
Rocky Enterprise Linux 9.2 Manual Pages on command 'javac-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1'

$ man javac-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

javac(1) Basic Tools javac(1)

NAME

 javac - Reads Java class and interface definitions and compiles them

 into bytecode and class files.

SYNOPSIS

 javac [options] [sourcefiles] [classes] [@argfiles]

 Arguments can be in any order:

 options

 Command-line options. See Options.

 sourcefiles

 One or more source files to be compiled (such as MyClass.java).

 classes

 One or more classes to be processed for annotations (such as

 MyPackage.MyClass).

 @argfiles

 One or more files that list options and source files. The -J

 options are not allowed in these files. See Command-Line

 Argument Files. Page 1/27

DESCRIPTION

 The javac command reads class and interface definitions, written in the

 Java programming language, and compiles them into bytecode class files.

 The javac command can also process annotations in Java source files and

 classes.

 There are two ways to pass source code file names to javac.

 ? For a small number of source files, list the file names on the

 command line.

 ? For a large number of source files, list the file names in a file

 that is separated by blanks or line breaks. Use the list file name

 preceded by an at sign (@) with the javac command.

 Source code file names must have .java suffixes, class file names must

 have .class suffixes, and both source and class files must have root

 names that identify the class. For example, a class called MyClass

 would be written in a source file called MyClass.java and compiled into

 a bytecode class file called MyClass.class.

 Inner class definitions produce additional class files. These class

 files have names that combine the inner and outer class names, such as

 MyClass$MyInnerClass.class.

 Arrange source files in a directory tree that reflects their package

 tree. For example, if all of your source files are in /workspace, then

 put the source code for com.mysoft.mypack.MyClass in

 /workspace/com/mysoft/mypack/MyClass.java.

 By default, the compiler puts each class file in the same directory as

 its source file. You can specify a separate destination directory with

 the -d option.

OPTIONS

 The compiler has a set of standard options that are supported on the

 current development environment. An additional set of nonstandard

 options are specific to the current virtual machine and compiler

 implementations and are subject to change in the future. Nonstandard

 options begin with the -X option.

 ? See also Cross-Compilation Options Page 2/27

 ? See also Nonstandard Options

 STANDARD OPTIONS

 -Akey[=value]

 Specifies options to pass to annotation processors. These

 options are not interpreted by javac directly, but are made

 available for use by individual processors. The key value should

 be one or more identifiers separated by a dot (.).

 -cp path or -classpath path

 Specifies where to find user class files, and (optionally)

 annotation processors and source files. This class path

 overrides the user class path in the CLASSPATH environment

 variable. If neither CLASSPATH, -cp nor -classpath is specified,

 then the user class path is the current directory. See Setting

 the Class Path.

 If the -sourcepath option is not specified, then the user class

 path is also searched for source files.

 If the -processorpath option is not specified, then the class

 path is also searched for annotation processors.

 -Djava.ext.dirs=directories

 Overrides the location of installed extensions.

 -Djava.endorsed.dirs=directories

 Overrides the location of the endorsed standards path.

 -d directory

 Sets the destination directory for class files. The directory

 must already exist because javac does not create it. If a class

 is part of a package, then javac puts the class file in a

 subdirectory that reflects the package name and creates

 directories as needed.

 If you specify -d/home/myclasses and the class is called

 com.mypackage.MyClass, then the class file is

 /home/myclasses/com/mypackage/MyClass.class.

 If the -d option is not specified, then javac puts each class

 file in the same directory as the source file from which it was Page 3/27

 generated.

 Note: The directory specified by the -d option is not

 automatically added to your user class path.

 -deprecation

 Shows a description of each use or override of a deprecated

 member or class. Without the -deprecation option, javac shows a

 summary of the source files that use or override deprecated

 members or classes. The -deprecation option is shorthand for

 -Xlint:deprecation.

 -encoding encoding

 Sets the source file encoding name, such as EUC-JP and UTF-8. If

 the -encoding option is not specified, then the platform default

 converter is used.

 -endorseddirs directories

 Overrides the location of the endorsed standards path.

 -extdirs directories

 Overrides the location of the ext directory. The directories

 variable is a colon-separated list of directories. Each JAR file

 in the specified directories is searched for class files. All

 JAR files found become part of the class path.

 If you are cross-compiling (compiling classes against bootstrap

 and extension classes of a different Java platform

 implementation), then this option specifies the directories that

 contain the extension classes. See Cross-Compilation Options for

 more information.

 -g

 Generates all debugging information, including local variables.

 By default, only line number and source file information is

 generated.

 -g:none

 Does not generate any debugging information.

 -g:[keyword list]

 Generates only some kinds of debugging information, specified by Page 4/27

 a comma separated list of keywords. Valid keywords are:

 source Source file debugging information.

 lines Line number debugging information.

 vars Local variable debugging information.

 -help

 Prints a synopsis of standard options.

 -implicit:[class, none]

 Controls the generation of class files for implicitly loaded

 source files. To automatically generate class files, use

 -implicit:class. To suppress class file generation, use

 -implicit:none. If this option is not specified, then the

 default is to automatically generate class files. In this case,

 the compiler issues a warning if any such class files are

 generated when also doing annotation processing. The warning is

 not issued when the -implicit option is set explicitly. See

 Searching for Types.

 -Joption

 Passes option to the Java Virtual Machine (JVM), where option is

 one of the options described on the reference page for the Java

 launcher. For example, -J-Xms48m sets the startup memory to 48

 MB. See java(1).

 Note: The CLASSPATH, -classpath, -bootclasspath, and -extdirs

 options do not specify the classes used to run javac. Trying to

 customize the compiler implementation with these options and

 variables is risky and often does not accomplish what you want.

 If you must customize the complier implementation, then use the

 -J option to pass options through to the underlying Java

 launcher.

 -nowarn

 Disables warning messages. This option operates the same as the

 -Xlint:none option.

 -parameters

 Stores formal parameter names of constructors and methods in the Page 5/27

 generated class file so that the method

 java.lang.reflect.Executable.getParameters from the Reflection

 API can retrieve them.

 -proc: [none, only]

 Controls whether annotation processing and compilation are done.

 -proc:none means that compilation takes place without annotation

 processing. -proc:only means that only annotation processing is

 done, without any subsequent compilation.

 -processor class1 [,class2,class3...]

 Names of the annotation processors to run. This bypasses the

 default discovery process.

 -processorpath path

 Specifies where to find annotation processors. If this option is

 not used, then the class path is searched for processors.

 -s dir

 Specifies the directory where to place the generated source

 files. The directory must already exist because javac does not

 create it. If a class is part of a package, then the compiler

 puts the source file in a subdirectory that reflects the package

 name and creates directories as needed.

 If you specify -s /home/mysrc and the class is called

 com.mypackage.MyClass, then the source file is put in

 /home/mysrc/com/mypackage/MyClass.java.

 -source release

 Specifies the version of source code accepted. The following

 values for release are allowed:

 1.3 The compiler does not support assertions, generics, or

 other language features introduced after Java SE 1.3.

 1.4 The compiler accepts code containing assertions, which

 were introduced in Java SE 1.4.

 1.5 The compiler accepts code containing generics and other

 language features introduced in Java SE 5.

 5 Synonym for 1.5. Page 6/27

 1.6 No language changes were introduced in Java SE 6.

 However, encoding errors in source files are now reported

 as errors instead of warnings as in earlier releases of

 Java Platform, Standard Edition.

 6 Synonym for 1.6.

 1.7 The compiler accepts code with features introduced in

 Java SE 7.

 7 Synonym for 1.7.

 1.8 This is the default value. The compiler accepts code with

 features introduced in Java SE 8.

 8 Synonym for 1.8.

 -sourcepath sourcepath

 Specifies the source code path to search for class or interface

 definitions. As with the user class path, source path entries

 are separated by colons (:) on Oracle Solaris and semicolons on

 Windows and can be directories, JAR archives, or ZIP archives.

 If packages are used, then the local path name within the

 directory or archive must reflect the package name.

 Note: Classes found through the class path might be recompiled

 when their source files are also found. See Searching for Types.

 -verbose

 Uses verbose output, which includes information about each class

 loaded and each source file compiled.

 -version

 Prints release information.

 -werror

 Terminates compilation when warnings occur.

 -X

 Displays information about nonstandard options and exits.

 CROSS-COMPILATION OPTIONS

 By default, classes are compiled against the bootstrap and extension

 classes of the platform that javac shipped with. But javac also

 supports cross-compiling, where classes are compiled against a Page 7/27

 bootstrap and extension classes of a different Java platform

 implementation. It is important to use the -bootclasspath and -extdirs

 options when cross-compiling.

 -target version

 Generates class files that target a specified release of the

 virtual machine. Class files will run on the specified target

 and on later releases, but not on earlier releases of the JVM.

 Valid targets are 1.1, 1.2, 1.3, 1.4, 1.5 (also 5), 1.6 (also

 6), 1.7 (also 7), and 1.8 (also 8).

 The default for the -target option depends on the value of the

 -source option:

 ? If the -source option is not specified, then the value of the

 -target option is 1.8

 ? If the -source option is 1.2, then the value of the -target

 option is 1.4

 ? If the -source option is 1.3, then the value of the -target

 option is 1.4

 ? If the -source option is 1.5, then the value of the -target

 option is 1.8

 ? If the -source option is 1.6, then the value of the -target is

 option 1.8

 ? If the -source option is 1.7, then the value of the -target is

 option 1.8

 ? For all other values of the -source option, the value of the

 -target option is the value of the -source option.

 -bootclasspath bootclasspath

 Cross-compiles against the specified set of boot classes. As

 with the user class path, boot class path entries are separated

 by colons (:) and can be directories, JAR archives, or ZIP

 archives.

 COMPACT PROFILE OPTION

 Beginning with JDK 8, the javac compiler supports compact profiles.

 With compact profiles, applications that do not require the entire Java Page 8/27

 platform can be deployed and run with a smaller footprint. The compact

 profiles feature could be used to shorten the download time for

 applications from app stores. This feature makes for more compact

 deployment of Java applications that bundle the JRE. This feature is

 also useful in small devices.

 The supported profile values are compact1, compact2, and compact3.

 These are additive layers. Each higher-numbered compact profile

 contains all of the APIs in profiles with smaller number names.

 -profile

 When using compact profiles, this option specifies the profile

 name when compiling. For example:

 javac -profile compact1 Hello.java

 javac does not compile source code that uses any Java SE APIs

 that is not in the specified profile. Here is an example of the

 error message that results from attempting to compile such

 source code:

 cd jdk1.8.0/bin

 ./javac -profile compact1 Paint.java

 Paint.java:5: error: Applet is not available in profile 'compact1'

 import java.applet.Applet;

 In this example, you can correct the error by modifying the

 source to not use the Applet class. You could also correct the

 error by compiling without the -profile option. Then the

 compilation would be run against the full set of Java SE APIs.

 (None of the compact profiles include the Applet class.)

 An alternative way to compile with compact profiles is to use

 the -bootclasspath option to specify a path to an rt.jar file

 that specifies a profile's image. Using the -profile option

 instead does not require a profile image to be present on the

 system at compile time. This is useful when cross-compiling.

 NONSTANDARD OPTIONS

 -Xbootclasspath/p:path

 Adds a suffix to the bootstrap class path. Page 9/27

 -Xbootclasspath/a:path

 Adds a prefix to the bootstrap class path.

 -Xbootclasspath/:path

 Overrides the location of the bootstrap class files.

 -Xdoclint:[-]group [/access]

 Enables or disables specific groups of checks, where group is

 one of the following values: accessibility, syntax, reference,

 html or missing. For more information about these groups of

 checks see the -Xdoclint option of the javadoc command. The

 -Xdoclint option is disabled by default in the javac command.

 The variable access specifies the minimum visibility level of

 classes and members that the -Xdoclint option checks. It can

 have one of the following values (in order of most to least

 visible) : public, protected, package and private. For example,

 the following option checks classes and members (with all groups

 of checks) that have the access level protected and higher

 (which includes protected, package and public):

 -Xdoclint:all/protected

 The following option enables all groups of checks for all access

 levels, except it will not check for HTML errors for classes and

 members that have access level package and higher (which

 includes package and public):

 -Xdoclint:all,-html/package

 -Xdoclint:none

 Disables all groups of checks.

 -Xdoclint:all[/access]

 Enables all groups of checks.

 -Xlint

 Enables all recommended warnings. In this release, enabling all

 available warnings is recommended.

 -Xlint:all

 Enables all recommended warnings. In this release, enabling all

 available warnings is recommended. Page 10/27

 -Xlint:none

 Disables all warnings.

 -Xlint:name

 Disables warning name. See Enable or Disable Warnings with the

 -Xlint Option for a list of warnings you can disable with this

 option.

 -Xlint:-name

 Disables warning name. See Enable or Disable Warnings with the

 -Xlint Option with the -Xlint option to get a list of warnings

 that you can disable with this option.

 -Xmaxerrs number

 Sets the maximum number of errors to print.

 -Xmaxwarns number

 Sets the maximum number of warnings to print.

 -Xstdout filename

 Sends compiler messages to the named file. By default, compiler

 messages go to System.err.

 -Xprefer:[newer,source]

 Specifies which file to read when both a source file and class

 file are found for a type. (See Searching for Types). If the

 -Xprefer:newer option is used, then it reads the newer of the

 source or class file for a type (default). If the

 -Xprefer:source option is used, then it reads the source file.

 Use -Xprefer:source when you want to be sure that any annotation

 processors can access annotations declared with a retention

 policy of SOURCE.

 -Xpkginfo:[always,legacy,nonempty]

 Control whether javac generates package-info.class files from

 package-info.java files. Possible mode arguments for this option

 include the following.

 always Always generate a package-info.class file for every

 package-info.java file. This option may be useful if you

 use a build system such as Ant, which checks that each Page 11/27

 .java file has a corresponding .class file.

 legacy Generate a package-info.class file only if package-

 info.java contains annotations. Don't generate a package-

 info.class file if package-info.java only contains

 comments.

 Note: A package-info.class file might be generated but be

 empty if all the annotations in the package-info.java

 file have RetentionPolicy.SOURCE.

 nonempty

 Generate a package-info.class file only if package-

 info.java contains annotations with RetentionPolicy.CLASS

 or RetentionPolicy.RUNTIME.

 -Xprint

 Prints a textual representation of specified types for debugging

 purposes. Perform neither annotation processing nor compilation.

 The format of the output could change.

 -XprintProcessorInfo

 Prints information about which annotations a processor is asked

 to process.

 -XprintRounds

 Prints information about initial and subsequent annotation

 processing rounds.

ENABLE OR DISABLE WARNINGS WITH THE -XLINT OPTION

 Enable warning name with the -Xlint:name option, where name is one of

 the following warning names. Note that you can disable a warning with

 the -Xlint:-name: option.

 cast Warns about unnecessary and redundant casts, for example:

 String s = (String) "Hello!"

 classfile

 Warns about issues related to class file contents.

 deprecation

 Warns about the use of deprecated items, for example:

 java.util.Date myDate = new java.util.Date(); Page 12/27

 int currentDay = myDate.getDay();

 The method java.util.Date.getDay has been deprecated since JDK

 1.1

 dep-ann

 Warns about items that are documented with an @deprecated

 Javadoc comment, but do not have a @Deprecated annotation, for

 example:

 /**

 * @deprecated As of Java SE 7, replaced by {@link #newMethod()}

 */

 public static void deprecatedMethood() { }

 public static void newMethod() { }

 divzero

 Warns about division by the constant integer 0, for example:

 int divideByZero = 42 / 0;

 empty Warns about empty statements after ifstatements, for example:

 class E {

 void m() {

 if (true) ;

 }

 }

 fallthrough

 Checks the switch blocks for fall-through cases and provides a

 warning message for any that are found. Fall-through cases are

 cases in a switch block, other than the last case in the block,

 whose code does not include a break statement, allowing code

 execution to fall through from that case to the next case. For

 example, the code following the case 1 label in this switch

 block does not end with a break statement:

 switch (x) {

 case 1:

 System.out.println("1");

 // No break statement here. Page 13/27

 case 2:

 System.out.println("2");

 }

 If the -Xlint:fallthrough option was used when compiling this

 code, then the compiler emits a warning about possible fall-

 through into case, with the line number of the case in question.

 finally

 Warns about finally clauses that cannot complete normally, for

 example:

 public static int m() {

 try {

 throw new NullPointerException();

 } catch (NullPointerException(); {

 System.err.println("Caught NullPointerException.");

 return 1;

 } finally {

 return 0;

 }

 }

 The compiler generates a warning for the finally block in this

 example. When the int method is called, it returns a value of 0.

 A finally block executes when the try block exits. In this

 example, when control is transferred to the catch block, the int

 method exits. However, the finally block must execute, so it is

 executed, even though control was transferred outside the

 method.

 options

 Warns about issues that related to the use of command-line

 options. See Cross-Compilation Options.

 overrides

 Warns about issues regarding method overrides. For example,

 consider the following two classes:

 public class ClassWithVarargsMethod { Page 14/27

 void varargsMethod(String... s) { }

 }

 public class ClassWithOverridingMethod extends ClassWithVarargsMethod {

 @Override

 void varargsMethod(String[] s) { }

 }

 The compiler generates a warning similar to the following:.

 warning: [override] varargsMethod(String[]) in ClassWithOverridingMethod

 overrides varargsMethod(String...) in ClassWithVarargsMethod; overriding

 method is missing '...'

 When the compiler encounters a varargs method, it translates the

 varargs formal parameter into an array. In the method

 ClassWithVarargsMethod.varargsMethod, the compiler translates

 the varargs formal parameter String... s to the formal parameter

 String[] s, an array, which matches the formal parameter of the

 method ClassWithOverridingMethod.varargsMethod. Consequently,

 this example compiles.

 path Warns about invalid path elements and nonexistent path

 directories on the command line (with regard to the class path,

 the source path, and other paths). Such warnings cannot be

 suppressed with the @SuppressWarnings annotation, for example:

 javac -Xlint:path -classpath /nonexistentpath Example.java

 processing

 Warn about issues regarding annotation processing. The compiler

 generates this warning when you have a class that has an

 annotation, and you use an annotation processor that cannot

 handle that type of exception. For example, the following is a

 simple annotation processor:

 Source file AnnocProc.java:

 import java.util.*;

 import javax.annotation.processing.*;

 import javax.lang.model.*;

 import.javaz.lang.model.element.*; Page 15/27

 @SupportedAnnotationTypes("NotAnno")

 public class AnnoProc extends AbstractProcessor {

 public boolean process(Set<? extends TypeElement> elems, RoundEnvironment renv){

 return true;

 }

 public SourceVersion getSupportedSourceVersion() {

 return SourceVersion.latest();

 }

 }

 Source file AnnosWithoutProcessors.java:

 @interface Anno { }

 @Anno

 class AnnosWithoutProcessors { }

 The following commands compile the annotation processor

 AnnoProc, then run this annotation processor against the source

 file AnnosWithoutProcessors.java:

 javac AnnoProc.java

 javac -cp . -Xlint:processing -processor AnnoProc -proc:only AnnosWithoutProcessors.java

 When the compiler runs the annotation processor against the

 source file AnnosWithoutProcessors.java, it generates the

 following warning:

 warning: [processing] No processor claimed any of these annotations: Anno

 To resolve this issue, you can rename the annotation defined and

 used in the class AnnosWithoutProcessors from Anno to NotAnno.

 rawtypes

 Warns about unchecked operations on raw types. The following

 statement generates a rawtypes warning:

 void countElements(List l) { ... }

 The following example does not generate a rawtypes warning

 void countElements(List<?> l) { ... }

 List is a raw type. However, List<?> is an unbounded wildcard

 parameterized type. Because List is a parameterized interface,

 always specify its type argument. In this example, the List Page 16/27

 formal argument is specified with an unbounded wildcard (?) as

 its formal type parameter, which means that the countElements

 method can accept any instantiation of the List interface.

 Serial Warns about missing serialVersionUID definitions on serializable

 classes, for example:

 public class PersistentTime implements Serializable

 {

 private Date time;

 public PersistentTime() {

 time = Calendar.getInstance().getTime();

 }

 public Date getTime() {

 return time;

 }

 }

 The compiler generates the following warning:

 warning: [serial] serializable class PersistentTime has no definition of

 serialVersionUID

 If a serializable class does not explicitly declare a field

 named serialVersionUID, then the serialization runtime

 environment calculates a default serialVersionUID value for that

 class based on various aspects of the class, as described in the

 Java Object Serialization Specification. However, it is strongly

 recommended that all serializable classes explicitly declare

 serialVersionUID values because the default process of computing

 serialVersionUID vales is highly sensitive to class details that

 can vary depending on compiler implementations, and as a result,

 might cause an unexpected InvalidClassExceptions during

 deserialization. To guarantee a consistent serialVersionUID

 value across different Java compiler implementations, a

 serializable class must declare an explicit serialVersionUID

 value.

 static Warns about issues relating to the use of statics, for example: Page 17/27

 class XLintStatic {

 static void m1() { }

 void m2() { this.m1(); }

 }

 The compiler generates the following warning:

 warning: [static] static method should be qualified by type name,

 XLintStatic, instead of by an expression

 To resolve this issue, you can call the static method m1 as

 follows:

 XLintStatic.m1();

 Alternately, you can remove the static keyword from the

 declaration of the method m1.

 try Warns about issues relating to use of try blocks, including try-

 with-resources statements. For example, a warning is generated

 for the following statement because the resource ac declared in

 the try block is not used:

 try (AutoCloseable ac = getResource()) { // do nothing}

 unchecked

 Gives more detail for unchecked conversion warnings that are

 mandated by the Java Language Specification, for example:

 List l = new ArrayList<Number>();

 List<String> ls = l; // unchecked warning

 During type erasure, the types ArrayList<Number> and

 List<String> become ArrayList and List, respectively.

 The ls command has the parameterized type List<String>. When the

 List referenced by l is assigned to ls, the compiler generates

 an unchecked warning. At compile time, the compiler and JVM

 cannot determine whether l refers to a List<String> type. In

 this case, l does not refer to a List<String> type. As a result,

 heap pollution occurs.

 A heap pollution situation occurs when the List object l, whose

 static type is List<Number>, is assigned to another List object,

 ls, that has a different static type, List<String>. However, the Page 18/27

 compiler still allows this assignment. It must allow this

 assignment to preserve backward compatibility with releases of

 Java SE that do not support generics. Because of type erasure,

 List<Number> and List<String> both become List. Consequently,

 the compiler allows the assignment of the object l, which has a

 raw type of List, to the object ls.

 varargs

 Warns about unsafe usages of variable arguments (varargs)

 methods, in particular, those that contain non-reifiable

 arguments, for example:

 public class ArrayBuilder {

 public static <T> void addToList (List<T> listArg, T... elements) {

 for (T x : elements) {

 listArg.add(x);

 }

 }

 }

 Note: A non-reifiable type is a type whose type information is

 not fully available at runtime.

 The compiler generates the following warning for the definition

 of the method ArrayBuilder.addToList

 warning: [varargs] Possible heap pollution from parameterized vararg type T

 When the compiler encounters a varargs method, it translates the

 varargs formal parameter into an array. However, the Java

 programming language does not permit the creation of arrays of

 parameterized types. In the method ArrayBuilder.addToList, the

 compiler translates the varargs formal parameter T... elements

 to the formal parameter T[] elements, an array. However, because

 of type erasure, the compiler converts the varargs formal

 parameter to Object[] elements. Consequently, there is a

 possibility of heap pollution.

COMMAND-LINE ARGUMENT FILES

 To shorten or simplify the javac command, you can specify one or more Page 19/27

 files that contain arguments to the javac command (except -J options).

 This enables you to create javac commands of any length on any

 operating system.

 An argument file can include javac options and source file names in any

 combination. The arguments within a file can be separated by spaces or

 new line characters. If a file name contains embedded spaces, then put

 the whole file name in double quotation marks.

 File Names within an argument file are relative to the current

 directory, not the location of the argument file. Wild cards (*) are

 not allowed in these lists (such as for specifying *.java). Use of the

 at sign (@) to recursively interpret files is not supported. The -J

 options are not supported because they are passed to the launcher,

 which does not support argument files.

 When executing the javac command, pass in the path and name of each

 argument file with the at sign (@) leading character. When the javac

 command encounters an argument beginning with the at sign (@), it

 expands the contents of that file into the argument list.

 Example 1 Single Argument File

 You could use a single argument file named argfile to hold all javac

 arguments:

 javac @argfile

 This argument file could contain the contents of both files shown in

 Example 2

 Example 2 Two Argument Files

 You can create two argument files: one for the javac options and the

 other for the source file names. Note that the following lists have no

 line-continuation characters.

 Create a file named options that contains the following:

 -d classes

 -g

 -sourcepath /java/pubs/ws/1.3/src/share/classes

 Create a file named classes that contains the following:

 MyClass1.java Page 20/27

 MyClass2.java

 MyClass3.java

 Then, run the javac command as follows:

 javac @options @classes

 Example 3 Argument Files with Paths

 The argument files can have paths, but any file names inside the files

 are relative to the current working directory (not path1 or path2):

 javac @path1/options @path2/classes

ANNOTATION PROCESSING

 The javac command provides direct support for annotation processing,

 superseding the need for the separate annotation processing command,

 apt.

 The API for annotation processors is defined in the

 javax.annotation.processing and javax.lang.model packages and

 subpackages.

 HOW ANNOTATION PROCESSING WORKS

 Unless annotation processing is disabled with the -proc:none option,

 the compiler searches for any annotation processors that are available.

 The search path can be specified with the -processorpath option. If no

 path is specified, then the user class path is used. Processors are

 located by means of service provider-configuration files named META-

 INF/services/javax.annotation.processing.Processor on the search path.

 Such files should contain the names of any annotation processors to be

 used, listed one per line. Alternatively, processors can be specified

 explicitly, using the -processor option.

 After scanning the source files and classes on the command line to

 determine what annotations are present, the compiler queries the

 processors to determine what annotations they process. When a match is

 found, the processor is called. A processor can claim the annotations

 it processes, in which case no further attempt is made to find any

 processors for those annotations. After all of the annotations are

 claimed, the compiler does not search for additional processors.

 If any processors generate new source files, then another round of Page 21/27

 annotation processing occurs: Any newly generated source files are

 scanned, and the annotations processed as before. Any processors called

 on previous rounds are also called on all subsequent rounds. This

 continues until no new source files are generated.

 After a round occurs where no new source files are generated, the

 annotation processors are called one last time, to give them a chance

 to complete any remaining work. Finally, unless the -proc:only option

 is used, the compiler compiles the original and all generated source

 files.

 IMPLICITLY LOADED SOURCE FILES

 To compile a set of source files, the compiler might need to implicitly

 load additional source files. See Searching for Types. Such files are

 currently not subject to annotation processing. By default, the

 compiler gives a warning when annotation processing occurred and any

 implicitly loaded source files are compiled. The -implicit option

 provides a way to suppress the warning.

SEARCHING FOR TYPES

 To compile a source file, the compiler often needs information about a

 type, but the type definition is not in the source files specified on

 the command line. The compiler needs type information for every class

 or interface used, extended, or implemented in the source file. This

 includes classes and interfaces not explicitly mentioned in the source

 file, but that provide information through inheritance.

 For example, when you create a subclass java.applet.Applet, you are

 also using the ancestor classes of Applet: java.awt.Panel,

 java.awt.Container, java.awt.Component, and java.lang.Object.

 When the compiler needs type information, it searches for a source file

 or class file that defines the type. The compiler searches for class

 files first in the bootstrap and extension classes, then in the user

 class path (which by default is the current directory). The user class

 path is defined by setting the CLASSPATH environment variable or by

 using the -classpath option.

 If you set the -sourcepath option, then the compiler searches the Page 22/27

 indicated path for source files. Otherwise, the compiler searches the

 user class path for both class files and source files.

 You can specify different bootstrap or extension classes with the

 -bootclasspath and the -extdirs options. See Cross-Compilation Options.

 A successful type search may produce a class file, a source file, or

 both. If both are found, then you can use the -Xprefer option to

 instruct the compiler which to use. If newer is specified, then the

 compiler uses the newer of the two files. If source is specified, the

 compiler uses the source file. The default is newer.

 If a type search finds a source file for a required type, either by

 itself, or as a result of the setting for the -Xprefer option, then the

 compiler reads the source file to get the information it needs. By

 default the compiler also compiles the source file. You can use the

 -implicit option to specify the behavior. If none is specified, then no

 class files are generated for the source file. If class is specified,

 then class files are generated for the source file.

 The compiler might not discover the need for some type information

 until after annotation processing completes. When the type information

 is found in a source file and no -implicit option is specified, the

 compiler gives a warning that the file is being compiled without being

 subject to annotation processing. To disable the warning, either

 specify the file on the command line (so that it will be subject to

 annotation processing) or use the -implicit option to specify whether

 or not class files should be generated for such source files.

PROGRAMMATIC INTERFACE

 The javac command supports the new Java Compiler API defined by the

 classes and interfaces in the javax.tools package.

 EXAMPLE

 To compile as though providing command-line arguments, use the

 following syntax:

 JavaCompiler javac = ToolProvider.getSystemJavaCompiler();

 The example writes diagnostics to the standard output stream and

 returns the exit code that javac would give when called from the Page 23/27

 command line.

 You can use other methods in the javax.tools.JavaCompiler interface to

 handle diagnostics, control where files are read from and written to,

 and more.

 OLD INTERFACE

 Note: This API is retained for backward compatibility only. All new

 code should use the newer Java Compiler API.

 The com.sun.tools.javac.Main class provides two static methods to call

 the compiler from a program:

 public static int compile(String[] args);

 public static int compile(String[] args, PrintWriter out);

 The args parameter represents any of the command-line arguments that

 would typically be passed to the compiler.

 The out parameter indicates where the compiler diagnostic output is

 directed.

 The return value is equivalent to the exit value from javac.

 Note: All other classes and methods found in a package with names that

 start with com.sun.tools.javac (subpackages of com.sun.tools.javac) are

 strictly internal and subject to change at any time.

EXAMPLES

 Example 1 Compile a Simple Program

 This example shows how to compile the Hello.java source file in the

 greetings directory. The class defined in Hello.java is called

 greetings.Hello. The greetings directory is the package directory both

 for the source file and the class file and is underneath the current

 directory. This makes it possible to use the default user class path.

 It also makes it unnecessary to specify a separate destination

 directory with the -d option.

 The source code in Hello.java:

 package greetings;

 public class Hello {

 public static void main(String[] args) {

 for (int i=0; i < args.length; i++) { Page 24/27

 System.out.println("Hello " + args[i]);

 }

 }

 }

 Compile greetings.Hello:

 javac greetings/Hello.java

 Run greetings.Hello:

 java greetings.Hello World Universe Everyone

 Hello World

 Hello Universe

 Hello Everyone

 Example 2 Compile Multiple Source Files

 This example compiles the Aloha.java, GutenTag.java, Hello.java, and

 Hi.java source files in the greetings package.

 % javac greetings/*.java

 % ls greetings

 Aloha.class GutenTag.class Hello.class Hi.class

 Aloha.java GutenTag.java Hello.java Hi.java

 Example 3 Specify a User Class Path

 After changing one of the source files in the previous example,

 recompile it:

 pwd

 /examples

 javac greetings/Hi.java

 Because greetings.Hi refers to other classes in the greetings package,

 the compiler needs to find these other classes. The previous example

 works because the default user class path is the directory that

 contains the package directory. If you want to recompile this file

 without concern for which directory you are in, then add the examples

 directory to the user class path by setting CLASSPATH. This example

 uses the -classpath option.

 javac -classpath /examples /examples/greetings/Hi.java

 If you change greetings.Hi to use a banner utility, then that utility Page 25/27

 also needs to be accessible through the user class path.

 javac -classpath /examples:/lib/Banners.jar \

 /examples/greetings/Hi.java

 To execute a class in the greetings package, the program needs access

 to the greetings package, and to the classes that the greetings classes

 use.

 java -classpath /examples:/lib/Banners.jar greetings.Hi

 Example 4 Separate Source Files and Class Files

 The following example uses javac to compile code that runs on JVM 1.7.

 javac -source 1.7 -target 1.7 -bootclasspath jdk1.7.0/lib/rt.jar \

 -extdirs "" OldCode.java

 The -source 1.7 option specifies that release 1.7 (or 7) of the Java

 programming language be used to compile OldCode.java. The option

 -target 1.7 option ensures that the generated class files are

 compatible with JVM 1.7. Note that in most cases, the value of the

 -target option is the value of the -source option; in this example, you

 can omit the -target option.

 You must specify the -bootclasspath option to specify the correct

 version of the bootstrap classes (the rt.jar library). If not, then the

 compiler generates a warning:

 javac -source 1.7 OldCode.java

 warning: [options] bootstrap class path not set in conjunction with

 -source 1.7

 If you do not specify the correct version of bootstrap classes, then

 the compiler uses the old language rules (in this example, it uses

 version 1.7 of the Java programming language) combined with the new

 bootstrap classes, which can result in class files that do not work on

 the older platform (in this case, Java SE 7) because reference to

 nonexistent methods can get included.

 Example 5 Cross Compile

 This example uses javac to compile code that runs on JVM 1.7.

 javac -source 1.7 -target 1.7 -bootclasspath jdk1.7.0/lib/rt.jar \

 -extdirs "" OldCode.java Page 26/27

 The-source 1.7 option specifies that release 1.7 (or 7) of the Java

 programming language to be used to compile OldCode.java. The -target

 1.7 option ensures that the generated class files are compatible with

 JVM 1.7.

 You must specify the -bootclasspath option to specify the correct

 version of the bootstrap classes (the rt.jar library). If not, then the

 compiler generates a warning:

 javac -source 1.7 OldCode.java

 warning: [options] bootstrap class path not set in conjunction with -source 1.7

 If you do not specify the correct version of bootstrap classes, then

 the compiler uses the old language rules combined with the new

 bootstrap classes. This combination can result in class files that do

 not work on the older platform (in this case, Java SE 7) because

 reference to nonexistent methods can get included. In this example, the

 compiler uses release 1.7 of the Java programming language.

SEE ALSO

 ? java(1)

 ? jdb(1)

 ? javadoc(1)

 ? jar(1)

 ? jdb(1)

JDK 8 03 March 2015 javac(1)

Page 27/27

