The caller must have write permission on the keyring.

 The persistent keyring will be created by the kernel if it does

 not yet exist.

 Each time the KEYCTL_GET_PERSISTENT operation is performed, the Page 18/33

 persistent keyring will have its expiration timeout reset to the

 value in:

 /proc/sys/kernel/keys/persistent_keyring_expiry

 Should the timeout be reached, the persistent keyring will be

 removed and everything it pins can then be garbage collected.

 Persistent keyrings were added to Linux in kernel version 3.13.

 The arguments arg4 and arg5 are ignored.

 This operation is exposed by libkeyutils via the function

 keyctl_get_persistent(3).

 KEYCTL_DH_COMPUTE (since Linux 4.7)

 Compute a Diffie-Hellman shared secret or public key, optionally

 applying key derivation function (KDF) to the result.

 The arg2 argument is a pointer to a set of parameters containing

 serial numbers for three "user" keys used in the Diffie-Hellman

 calculation, packaged in a structure of the following form:

 struct keyctl_dh_params {

 int32_t private; /* The local private key */

 int32_t prime; /* The prime, known to both parties */

 int32_t base; /* The base integer: either a shared

 generator or the remote public key */

 };

 Each of the three keys specified in this structure must grant

 the caller read permission. The payloads of these keys are used

 to calculate the Diffie-Hellman result as:

 base ^ private mod prime

 If the base is the shared generator, the result is the local

 public key. If the base is the remote public key, the result is

 the shared secret.

 The arg3 argument (cast to char *) points to a buffer where the

 result of the calculation is placed. The size of that buffer is

 specified in arg4 (cast to size_t).

 The buffer must be large enough to accommodate the output data,

 otherwise an error is returned. If arg4 is specified zero, in Page 19/33

 which case the buffer is not used and the operation returns the

 minimum required buffer size (i.e., the length of the prime).

 Diffie-Hellman computations can be performed in user space, but

 require a multiple-precision integer (MPI) library. Moving the

 implementation into the kernel gives access to the kernel MPI

 implementation, and allows access to secure or acceleration

 hardware.

 Adding support for DH computation to the keyctl() system call

 was considered a good fit due to the DH algorithm's use for de?

 riving shared keys; it also allows the type of the key to deter?

 mine which DH implementation (software or hardware) is appropri?

 ate.

 If the arg5 argument is NULL, then the DH result itself is re?

 turned. Otherwise (since Linux 4.12), it is a pointer to a

 structure which specifies parameters of the KDF operation to be

 applied:

 struct keyctl_kdf_params {

 char *hashname; /* Hash algorithm name */

 char *otherinfo; /* SP800-56A OtherInfo */

 __u32 otherinfolen; /* Length of otherinfo data */

 __u32 __spare[8]; /* Reserved */

 };

 The hashname field is a null-terminated string which specifies a

 hash name (available in the kernel's crypto API; the list of the

 hashes available is rather tricky to observe; please refer to

 the "Kernel Crypto API Architecture" ?https://www.kernel.org/doc

 /html/latest/crypto/architecture.html? documentation for the in?

 formation regarding how hash names are constructed and your ker?

 nel's source and configuration regarding what ciphers and tem?

 plates with type CRYPTO_ALG_TYPE_SHASH are available) to be ap?

 plied to DH result in KDF operation.

 The otherinfo field is an OtherInfo data as described in

 SP800-56A section 5.8.1.2 and is algorithm-specific. This data Page 20/33

 is concatenated with the result of DH operation and is provided

 as an input to the KDF operation. Its size is provided in the

 otherinfolen field and is limited by KEYCTL_KDF_MAX_OI_LEN con?

 stant that defined in security/keys/internal.h to a value of 64.

 The __spare field is currently unused. It was ignored until

 Linux 4.13 (but still should be user-addressable since it is

 copied to the kernel), and should contain zeros since Linux

 4.13.

 The KDF implementation complies with SP800-56A as well as with

 SP800-108 (the counter KDF).

 This operation is exposed by libkeyutils (from version 1.5.10

 onwards) via the functions keyctl_dh_compute(3) and

 keyctl_dh_compute_alloc(3).

 KEYCTL_RESTRICT_KEYRING (since Linux 4.12)

 Apply a key-linking restriction to the keyring with the ID pro?

 vided in arg2 (cast to key_serial_t). The caller must have se?

 tattr permission on the key. If arg3 is NULL, any attempt to

 add a key to the keyring is blocked; otherwise it contains a

 pointer to a string with a key type name and arg4 contains a

 pointer to string that describes the type-specific restriction.

 As of Linux 4.12, only the type "asymmetric" has restrictions

 defined:

 builtin_trusted

 Allows only keys that are signed by a key linked to the

 built-in keyring (".builtin_trusted_keys").

 builtin_and_secondary_trusted

 Allows only keys that are signed by a key linked to the

 secondary keyring (".secondary_trusted_keys") or, by ex?

 tension, a key in a built-in keyring, as the latter is

 linked to the former.

 key_or_keyring:key

 key_or_keyring:key:chain

 If key specifies the ID of a key of type "asymmetric", Page 21/33

 then only keys that are signed by this key are allowed.

 If key specifies the ID of a keyring, then only keys that

 are signed by a key linked to this keyring are allowed.

 If ":chain" is specified, keys that are signed by a keys

 linked to the destination keyring (that is, the keyring

 with the ID specified in the arg2 argument) are also al?

 lowed.

 Note that a restriction can be configured only once for the

 specified keyring; once a restriction is set, it can't be over?

 ridden.

 The argument arg5 is ignored.

RETURN VALUE

 For a successful call, the return value depends on the operation:

 KEYCTL_GET_KEYRING_ID

 The ID of the requested keyring.

 KEYCTL_JOIN_SESSION_KEYRING

 The ID of the joined session keyring.

 KEYCTL_DESCRIBE

 The size of the description (including the terminating null

 byte), irrespective of the provided buffer size.

 KEYCTL_SEARCH

 The ID of the key that was found.

 KEYCTL_READ

 The amount of data that is available in the key, irrespective of

 the provided buffer size.

 KEYCTL_SET_REQKEY_KEYRING

 The ID of the previous default keyring to which implicitly re?

 quested keys were linked (one of KEY_REQKEY_DEFL_USER_*).

 KEYCTL_ASSUME_AUTHORITY

 Either 0, if the ID given was 0, or the ID of the authorization

 key matching the specified key, if a nonzero key ID was pro?

 vided.

 KEYCTL_GET_SECURITY Page 22/33

 The size of the LSM security label string (including the termi?

 nating null byte), irrespective of the provided buffer size.

 KEYCTL_GET_PERSISTENT

 The ID of the persistent keyring.

 KEYCTL_DH_COMPUTE

 The number of bytes copied to the buffer, or, if arg4 is 0, the

 required buffer size.

 All other operations

 Zero.

 On error, -1 is returned, and errno is set appropriately to indicate

 the error.

ERRORS

 EACCES The requested operation wasn't permitted.

 EAGAIN operation was KEYCTL_DH_COMPUTE and there was an error during

 crypto module initialization.

 EDEADLK

 operation was KEYCTL_LINK and the requested link would result in

 a cycle.

 EDEADLK

 operation was KEYCTL_RESTRICT_KEYRING and the requested keyring

 restriction would result in a cycle.

 EDQUOT The key quota for the caller's user would be exceeded by creat?

 ing a key or linking it to the keyring.

 EEXIST operation was KEYCTL_RESTRICT_KEYRING and keyring provided in

 arg2 argument already has a restriction set.

 EFAULT operation was KEYCTL_DH_COMPUTE and one of the following has

 failed:

 ? copying of the struct keyctl_dh_params, provided in the arg2

 argument, from user space;

 ? copying of the struct keyctl_kdf_params, provided in the non-

 NULL arg5 argument, from user space (in case kernel supports

 performing KDF operation on DH operation result);

 ? copying of data pointed by the hashname field of the struct Page 23/33

 keyctl_kdf_params from user space;

 ? copying of data pointed by the otherinfo field of the struct

 keyctl_kdf_params from user space if the otherinfolen field

 was nonzero;

 ? copying of the result to user space.

 EINVAL operation was KEYCTL_SETPERM and an invalid permission bit was

 specified in arg3.

 EINVAL operation was KEYCTL_SEARCH and the size of the description in

 arg4 (including the terminating null byte) exceeded 4096 bytes.

 size of the string (including the terminating null byte) speci?

 fied in arg3 (the key type) or arg4 (the key description) ex?

 ceeded the limit (32 bytes and 4096 bytes respectively).

 EINVAL (Linux kernels before 4.12)

 operation was KEYCTL_DH_COMPUTE, argument arg5 was non-NULL.

 EINVAL operation was KEYCTL_DH_COMPUTE And the digest size of the hash?

 ing algorithm supplied is zero.

 EINVAL operation was KEYCTL_DH_COMPUTE and the buffer size provided is

 not enough to hold the result. Provide 0 as a buffer size in

 order to obtain the minimum buffer size.

 EINVAL operation was KEYCTL_DH_COMPUTE and the hash name provided in

 the hashname field of the struct keyctl_kdf_params pointed by

 arg5 argument is too big (the limit is implementation-specific

 and varies between kernel versions, but it is deemed big enough

 for all valid algorithm names).

 EINVAL operation was KEYCTL_DH_COMPUTE and the __spare field of the

 struct keyctl_kdf_params provided in the arg5 argument contains

 nonzero values.

 EKEYEXPIRED

 An expired key was found or specified.

 EKEYREJECTED

 A rejected key was found or specified.

 EKEYREVOKED

 A revoked key was found or specified. Page 24/33

 ELOOP operation was KEYCTL_LINK and the requested link would cause the

 maximum nesting depth for keyrings to be exceeded.

 EMSGSIZE

 operation was KEYCTL_DH_COMPUTE and the buffer length exceeds

 KEYCTL_KDF_MAX_OUTPUT_LEN (which is 1024 currently) or the oth?

 erinfolen field of the struct keyctl_kdf_parms passed in arg5

 exceeds KEYCTL_KDF_MAX_OI_LEN (which is 64 currently).

 ENFILE (Linux kernels before 3.13)

 operation was KEYCTL_LINK and the keyring is full. (Before

 Linux 3.13, the available space for storing keyring links was

 limited to a single page of memory; since Linux 3.13, there is

 no fixed limit.)

 ENOENT operation was KEYCTL_UNLINK and the key to be unlinked isn't

 linked to the keyring.

 ENOENT operation was KEYCTL_DH_COMPUTE and the hashing algorithm speci?

 fied in the hashname field of the struct keyctl_kdf_params

 pointed by arg5 argument hasn't been found.

 ENOENT operation was KEYCTL_RESTRICT_KEYRING and the type provided in

 arg3 argument doesn't support setting key linking restrictions.

 ENOKEY No matching key was found or an invalid key was specified.

 ENOKEY The value KEYCTL_GET_KEYRING_ID was specified in operation, the

 key specified in arg2 did not exist, and arg3 was zero (meaning

 don't create the key if it didn't exist).

 ENOMEM One of kernel memory allocation routines failed during the exe?

 cution of the syscall.

 ENOTDIR

 A key of keyring type was expected but the ID of a key with a

 different type was provided.

 EOPNOTSUPP

 operation was KEYCTL_READ and the key type does not support

 reading (e.g., the type is "login").

 EOPNOTSUPP

 operation was KEYCTL_UPDATE and the key type does not support Page 25/33

 updating.

 EOPNOTSUPP

 operation was KEYCTL_RESTRICT_KEYRING, the type provided in arg3

 argument was "asymmetric", and the key specified in the restric?

 tion specification provided in arg4 has type other than "asym?

 metric" or "keyring".

 EPERM operation was KEYCTL_GET_PERSISTENT, arg2 specified a UID other

 than the calling thread's real or effective UID, and the caller

 did not have the CAP_SETUID capability.

 EPERM operation was KEYCTL_SESSION_TO_PARENT and either: all of the

 UIDs (GIDs) of the parent process do not match the effective UID

 (GID) of the calling process; the UID of the parent's existing

 session keyring or the UID of the caller's session keyring did

 not match the effective UID of the caller; the parent process is

 not single-thread; or the parent process is init(1) or a kernel

 thread.

 ETIMEDOUT

 operation was KEYCTL_DH_COMPUTE and the initialization of crypto

 modules has timed out.

VERSIONS

 This system call first appeared in Linux 2.6.10.

CONFORMING TO

 This system call is a nonstandard Linux extension.

NOTES

 No wrapper for this system call is provided in glibc. A wrapper is

 provided in the libkeyutils library. When employing the wrapper in

 that library, link with -lkeyutils. However, rather than using this

 system call directly, you probably want to use the various library

 functions mentioned in the descriptions of individual operations above.

EXAMPLES

 The program below provide subset of the functionality of the re?

 quest-key(8) program provided by the keyutils package. For informa?

 tional purposes, the program records various information in a log file. Page 26/33

 As described in request_key(2), the request-key(8) program is invoked

 with command-line arguments that describe a key that is to be instanti?

 ated. The example program fetches and logs these arguments. The pro?

 gram assumes authority to instantiate the requested key, and then in?

 stantiates that key.

 The following shell session demonstrates the use of this program. In

 the session, we compile the program and then use it to temporarily re?

 place the standard request-key(8) program. (Note that temporarily dis?

 abling the standard request-key(8) program may not be safe on some sys?

 tems.) While our example program is installed, we use the example pro?

 gram shown in request_key(2) to request a key.

 $ cc -o key_instantiate key_instantiate.c -lkeyutils

 $ sudo mv /sbin/request-key /sbin/request-key.backup

 $ sudo cp key_instantiate /sbin/request-key

 $./t_request_key user mykey somepayloaddata

 Key ID is 20d035bf

 $ sudo mv /sbin/request-key.backup /sbin/request-key

 Looking at the log file created by this program, we can see the com?

 mand-line arguments supplied to our example program:

 $ cat /tmp/key_instantiate.log

 Time: Mon Nov 7 13:06:47 2016

 Command line arguments:

 argv[0]: /sbin/request-key

 operation: create

 key_to_instantiate: 20d035bf

 UID: 1000

 GID: 1000

 thread_keyring: 0

 process_keyring: 0

 session_keyring: 256e6a6

 Key description: user;1000;1000;3f010000;mykey

 Auth key payload: somepayloaddata

 Destination keyring: 256e6a6 Page 27/33

 Auth key description: .request_key_auth;1000;1000;0b010000;20d035bf

 The last few lines of the above output show that the example program

 was able to fetch:

 * the description of the key to be instantiated, which included the

 name of the key (mykey);

 * the payload of the authorization key, which consisted of the data

 (somepayloaddata) passed to request_key(2);

 * the destination keyring that was specified in the call to re?

 quest_key(2); and

 * the description of the authorization key, where we can see that the

 name of the authorization key matches the ID of the key that is to

 be instantiated (20d035bf).

 The example program in request_key(2) specified the destination keyring

 as KEY_SPEC_SESSION_KEYRING. By examining the contents of /proc/keys,

 we can see that this was translated to the ID of the destination

 keyring (0256e6a6) shown in the log output above; we can also see the

 newly created key with the name mykey and ID 20d035bf.

 $ cat /proc/keys | egrep 'mykey|256e6a6'

 0256e6a6 I--Q--- 194 perm 3f030000 1000 1000 keyring _ses: 3

 20d035bf I--Q--- 1 perm 3f010000 1000 1000 user mykey: 16

 Program source

 /* key_instantiate.c */

 #include <sys/types.h>

 #include <keyutils.h>

 #include <time.h>

 #include <fcntl.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <string.h>

 #include <errno.h>

 #ifndef KEY_SPEC_REQUESTOR_KEYRING Page 28/33

 #define KEY_SPEC_REQUESTOR_KEYRING -8

 #endif

 int

 main(int argc, char *argv[])

 {

 FILE *fp;

 time_t t;

 char *operation;

 key_serial_t key_to_instantiate, dest_keyring;

 key_serial_t thread_keyring, process_keyring, session_keyring;

 uid_t uid;

 gid_t gid;

 char dbuf[256];

 char auth_key_payload[256];

 int akp_size; /* Size of auth_key_payload */

 int auth_key;

 fp = fopen("/tmp/key_instantiate.log", "w");

 if (fp == NULL)

 exit(EXIT_FAILURE);

 setbuf(fp, NULL);

 t = time(NULL);

 fprintf(fp, "Time: %s\n", ctime(&t));

 /*

 * The kernel passes a fixed set of arguments to the program

 * that it execs; fetch them.

 */

 operation = argv[1];

 key_to_instantiate = atoi(argv[2]);

 uid = atoi(argv[3]);

 gid = atoi(argv[4]);

 thread_keyring = atoi(argv[5]);

 process_keyring = atoi(argv[6]);

 session_keyring = atoi(argv[7]); Page 29/33

 fprintf(fp, "Command line arguments:\n");

 fprintf(fp, " argv[0]: %s\n", argv[0]);

 fprintf(fp, " operation: %s\n", operation);

 fprintf(fp, " key_to_instantiate: %jx\n",

 (uintmax_t) key_to_instantiate);

 fprintf(fp, " UID: %jd\n", (intmax_t) uid);

 fprintf(fp, " GID: %jd\n", (intmax_t) gid);

 fprintf(fp, " thread_keyring: %jx\n",

 (uintmax_t) thread_keyring);

 fprintf(fp, " process_keyring: %jx\n",

 (uintmax_t) process_keyring);

 fprintf(fp, " session_keyring: %jx\n",

 (uintmax_t) session_keyring);

 fprintf(fp, "\n");

 /*

 * Assume the authority to instantiate the key named in argv[2]

 */

 if (keyctl(KEYCTL_ASSUME_AUTHORITY, key_to_instantiate) == -1) {

 fprintf(fp, "KEYCTL_ASSUME_AUTHORITY failed: %s\n",

 strerror(errno));

 exit(EXIT_FAILURE);

 }

 /*

 * Fetch the description of the key that is to be instantiated

 */

 if (keyctl(KEYCTL_DESCRIBE, key_to_instantiate,

 dbuf, sizeof(dbuf)) == -1) {

 fprintf(fp, "KEYCTL_DESCRIBE failed: %s\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 fprintf(fp, "Key description: %s\n", dbuf);

 /*

 * Fetch the payload of the authorization key, which is Page 30/33

 * actually the callout data given to request_key()

 */

 akp_size = keyctl(KEYCTL_READ, KEY_SPEC_REQKEY_AUTH_KEY,

 auth_key_payload, sizeof(auth_key_payload));

 if (akp_size == -1) {

 fprintf(fp, "KEYCTL_READ failed: %s\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 auth_key_payload[akp_size] = '\0';

 fprintf(fp, "Auth key payload: %s\n", auth_key_payload);

 /*

 * For interest, get the ID of the authorization key and

 * display it.

 */

 auth_key = keyctl(KEYCTL_GET_KEYRING_ID,

 KEY_SPEC_REQKEY_AUTH_KEY);

 if (auth_key == -1) {

 fprintf(fp, "KEYCTL_GET_KEYRING_ID failed: %s\n",

 strerror(errno));

 exit(EXIT_FAILURE);

 }

 fprintf(fp, "Auth key ID: %jx\n", (uintmax_t) auth_key);

 /*

 * Fetch key ID for the request_key(2) destination keyring.

 */

 dest_keyring = keyctl(KEYCTL_GET_KEYRING_ID,

 KEY_SPEC_REQUESTOR_KEYRING);

 if (dest_keyring == -1) {

 fprintf(fp, "KEYCTL_GET_KEYRING_ID failed: %s\n",

 strerror(errno));

 exit(EXIT_FAILURE);

 }

 fprintf(fp, "Destination keyring: %jx\n", (uintmax_t) dest_keyring); Page 31/33

 /*

 * Fetch the description of the authorization key. This

 * allows us to see the key type, UID, GID, permissions,

 * and description (name) of the key. Among other things,

 * we will see that the name of the key is a hexadecimal

 * string representing the ID of the key to be instantiated.

 */

 if (keyctl(KEYCTL_DESCRIBE, KEY_SPEC_REQKEY_AUTH_KEY,

 dbuf, sizeof(dbuf)) == -1) {

 fprintf(fp, "KEYCTL_DESCRIBE failed: %s\n", strerror(errno));

 exit(EXIT_FAILURE);

 }

 fprintf(fp, "Auth key description: %s\n", dbuf);

 /*

 * Instantiate the key using the callout data that was supplied

 * in the payload of the authorization key.

 */

 if (keyctl(KEYCTL_INSTANTIATE, key_to_instantiate,

 auth_key_payload, akp_size + 1, dest_keyring) == -1) {

 fprintf(fp, "KEYCTL_INSTANTIATE failed: %s\n",

 strerror(errno));

 exit(EXIT_FAILURE);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 keyctl(1), add_key(2), request_key(2), keyctl(3),

 keyctl_assume_authority(3), keyctl_chown(3), keyctl_clear(3),

 keyctl_describe(3), keyctl_describe_alloc(3), keyctl_dh_compute(3),

 keyctl_dh_compute_alloc(3), keyctl_get_keyring_ID(3),

 keyctl_get_persistent(3), keyctl_get_security(3),

 keyctl_get_security_alloc(3), keyctl_instantiate(3),

 keyctl_instantiate_iov(3), keyctl_invalidate(3), Page 32/33

 keyctl_join_session_keyring(3), keyctl_link(3), keyctl_negate(3),

 keyctl_read(3), keyctl_read_alloc(3), keyctl_reject(3),

 keyctl_revoke(3), keyctl_search(3), keyctl_session_to_parent(3),

 keyctl_set_reqkey_keyring(3), keyctl_set_timeout(3), keyctl_setperm(3),

 keyctl_unlink(3), keyctl_update(3), recursive_key_scan(3),

 recursive_session_key_scan(3), capabilities(7), credentials(7),

 keyrings(7), keyutils(7), persistent-keyring(7), process-keyring(7),

 session-keyring(7), thread-keyring(7), user-keyring(7),

 user_namespaces(7), user-session-keyring(7), request-key(8)

 The kernel source files under Documentation/security/keys/ (or, before

 Linux 4.13, in the file Documentation/security/keys.txt).

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 KEYCTL(2)

Page 33/33

