
Rocky Enterprise Linux 9.2 Manual Pages on command 'java-java-20-openjdk-20.0.2.0.9-1.rolling.el9.x86_64.1'

$ man java-java-20-openjdk-20.0.2.0.9-1.rolling.el9.x86_64.1

JAVA(1) JDK Commands JAVA(1)

NAME

 java - launch a Java application

SYNOPSIS

 To launch a class file:

 java [options] mainclass [args ...]

 To launch the main class in a JAR file:

 java [options] -jar jarfile [args ...]

 To launch the main class in a module:

 java [options] -m module[/mainclass] [args ...]

 or

 java [options] --module module[/mainclass] [args ...]

 To launch a single source-file program:

 java [options] source-file [args ...]

 options

 Optional: Specifies command-line options separated by spaces.

 See Overview of Java Options for a description of available op?

 tions. Page 1/97

 mainclass

 Specifies the name of the class to be launched. Command-line

 entries following classname are the arguments for the main meth?

 od.

 -jar jarfile

 Executes a program encapsulated in a JAR file. The jarfile ar?

 gument is the name of a JAR file with a manifest that contains a

 line in the form Main-Class:classname that defines the class

 with the public static void main(String[] args) method that

 serves as your application's starting point. When you use -jar,

 the specified JAR file is the source of all user classes, and

 other class path settings are ignored. If you're using JAR

 files, then see jar.

 -m or --module module[/mainclass]

 Executes the main class in a module specified by mainclass if it

 is given, or, if it is not given, the value in the module. In

 other words, mainclass can be used when it is not specified by

 the module, or to override the value when it is specified.

 See Standard Options for Java.

 source-file

 Only used to launch a single source-file program. Specifies the

 source file that contains the main class when using source-file

 mode. See Using Source-File Mode to Launch Single-File Source-

 Code Programs

 args ...

 Optional: Arguments following mainclass, source-file, -jar

 jarfile, and -m or --module module/mainclass are passed as argu?

 ments to the main class.

DESCRIPTION

 The java command starts a Java application. It does this by starting

 the Java Virtual Machine (JVM), loading the specified class, and call?

 ing that class's main() method. The method must be declared public and

 static, it must not return any value, and it must accept a String array Page 2/97

 as a parameter. The method declaration has the following form:

 public static void main(String[] args)

 In source-file mode, the java command can launch a class declared in a

 source file. See Using Source-File Mode to Launch Single-File Source-

 Code Programs for a description of using the source-file mode.

 Note: You can use the JDK_JAVA_OPTIONS launcher environment

 variable to prepend its content to the actual command line of

 the java launcher. See Using the JDK_JAVA_OPTIONS Launcher En?

 vironment Variable.

 By default, the first argument that isn't an option of the java command

 is the fully qualified name of the class to be called. If -jar is

 specified, then its argument is the name of the JAR file containing

 class and resource files for the application. The startup class must

 be indicated by the Main-Class manifest header in its manifest file.

 Arguments after the class file name or the JAR file name are passed to

 the main() method.

 javaw

 Windows: The javaw command is identical to java, except that with javaw

 there's no associated console window. Use javaw when you don't want a

 command prompt window to appear. The javaw launcher will, however,

 display a dialog box with error information if a launch fails.

USING SOURCE-FILE MODE TO LAUNCH SINGLE-FILE SOURCE-CODE PROGRAMS

 To launch a class declared in a source file, run the java launcher in

 source-file mode. Entering source-file mode is determined by two items

 on the java command line:

 ? The first item on the command line that is not an option or part of

 an option. In other words, the item in the command line that would

 otherwise be the main class name.

 ? The --source version option, if present.

 If the class identifies an existing file that has a .java extension, or

 if the --source option is specified, then source-file mode is selected.

 The source file is then compiled and run. The --source option can be

 used to specify the source version or N of the source code. This de? Page 3/97

 termines the API that can be used. When you set --source N, you can

 only use the public API that was defined in JDK N.

 Note: The valid values of N change for each release, with new

 values added and old values removed. You'll get an error mes?

 sage if you use a value of N that is no longer supported. The

 supported values of N are the current Java SE release (20) and a

 limited number of previous releases, detailed in the command-

 line help for javac, under the --source and --release options.

 If the file does not have the .java extension, the --source option must

 be used to tell the java command to use the source-file mode. The

 --source option is used for cases when the source file is a "script" to

 be executed and the name of the source file does not follow the normal

 naming conventions for Java source files.

 In source-file mode, the effect is as though the source file is com?

 piled into memory, and the first class found in the source file is exe?

 cuted. Any arguments placed after the name of the source file in the

 original command line are passed to the compiled class when it is exe?

 cuted.

 For example, if a file were named HelloWorld.java and contained a class

 named hello.World, then the source-file mode command to launch the

 class would be:

 java HelloWorld.java

 The example illustrates that the class can be in a named package, and

 does not need to be in the unnamed package. This use of source-file

 mode is informally equivalent to using the following two commands where

 hello.World is the name of the class in the package:

 javac -d <memory> HelloWorld.java

 java -cp <memory> hello.World

 In source-file mode, any additional command-line options are processed

 as follows:

 ? The launcher scans the options specified before the source file for

 any that are relevant in order to compile the source file.

 This includes: --class-path, --module-path, --add-exports, --add-mod? Page 4/97

 ules, --limit-modules, --patch-module, --upgrade-module-path, and any

 variant forms of those options. It also includes the new --enable-

 preview option, described in JEP 12.

 ? No provision is made to pass any additional options to the compiler,

 such as -processor or -Werror.

 ? Command-line argument files (@-files) may be used in the standard

 way. Long lists of arguments for either the VM or the program being

 invoked may be placed in files specified on the command-line by pre?

 fixing the filename with an @ character.

 In source-file mode, compilation proceeds as follows:

 ? Any command-line options that are relevant to the compilation envi?

 ronment are taken into account.

 ? No other source files are found and compiled, as if the source path

 is set to an empty value.

 ? Annotation processing is disabled, as if -proc:none is in effect.

 ? If a version is specified, via the --source option, the value is used

 as the argument for an implicit --release option for the compilation.

 This sets both the source version accepted by compiler and the system

 API that may be used by the code in the source file.

 ? The source file is compiled in the context of an unnamed module.

 ? The source file should contain one or more top-level classes, the

 first of which is taken as the class to be executed.

 ? The compiler does not enforce the optional restriction defined at the

 end of JLS 7.6, that a type in a named package should exist in a file

 whose name is composed from the type name followed by the .java ex?

 tension.

 ? If the source file contains errors, appropriate error messages are

 written to the standard error stream, and the launcher exits with a

 non-zero exit code.

 In source-file mode, execution proceeds as follows:

 ? The class to be executed is the first top-level class found in the

 source file. It must contain a declaration of the standard public

 static void main(String[]) method. Page 5/97

 ? The compiled classes are loaded by a custom class loader, that dele?

 gates to the application class loader. This implies that classes ap?

 pearing on the application class path cannot refer to any classes de?

 clared in the source file.

 ? The compiled classes are executed in the context of an unnamed mod?

 ule, as though --add-modules=ALL-DEFAULT is in effect. This is in

 addition to any other --add-module options that may be have been

 specified on the command line.

 ? Any arguments appearing after the name of the file on the command

 line are passed to the standard main method in the obvious way.

 ? It is an error if there is a class on the application class path

 whose name is the same as that of the class to be executed.

 See JEP 330: Launch Single-File Source-Code Programs [https://open?

 jdk.org/jeps/330] for complete details.

USING THE JDK_JAVA_OPTIONS LAUNCHER ENVIRONMENT VARIABLE

 JDK_JAVA_OPTIONS prepends its content to the options parsed from the

 command line. The content of the JDK_JAVA_OPTIONS environment variable

 is a list of arguments separated by white-space characters (as deter?

 mined by isspace()). These are prepended to the command line arguments

 passed to java launcher. The encoding requirement for the environment

 variable is the same as the java command line on the system. JDK_JA?

 VA_OPTIONS environment variable content is treated in the same manner

 as that specified in the command line.

 Single (') or double (") quotes can be used to enclose arguments that

 contain whitespace characters. All content between the open quote and

 the first matching close quote are preserved by simply removing the

 pair of quotes. In case a matching quote is not found, the launcher

 will abort with an error message. @-files are supported as they are

 specified in the command line. However, as in @-files, use of a wild?

 card is not supported. In order to mitigate potential misuse of

 JDK_JAVA_OPTIONS behavior, options that specify the main class (such as

 -jar) or cause the java launcher to exit without executing the main

 class (such as -h) are disallowed in the environment variable. If any Page 6/97

 of these options appear in the environment variable, the launcher will

 abort with an error message. When JDK_JAVA_OPTIONS is set, the launch?

 er prints a message to stderr as a reminder.

 Example:

 $ export JDK_JAVA_OPTIONS='-g @file1 -Dprop=value @file2 -Dws.prop="white spaces"'

 $ java -Xint @file3

 is equivalent to the command line:

 java -g @file1 -Dprop=value @file2 -Dws.prop="white spaces" -Xint @file3

OVERVIEW OF JAVA OPTIONS

 The java command supports a wide range of options in the following cat?

 egories:

 ? Standard Options for Java: Options guaranteed to be supported by all

 implementations of the Java Virtual Machine (JVM). They're used for

 common actions, such as checking the version of the JRE, setting the

 class path, enabling verbose output, and so on.

 ? Extra Options for Java: General purpose options that are specific to

 the Java HotSpot Virtual Machine. They aren't guaranteed to be sup?

 ported by all JVM implementations, and are subject to change. These

 options start with -X.

 The advanced options aren't recommended for casual use. These are de?

 veloper options used for tuning specific areas of the Java HotSpot Vir?

 tual Machine operation that often have specific system requirements and

 may require privileged access to system configuration parameters. Sev?

 eral examples of performance tuning are provided in Performance Tuning

 Examples. These options aren't guaranteed to be supported by all JVM

 implementations and are subject to change. Advanced options start with

 -XX.

 ? Advanced Runtime Options for Java: Control the runtime behavior of

 the Java HotSpot VM.

 ? Advanced JIT Compiler Options for java: Control the dynamic just-in-

 time (JIT) compilation performed by the Java HotSpot VM.

 ? Advanced Serviceability Options for Java: Enable gathering system in?

 formation and performing extensive debugging. Page 7/97

 ? Advanced Garbage Collection Options for Java: Control how garbage

 collection (GC) is performed by the Java HotSpot

 Boolean options are used to either enable a feature that's disabled by

 default or disable a feature that's enabled by default. Such options

 don't require a parameter. Boolean -XX options are enabled using the

 plus sign (-XX:+OptionName) and disabled using the minus sign (-XX:-Op?

 tionName).

 For options that require an argument, the argument may be separated

 from the option name by a space, a colon (:), or an equal sign (=), or

 the argument may directly follow the option (the exact syntax differs

 for each option). If you're expected to specify the size in bytes,

 then you can use no suffix, or use the suffix k or K for kilobytes

 (KB), m or M for megabytes (MB), or g or G for gigabytes (GB). For ex?

 ample, to set the size to 8 GB, you can specify either 8g, 8192m,

 8388608k, or 8589934592 as the argument. If you are expected to speci?

 fy the percentage, then use a number from 0 to 1. For example, specify

 0.25 for 25%.

 The following sections describe the options that are deprecated, obso?

 lete, and removed:

 ? Deprecated Java Options: Accepted and acted upon --- a warning is is?

 sued when they're used.

 ? Obsolete Java Options: Accepted but ignored --- a warning is issued

 when they're used.

 ? Removed Java Options: Removed --- using them results in an error.

STANDARD OPTIONS FOR JAVA

 These are the most commonly used options supported by all implementa?

 tions of the JVM.

 Note: To specify an argument for a long option, you can use ei?

 ther --name=value or --name value.

 -agentlib:libname[=options]

 Loads the specified native agent library. After the library

 name, a comma-separated list of options specific to the library

 can be used. If the option -agentlib:foo is specified, then the Page 8/97

 JVM attempts to load the library named foo using the platform

 specific naming conventions and locations:

 ? Linux and other POSIX-like platforms: The JVM attempts to load

 the library named libfoo.so in the location specified by the

 LD_LIBRARY_PATH system variable.

 ? macOS: The JVM attempts to load the library named libfoo.dylib

 in the location specified by the DYLD_LIBRARY_PATH system

 variable.

 ? Windows: The JVM attempts to load the library named foo.dll in

 the location specified by the PATH system variable.

 The following example shows how to load the Java Debug Wire

 Protocol (JDWP) library and listen for the socket connection

 on port 8000, suspending the JVM before the main class loads:

 -agentlib:jdwp=transport=dt_socket,server=y,ad?

 dress=8000

 -agentpath:pathname[=options]

 Loads the native agent library specified by the absolute path

 name. This option is equivalent to -agentlib but uses the full

 path and file name of the library.

 --class-path classpath, -classpath classpath, or -cp classpath

 Specifies a list of directories, JAR files, and ZIP archives to

 search for class files.

 On Windows, semicolons (;) separate entities in this list; on

 other platforms it is a colon (:).

 Specifying classpath overrides any setting of the CLASSPATH en?

 vironment variable. If the class path option isn't used and

 classpath isn't set, then the user class path consists of the

 current directory (.).

 As a special convenience, a class path element that contains a

 base name of an asterisk (*) is considered equivalent to speci?

 fying a list of all the files in the directory with the exten?

 sion .jar or .JAR . A Java program can't tell the difference

 between the two invocations. For example, if the directory my? Page 9/97

 dir contains a.jar and b.JAR, then the class path element my?

 dir/* is expanded to A.jar:b.JAR, except that the order of JAR

 files is unspecified. All .jar files in the specified directo?

 ry, even hidden ones, are included in the list. A class path

 entry consisting of an asterisk (*) expands to a list of all the

 jar files in the current directory. The CLASSPATH environment

 variable, where defined, is similarly expanded. Any class path

 wildcard expansion that occurs before the Java VM is started.

 Java programs never see wildcards that aren't expanded except by

 querying the environment, such as by calling Sys?

 tem.getenv("CLASSPATH").

 --disable-@files

 Can be used anywhere on the command line, including in an argu?

 ment file, to prevent further @filename expansion. This option

 stops expanding @-argfiles after the option.

 --enable-preview

 Allows classes to depend on preview features [https://docs.ora?

 cle.com/en/java/javase/12/language/index.html#JSLAN-

 GUID-5A82FE0E-0CA4-4F1F-B075-564874FE2823] of the release.

 --finalization=value

 Controls whether the JVM performs finalization of objects.

 Valid values are "enabled" and "disabled". Finalization is en?

 abled by default, so the value "enabled" does nothing. The val?

 ue "disabled" disables finalization, so that no finalizers are

 invoked.

 --module-path modulepath... or -p modulepath

 Specifies a list of directories in which each directory is a di?

 rectory of modules.

 On Windows, semicolons (;) separate directories in this list; on

 other platforms it is a colon (:).

 --upgrade-module-path modulepath...

 Specifies a list of directories in which each directory is a di?

 rectory of modules that replace upgradeable modules in the run? Page 10/97

 time image.

 On Windows, semicolons (;) separate directories in this list; on

 other platforms it is a colon (:).

 --add-modules module[,module...]

 Specifies the root modules to resolve in addition to the initial

 module. module also can be ALL-DEFAULT, ALL-SYSTEM, and ALL-

 MODULE-PATH.

 --list-modules

 Lists the observable modules and then exits.

 -d module_name or --describe-module module_name

 Describes a specified module and then exits.

 --dry-run

 Creates the VM but doesn't execute the main method. This --dry-

 run option might be useful for validating the command-line op?

 tions such as the module system configuration.

 --validate-modules

 Validates all modules and exit. This option is helpful for

 finding conflicts and other errors with modules on the module

 path.

 -Dproperty=value

 Sets a system property value. The property variable is a string

 with no spaces that represents the name of the property. The

 value variable is a string that represents the value of the

 property. If value is a string with spaces, then enclose it in

 quotation marks (for example -Dfoo="foo bar").

 -disableassertions[:[packagename]...|:classname] or -da[:[package?

 name]...|:classname]

 Disables assertions. By default, assertions are disabled in all

 packages and classes. With no arguments, -disableassertions

 (-da) disables assertions in all packages and classes. With the

 packagename argument ending in ..., the switch disables asser?

 tions in the specified package and any subpackages. If the ar?

 gument is simply ..., then the switch disables assertions in the Page 11/97

 unnamed package in the current working directory. With the

 classname argument, the switch disables assertions in the speci?

 fied class.

 The -disableassertions (-da) option applies to all class loaders

 and to system classes (which don't have a class loader).

 There's one exception to this rule: If the option is provided

 with no arguments, then it doesn't apply to system classes.

 This makes it easy to disable assertions in all classes except

 for system classes. The -disablesystemassertions option enables

 you to disable assertions in all system classes. To explicitly

 enable assertions in specific packages or classes, use the -en?

 ableassertions (-ea) option. Both options can be used at the

 same time. For example, to run the MyClass application with as?

 sertions enabled in the package com.wombat.fruitbat (and any

 subpackages) but disabled in the class com.wombat.fruit?

 bat.Brickbat, use the following command:

 java -ea:com.wombat.fruitbat... -da:com.wombat.fruit?

 bat.Brickbat MyClass

 -disablesystemassertions or -dsa

 Disables assertions in all system classes.

 -enableassertions[:[packagename]...|:classname] or -ea[:[package?

 name]...|:classname]

 Enables assertions. By default, assertions are disabled in all

 packages and classes. With no arguments, -enableassertions

 (-ea) enables assertions in all packages and classes. With the

 packagename argument ending in ..., the switch enables asser?

 tions in the specified package and any subpackages. If the ar?

 gument is simply ..., then the switch enables assertions in the

 unnamed package in the current working directory. With the

 classname argument, the switch enables assertions in the speci?

 fied class.

 The -enableassertions (-ea) option applies to all class loaders

 and to system classes (which don't have a class loader). Page 12/97

 There's one exception to this rule: If the option is provided

 with no arguments, then it doesn't apply to system classes.

 This makes it easy to enable assertions in all classes except

 for system classes. The -enablesystemassertions option provides

 a separate switch to enable assertions in all system classes.

 To explicitly disable assertions in specific packages or class?

 es, use the -disableassertions (-da) option. If a single com?

 mand contains multiple instances of these switches, then they're

 processed in order, before loading any classes. For example, to

 run the MyClass application with assertions enabled only in the

 package com.wombat.fruitbat (and any subpackages) but disabled

 in the class com.wombat.fruitbat.Brickbat, use the following

 command:

 java -ea:com.wombat.fruitbat... -da:com.wombat.fruit?

 bat.Brickbat MyClass

 -enablesystemassertions or -esa

 Enables assertions in all system classes.

 -help, -h, or -?

 Prints the help message to the error stream.

 --help Prints the help message to the output stream.

 -javaagent:jarpath[=options]

 Loads the specified Java programming language agent. See ja?

 va.lang.instrument.

 --show-version

 Prints the product version to the output stream and continues.

 -showversion

 Prints the product version to the error stream and continues.

 --show-module-resolution

 Shows module resolution output during startup.

 -splash:imagepath

 Shows the splash screen with the image specified by imagepath.

 HiDPI scaled images are automatically supported and used if

 available. The unscaled image file name, such as image.ext, Page 13/97

 should always be passed as the argument to the -splash option.

 The most appropriate scaled image provided is picked up automat?

 ically.

 For example, to show the splash.gif file from the images direc?

 tory when starting your application, use the following option:

 -splash:images/splash.gif

 See the SplashScreen API documentation for more information.

 -verbose:class

 Displays information about each loaded class.

 -verbose:gc

 Displays information about each garbage collection (GC) event.

 -verbose:jni

 Displays information about the use of native methods and other

 Java Native Interface (JNI) activity.

 -verbose:module

 Displays information about the modules in use.

 --version

 Prints product version to the output stream and exits.

 -version

 Prints product version to the error stream and exits.

 -X Prints the help on extra options to the error stream.

 --help-extra

 Prints the help on extra options to the output stream.

 @argfile

 Specifies one or more argument files prefixed by @ used by the

 java command. It isn't uncommon for the java command line to be

 very long because of the .jar files needed in the classpath.

 The @argfile option overcomes command-line length limitations by

 enabling the launcher to expand the contents of argument files

 after shell expansion, but before argument processing. Contents

 in the argument files are expanded because otherwise, they would

 be specified on the command line until the --disable-@files op?

 tion was encountered. Page 14/97

 The argument files can also contain the main class name and all

 options. If an argument file contains all of the options re?

 quired by the java command, then the command line could simply

 be:

 java @argfile

 See java Command-Line Argument Files for a description and exam?

 ples of using @-argfiles.

EXTRA OPTIONS FOR JAVA

 The following java options are general purpose options that are specif?

 ic to the Java HotSpot Virtual Machine.

 -Xbatch

 Disables background compilation. By default, the JVM compiles

 the method as a background task, running the method in inter?

 preter mode until the background compilation is finished. The

 -Xbatch flag disables background compilation so that compilation

 of all methods proceeds as a foreground task until completed.

 This option is equivalent to -XX:-BackgroundCompilation.

 -Xbootclasspath/a:directories|zip|JAR-files

 Specifies a list of directories, JAR files, and ZIP archives to

 append to the end of the default bootstrap class path.

 On Windows, semicolons (;) separate entities in this list; on

 other platforms it is a colon (:).

 -Xcheck:jni

 Performs additional checks for Java Native Interface (JNI) func?

 tions.

 The following checks are considered indicative of significant

 problems with the native code, and the JVM terminates with an

 irrecoverable error in such cases:

 ? The thread doing the call is not attached to the JVM.

 ? The thread doing the call is using the JNIEnv belonging to an?

 other thread.

 ? A parameter validation check fails:

 ? A jfieldID, or jmethodID, is detected as being invalid. For Page 15/97

 example:

 ? Of the wrong type

 ? Associated with the wrong class

 ? A parameter of the wrong type is detected.

 ? An invalid parameter value is detected. For example:

 ? NULL where not permitted

 ? An out-of-bounds array index, or frame capacity

 ? A non-UTF-8 string

 ? An invalid JNI reference

 ? An attempt to use a ReleaseXXX function on a parameter not

 produced by the corresponding GetXXX function

 The following checks only result in warnings being printed:

 ? A JNI call was made without checking for a pending exception

 from a previous JNI call, and the current call is not safe

 when an exception may be pending.

 ? A class descriptor is in decorated format (Lname;) when it

 should not be.

 ? A NULL parameter is allowed, but its use is questionable.

 ? Calling other JNI functions in the scope of Get/ReleasePrimi?

 tiveArrayCritical or Get/ReleaseStringCritical

 Expect a performance degradation when this option is used.

 -Xcomp Testing mode to exercise JIT compilers. This option should not

 be used in production environments.

 -Xdebug

 Does nothing. Provided for backward compatibility.

 -Xdiag Shows additional diagnostic messages.

 -Xint Runs the application in interpreted-only mode. Compilation to

 native code is disabled, and all bytecode is executed by the in?

 terpreter. The performance benefits offered by the just-in-time

 (JIT) compiler aren't present in this mode.

 -Xinternalversion

 Displays more detailed JVM version information than the -version

 option, and then exits. Page 16/97

 -Xlog:option

 Configure or enable logging with the Java Virtual Machine (JVM)

 unified logging framework. See Enable Logging with the JVM Uni?

 fied Logging Framework.

 -Xmixed

 Executes all bytecode by the interpreter except for hot methods,

 which are compiled to native code. On by default. Use -Xint to

 switch off.

 -Xmn size

 Sets the initial and maximum size (in bytes) of the heap for the

 young generation (nursery) in the generational collectors. Ap?

 pend the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. The young genera?

 tion region of the heap is used for new objects. GC is per?

 formed in this region more often than in other regions. If the

 size for the young generation is too small, then a lot of minor

 garbage collections are performed. If the size is too large,

 then only full garbage collections are performed, which can take

 a long time to complete. It is recommended that you do not set

 the size for the young generation for the G1 collector, and keep

 the size for the young generation greater than 25% and less than

 50% of the overall heap size for other collectors. The follow?

 ing examples show how to set the initial and maximum size of

 young generation to 256 MB using various units:

 -Xmn256m

 -Xmn262144k

 -Xmn268435456

 Instead of the -Xmn option to set both the initial and maximum

 size of the heap for the young generation, you can use -XX:New?

 Size to set the initial size and -XX:MaxNewSize to set the maxi?

 mum size.

 -Xms size

 Sets the minimum and the initial size (in bytes) of the heap. Page 17/97

 This value must be a multiple of 1024 and greater than 1 MB.

 Append the letter k or K to indicate kilobytes, m or M to indi?

 cate megabytes, or g or G to indicate gigabytes. The following

 examples show how to set the size of allocated memory to 6 MB

 using various units:

 -Xms6291456

 -Xms6144k

 -Xms6m

 If you do not set this option, then the initial size will be set

 as the sum of the sizes allocated for the old generation and the

 young generation. The initial size of the heap for the young

 generation can be set using the -Xmn option or the -XX:NewSize

 option.

 Note that the -XX:InitialHeapSize option can also be used to set

 the initial heap size. If it appears after -Xms on the command

 line, then the initial heap size gets set to the value specified

 with -XX:InitialHeapSize.

 -Xmx size

 Specifies the maximum size (in bytes) of the heap. This value

 must be a multiple of 1024 and greater than 2 MB. Append the

 letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. The default value

 is chosen at runtime based on system configuration. For server

 deployments, -Xms and -Xmx are often set to the same value. The

 following examples show how to set the maximum allowed size of

 allocated memory to 80 MB using various units:

 -Xmx83886080

 -Xmx81920k

 -Xmx80m

 The -Xmx option is equivalent to -XX:MaxHeapSize.

 -Xnoclassgc

 Disables garbage collection (GC) of classes. This can save some

 GC time, which shortens interruptions during the application Page 18/97

 run. When you specify -Xnoclassgc at startup, the class objects

 in the application are left untouched during GC and are always

 be considered live. This can result in more memory being perma?

 nently occupied which, if not used carefully, throws an out-of-

 memory exception.

 -Xrs Reduces the use of operating system signals by the JVM. Shut?

 down hooks enable the orderly shutdown of a Java application by

 running user cleanup code (such as closing database connections)

 at shutdown, even if the JVM terminates abruptly.

 ? Non-Windows:

 ? The JVM catches signals to implement shutdown hooks for un?

 expected termination. The JVM uses SIGHUP, SIGINT, and

 SIGTERM to initiate the running of shutdown hooks.

 ? Applications embedding the JVM frequently need to trap sig?

 nals such as SIGINT or SIGTERM, which can lead to interfer?

 ence with the JVM signal handlers. The -Xrs option is

 available to address this issue. When -Xrs is used, the

 signal masks for SIGINT, SIGTERM, SIGHUP, and SIGQUIT aren't

 changed by the JVM, and signal handlers for these signals

 aren't installed.

 ? Windows:

 ? The JVM watches for console control events to implement

 shutdown hooks for unexpected termination. Specifically,

 the JVM registers a console control handler that begins

 shutdown-hook processing and returns TRUE for CTRL_C_EVENT,

 CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUT?

 DOWN_EVENT.

 ? The JVM uses a similar mechanism to implement the feature of

 dumping thread stacks for debugging purposes. The JVM uses

 CTRL_BREAK_EVENT to perform thread dumps.

 ? If the JVM is run as a service (for example, as a servlet

 engine for a web server), then it can receive CTRL_LO?

 GOFF_EVENT but shouldn't initiate shutdown because the oper? Page 19/97

 ating system doesn't actually terminate the process. To

 avoid possible interference such as this, the -Xrs option

 can be used. When the -Xrs option is used, the JVM doesn't

 install a console control handler, implying that it doesn't

 watch for or process CTRL_C_EVENT, CTRL_CLOSE_EVENT,

 CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT.

 There are two consequences of specifying -Xrs:

 ? Non-Windows: SIGQUIT thread dumps aren't available.

 ? Windows: Ctrl + Break thread dumps aren't available.

 User code is responsible for causing shutdown hooks to run, for

 example, by calling System.exit() when the JVM is to be termi?

 nated.

 -Xshare:mode

 Sets the class data sharing (CDS) mode.

 Possible mode arguments for this option include the following:

 auto Use shared class data if possible (default).

 on Require using shared class data, otherwise fail.

 Note: The -Xshare:on option is used for testing purposes

 only. It may cause the VM to unexpectedly exit during

 start-up when the CDS archive cannot be used (for exam?

 ple, when certain VM parameters are changed, or when a

 different JDK is used). This option should not be used

 in production environments.

 off Do not attempt to use shared class data.

 -XshowSettings

 Shows all settings and then continues.

 -XshowSettings:category

 Shows settings and continues. Possible category arguments for

 this option include the following:

 all Shows all categories of settings. This is the default

 value.

 locale Shows settings related to locale.

 properties Page 20/97

 Shows settings related to system properties.

 vm Shows the settings of the JVM.

 system Linux only: Shows host system or container configuration

 and continues.

 -Xss size

 Sets the thread stack size (in bytes). Append the letter k or K

 to indicate KB, m or M to indicate MB, or g or G to indicate GB.

 The actual size may be rounded up to a multiple of the system

 page size as required by the operating system. The default val?

 ue depends on the platform. For example:

 ? Linux/x64: 1024 KB

 ? Linux/Aarch64: 2048 KB

 ? macOS/x64: 1024 KB

 ? macOS/Aarch64: 2048 KB

 ? Windows: The default value depends on virtual memory

 The following examples set the thread stack size to 1024 KB in

 different units:

 -Xss1m

 -Xss1024k

 -Xss1048576

 This option is similar to -XX:ThreadStackSize.

 --add-reads module=target-module(,target-module)*

 Updates module to read the target-module, regardless of the mod?

 ule declaration. target-module can be all unnamed to read all

 unnamed modules.

 --add-exports module/package=target-module(,target-module)*

 Updates module to export package to target-module, regardless of

 module declaration. The target-module can be all unnamed to ex?

 port to all unnamed modules.

 --add-opens module/package=target-module(,target-module)*

 Updates module to open package to target-module, regardless of

 module declaration.

 --limit-modules module[,module...] Page 21/97

 Specifies the limit of the universe of observable modules.

 --patch-module module=file(;file)*

 Overrides or augments a module with classes and resources in JAR

 files or directories.

 --source version

 Sets the version of the source in source-file mode.

EXTRA OPTIONS FOR MACOS

 The following extra options are macOS specific.

 -XstartOnFirstThread

 Runs the main() method on the first (AppKit) thread.

 -Xdock:name=application_name

 Overrides the default application name displayed in dock.

 -Xdock:icon=path_to_icon_file

 Overrides the default icon displayed in dock.

ADVANCED OPTIONS FOR JAVA

 These java options can be used to enable other advanced options.

 -XX:+UnlockDiagnosticVMOptions

 Unlocks the options intended for diagnosing the JVM. By de?

 fault, this option is disabled and diagnostic options aren't

 available.

 Command line options that are enabled with the use of this op?

 tion are not supported. If you encounter issues while using any

 of these options, it is very likely that you will be required to

 reproduce the problem without using any of these unsupported op?

 tions before Oracle Support can assist with an investigation.

 It is also possible that any of these options may be removed or

 their behavior changed without any warning.

 -XX:+UnlockExperimentalVMOptions

 Unlocks the options that provide experimental features in the

 JVM. By default, this option is disabled and experimental fea?

 tures aren't available.

ADVANCED RUNTIME OPTIONS FOR JAVA

 These java options control the runtime behavior of the Java HotSpot VM. Page 22/97

 -XX:ActiveProcessorCount=x

 Overrides the number of CPUs that the VM will use to calculate

 the size of thread pools it will use for various operations such

 as Garbage Collection and ForkJoinPool.

 The VM normally determines the number of available processors

 from the operating system. This flag can be useful for parti?

 tioning CPU resources when running multiple Java processes in

 docker containers. This flag is honored even if UseContainer?

 Support is not enabled. See -XX:-UseContainerSupport for a de?

 scription of enabling and disabling container support.

 -XX:AllocateHeapAt=path

 Takes a path to the file system and uses memory mapping to allo?

 cate the object heap on the memory device. Using this option

 enables the HotSpot VM to allocate the Java object heap on an

 alternative memory device, such as an NV-DIMM, specified by the

 user.

 Alternative memory devices that have the same semantics as DRAM,

 including the semantics of atomic operations, can be used in?

 stead of DRAM for the object heap without changing the existing

 application code. All other memory structures (such as the code

 heap, metaspace, and thread stacks) continue to reside in DRAM.

 Some operating systems expose non-DRAM memory through the file

 system. Memory-mapped files in these file systems bypass the

 page cache and provide a direct mapping of virtual memory to the

 physical memory on the device. The existing heap related flags

 (such as -Xmx and -Xms) and garbage-collection related flags

 continue to work as before.

 -XX:-CompactStrings

 Disables the Compact Strings feature. By default, this option

 is enabled. When this option is enabled, Java Strings contain?

 ing only single-byte characters are internally represented and

 stored as single-byte-per-character Strings using ISO-8859-1 /

 Latin-1 encoding. This reduces, by 50%, the amount of space re? Page 23/97

 quired for Strings containing only single-byte characters. For

 Java Strings containing at least one multibyte character: these

 are represented and stored as 2 bytes per character using UTF-16

 encoding. Disabling the Compact Strings feature forces the use

 of UTF-16 encoding as the internal representation for all Java

 Strings.

 Cases where it may be beneficial to disable Compact Strings in?

 clude the following:

 ? When it's known that an application overwhelmingly will be al?

 locating multibyte character Strings

 ? In the unexpected event where a performance regression is ob?

 served in migrating from Java SE 8 to Java SE 9 and an analy?

 sis shows that Compact Strings introduces the regression

 In both of these scenarios, disabling Compact Strings makes

 sense.

 -XX:ErrorFile=filename

 Specifies the path and file name to which error data is written

 when an irrecoverable error occurs. By default, this file is

 created in the current working directory and named hs_err_pid?

 pid.log where pid is the identifier of the process that encoun?

 tered the error.

 The following example shows how to set the default log file

 (note that the identifier of the process is specified as %p):

 -XX:ErrorFile=./hs_err_pid%p.log

 ? Non-Windows: The following example shows how to set the error

 log to /var/log/java/java_error.log:

 -XX:ErrorFile=/var/log/java/java_error.log

 ? Windows: The following example shows how to set the error log

 file to C:/log/java/java_error.log:

 -XX:ErrorFile=C:/log/java/java_error.log

 If the file exists, and is writeable, then it will be overwrit?

 ten. Otherwise, if the file can't be created in the specified

 directory (due to insufficient space, permission problem, or an? Page 24/97

 other issue), then the file is created in the temporary directo?

 ry for the operating system:

 ? Non-Windows: The temporary directory is /tmp.

 ? Windows: The temporary directory is specified by the value of

 the TMP environment variable; if that environment variable

 isn't defined, then the value of the TEMP environment variable

 is used.

 -XX:+ExtensiveErrorReports

 Enables the reporting of more extensive error information in the

 ErrorFile. This option can be turned on in environments where

 maximal information is desired - even if the resulting logs may

 be quite large and/or contain information that might be consid?

 ered sensitive. The information can vary from release to re?

 lease, and across different platforms. By default this option

 is disabled.

 -XX:FlightRecorderOptions=parameter=value (or) -XX:FlightRecorderOp?

 tions:parameter=value

 Sets the parameters that control the behavior of JFR.

 The following list contains the available JFR parameter=value

 entries:

 globalbuffersize=size

 Specifies the total amount of primary memory used for da?

 ta retention. The default value is based on the value

 specified for memorysize. Change the memorysize parame?

 ter to alter the size of global buffers.

 maxchunksize=size

 Specifies the maximum size (in bytes) of the data chunks

 in a recording. Append m or M to specify the size in

 megabytes (MB), or g or G to specify the size in giga?

 bytes (GB). By default, the maximum size of data chunks

 is set to 12 MB. The minimum allowed is 1 MB.

 memorysize=size

 Determines how much buffer memory should be used, and Page 25/97

 sets the globalbuffersize and numglobalbuffers parameters

 based on the size specified. Append m or M to specify

 the size in megabytes (MB), or g or G to specify the size

 in gigabytes (GB). By default, the memory size is set to

 10 MB.

 numglobalbuffers

 Specifies the number of global buffers used. The default

 value is based on the memory size specified. Change the

 memorysize parameter to alter the number of global buf?

 fers.

 old-object-queue-size=number-of-objects

 Maximum number of old objects to track. By default, the

 number of objects is set to 256.

 repository=path

 Specifies the repository (a directory) for temporary disk

 storage. By default, the system's temporary directory is

 used.

 retransform={true|false}

 Specifies whether event classes should be retransformed

 using JVMTI. If false, instrumentation is added when

 event classes are loaded. By default, this parameter is

 enabled.

 stackdepth=depth

 Stack depth for stack traces. By default, the depth is

 set to 64 method calls. The maximum is 2048. Values

 greater than 64 could create significant overhead and re?

 duce performance.

 threadbuffersize=size

 Specifies the per-thread local buffer size (in bytes).

 By default, the local buffer size is set to 8 kilobytes,

 with a minimum value of 4 kilobytes. Overriding this pa?

 rameter could reduce performance and is not recommended.

 You can specify values for multiple parameters by separating Page 26/97

 them with a comma.

 -XX:LargePageSizeInBytes=size

 Sets the maximum large page size (in bytes) used by the JVM.

 The size argument must be a valid page size supported by the en?

 vironment to have any effect. Append the letter k or K to indi?

 cate kilobytes, m or M to indicate megabytes, or g or G to indi?

 cate gigabytes. By default, the size is set to 0, meaning that

 the JVM will use the default large page size for the environment

 as the maximum size for large pages. See Large Pages.

 The following example describes how to set the large page size

 to 1 gigabyte (GB):

 -XX:LargePageSizeInBytes=1g

 -XX:MaxDirectMemorySize=size

 Sets the maximum total size (in bytes) of the java.nio package,

 direct-buffer allocations. Append the letter k or K to indicate

 kilobytes, m or M to indicate megabytes, or g or G to indicate

 gigabytes. If not set, the flag is ignored and the JVM chooses

 the size for NIO direct-buffer allocations automatically.

 The following examples illustrate how to set the NIO size to

 1024 KB in different units:

 -XX:MaxDirectMemorySize=1m

 -XX:MaxDirectMemorySize=1024k

 -XX:MaxDirectMemorySize=1048576

 -XX:-MaxFDLimit

 Disables the attempt to set the soft limit for the number of

 open file descriptors to the hard limit. By default, this op?

 tion is enabled on all platforms, but is ignored on Windows.

 The only time that you may need to disable this is on macOS,

 where its use imposes a maximum of 10240, which is lower than

 the actual system maximum.

 -XX:NativeMemoryTracking=mode

 Specifies the mode for tracking JVM native memory usage. Possi?

 ble mode arguments for this option include the following: Page 27/97

 off Instructs not to track JVM native memory usage. This is

 the default behavior if you don't specify the -XX:Native?

 MemoryTracking option.

 summary

 Tracks memory usage only by JVM subsystems, such as Java

 heap, class, code, and thread.

 detail In addition to tracking memory usage by JVM subsystems,

 track memory usage by individual CallSite, individual

 virtual memory region and its committed regions.

 -XX:+NeverActAsServerClassMachine

 Enable the "Client VM emulation" mode which only uses the C1 JIT

 compiler, a 32Mb CodeCache and the Serial GC. The maximum

 amount of memory that the JVM may use (controlled by the

 -XX:MaxRAM=n flag) is set to 1GB by default. The string "emu?

 lated-client" is added to the JVM version string.

 By default the flag is set to true only on Windows in 32-bit

 mode and false in all other cases.

 The "Client VM emulation" mode will not be enabled if any of the

 following flags are used on the command line:

 -XX:{+|-}TieredCompilation

 -XX:CompilationMode=mode

 -XX:TieredStopAtLevel=n

 -XX:{+|-}EnableJVMCI

 -XX:{+|-}UseJVMCICompiler

 -XX:ObjectAlignmentInBytes=alignment

 Sets the memory alignment of Java objects (in bytes). By de?

 fault, the value is set to 8 bytes. The specified value should

 be a power of 2, and must be within the range of 8 and 256 (in?

 clusive). This option makes it possible to use compressed

 pointers with large Java heap sizes.

 The heap size limit in bytes is calculated as:

 4GB * ObjectAlignmentInBytes

 Note: As the alignment value increases, the unused space Page 28/97

 between objects also increases. As a result, you may not

 realize any benefits from using compressed pointers with

 large Java heap sizes.

 -XX:OnError=string

 Sets a custom command or a series of semicolon-separated com?

 mands to run when an irrecoverable error occurs. If the string

 contains spaces, then it must be enclosed in quotation marks.

 ? Non-Windows: The following example shows how the -XX:OnError

 option can be used to run the gcore command to create a core

 image, and start the gdb debugger to attach to the process in

 case of an irrecoverable error (the %p designates the current

 process identifier):

 -XX:OnError="gcore %p;gdb -p %p"

 ? Windows: The following example shows how the -XX:OnError op?

 tion can be used to run the userdump.exe utility to obtain a

 crash dump in case of an irrecoverable error (the %p desig?

 nates the current process identifier). This example assumes

 that the path to the userdump.exe utility is specified in the

 PATH environment variable:

 -XX:OnError="userdump.exe %p"

 -XX:OnOutOfMemoryError=string

 Sets a custom command or a series of semicolon-separated com?

 mands to run when an OutOfMemoryError exception is first thrown.

 If the string contains spaces, then it must be enclosed in quo?

 tation marks. For an example of a command string, see the de?

 scription of the -XX:OnError option.

 -XX:+PrintCommandLineFlags

 Enables printing of ergonomically selected JVM flags that ap?

 peared on the command line. It can be useful to know the ergo?

 nomic values set by the JVM, such as the heap space size and the

 selected garbage collector. By default, this option is disabled

 and flags aren't printed.

 -XX:+PreserveFramePointer Page 29/97

 Selects between using the RBP register as a general purpose reg?

 ister (-XX:-PreserveFramePointer) and using the RBP register to

 hold the frame pointer of the currently executing method

 (-XX:+PreserveFramePointer . If the frame pointer is available,

 then external profiling tools (for example, Linux perf) can con?

 struct more accurate stack traces.

 -XX:+PrintNMTStatistics

 Enables printing of collected native memory tracking data at JVM

 exit when native memory tracking is enabled (see -XX:NativeMemo?

 ryTracking). By default, this option is disabled and native

 memory tracking data isn't printed.

 -XX:SharedArchiveFile=path

 Specifies the path and name of the class data sharing (CDS) ar?

 chive file

 See Application Class Data Sharing.

 -XX:SharedArchiveConfigFile=shared_config_file

 Specifies additional shared data added to the archive file.

 -XX:SharedClassListFile=file_name

 Specifies the text file that contains the names of the classes

 to store in the class data sharing (CDS) archive. This file

 contains the full name of one class per line, except slashes (/)

 replace dots (.). For example, to specify the classes ja?

 va.lang.Object and hello.Main, create a text file that contains

 the following two lines:

 java/lang/Object

 hello/Main

 The classes that you specify in this text file should include

 the classes that are commonly used by the application. They may

 include any classes from the application, extension, or boot?

 strap class paths.

 See Application Class Data Sharing.

 -XX:+ShowCodeDetailsInExceptionMessages

 Enables printing of improved NullPointerException messages. Page 30/97

 When an application throws a NullPointerException, the option

 enables the JVM to analyze the program's bytecode instructions

 to determine precisely which reference is null, and describes

 the source with a null-detail message. The null-detail message

 is calculated and returned by NullPointerException.getMessage(),

 and will be printed as the exception message along with the

 method, filename, and line number. By default, this option is

 enabled.

 -XX:+ShowMessageBoxOnError

 Enables the display of a dialog box when the JVM experiences an

 irrecoverable error. This prevents the JVM from exiting and

 keeps the process active so that you can attach a debugger to it

 to investigate the cause of the error. By default, this option

 is disabled.

 -XX:StartFlightRecording=parameter=value

 Starts a JFR recording for the Java application. This option is

 equivalent to the JFR.start diagnostic command that starts a

 recording during runtime. You can set the following parame?

 ter=value entries when starting a JFR recording:

 delay=time

 Specifies the delay between the Java application launch

 time and the start of the recording. Append s to specify

 the time in seconds, m for minutes, h for hours, or d for

 days (for example, specifying 10m means 10 minutes). By

 default, there's no delay, and this parameter is set to

 0.

 disk={true|false}

 Specifies whether to write data to disk while recording.

 By default, this parameter is enabled.

 dumponexit={true|false}

 Specifies if the running recording is dumped when the JVM

 shuts down. If enabled and a filename is not entered,

 the recording is written to a file in the directory where Page 31/97

 the process was started. The file name is a system-gen?

 erated name that contains the process ID, recording ID,

 and current timestamp, similar to hotspot-

 pid-47496-id-1-2018_01_25_19_10_41.jfr. By default, this

 parameter is disabled.

 duration=time

 Specifies the duration of the recording. Append s to

 specify the time in seconds, m for minutes, h for hours,

 or d for days (for example, specifying 5h means 5 hours).

 By default, the duration isn't limited, and this parame?

 ter is set to 0.

 filename=path

 Specifies the path and name of the file to which the

 recording is written when the recording is stopped, for

 example:

 ? recording.jfr

 ? /home/user/recordings/recording.jfr

 ? c:\recordings\recording.jfr

 name=identifier

 Takes both the name and the identifier of a recording.

 maxage=time

 Specifies the maximum age of disk data to keep for the

 recording. This parameter is valid only when the disk

 parameter is set to true. Append s to specify the time

 in seconds, m for minutes, h for hours, or d for days

 (for example, specifying 30s means 30 seconds). By de?

 fault, the maximum age isn't limited, and this parameter

 is set to 0s.

 maxsize=size

 Specifies the maximum size (in bytes) of disk data to

 keep for the recording. This parameter is valid only

 when the disk parameter is set to true. The value must

 not be less than the value for the maxchunksize parameter Page 32/97

 set with -XX:FlightRecorderOptions. Append m or M to

 specify the size in megabytes, or g or G to specify the

 size in gigabytes. By default, the maximum size of disk

 data isn't limited, and this parameter is set to 0.

 path-to-gc-roots={true|false}

 Specifies whether to collect the path to garbage collec?

 tion (GC) roots at the end of a recording. By default,

 this parameter is disabled.

 The path to GC roots is useful for finding memory leaks,

 but collecting it is time-consuming. Enable this option

 only when you start a recording for an application that

 you suspect has a memory leak. If the settings parameter

 is set to profile, the stack trace from where the poten?

 tial leaking object was allocated is included in the in?

 formation collected.

 settings=path

 Specifies the path and name of the event settings file

 (of type JFC). By default, the default.jfc file is used,

 which is located in JAVA_HOME/lib/jfr. This default set?

 tings file collects a predefined set of information with

 low overhead, so it has minimal impact on performance and

 can be used with recordings that run continuously.

 A second settings file is also provided, profile.jfc,

 which provides more data than the default configuration,

 but can have more overhead and impact performance. Use

 this configuration for short periods of time when more

 information is needed.

 You can specify values for multiple parameters by separating

 them with a comma. Event settings and .jfc options can be spec?

 ified using the following syntax:

 option=value

 Specifies the option value to modify. To list available

 options, use the JAVA_HOME/bin/jfr tool. Page 33/97

 event-setting=value

 Specifies the event setting value to modify. Use the

 form: <event-name>#<setting-name>=<value>. To add a new

 event setting, prefix the event name with '+'.

 You can specify values for multiple event settings and .jfc op?

 tions by separating them with a comma. In case of a conflict

 between a parameter and a .jfc option, the parameter will take

 precedence. The whitespace delimiter can be omitted for times?

 pan values, i.e. 20ms. For more information about the settings

 syntax, see Javadoc of the jdk.jfr package.

 -XX:ThreadStackSize=size

 Sets the Java thread stack size (in kilobytes). Use of a scal?

 ing suffix, such as k, results in the scaling of the kilobytes

 value so that -XX:ThreadStackSize=1k sets the Java thread stack

 size to 1024*1024 bytes or 1 megabyte. The default value de?

 pends on the platform. For example:

 ? Linux/x64: 1024 KB

 ? Linux/Aarch64: 2048 KB

 ? macOS/x64: 1024 KB

 ? macOS/Aarch64: 2048 KB

 ? Windows: The default value depends on virtual memory

 The following examples show how to set the thread stack size to

 1 megabyte in different units:

 -XX:ThreadStackSize=1k

 -XX:ThreadStackSize=1024

 This option is similar to -Xss.

 -XX:-UseCompressedOops

 Disables the use of compressed pointers. By default, this op?

 tion is enabled, and compressed pointers are used. This will

 automatically limit the maximum ergonomically determined Java

 heap size to the maximum amount of memory that can be covered by

 compressed pointers. By default this range is 32 GB.

 With compressed oops enabled, object references are represented Page 34/97

 as 32-bit offsets instead of 64-bit pointers, which typically

 increases performance when running the application with Java

 heap sizes smaller than the compressed oops pointer range. This

 option works only for 64-bit JVMs.

 It's possible to use compressed pointers with Java heap sizes

 greater than 32 GB. See the -XX:ObjectAlignmentInBytes option.

 -XX:-UseContainerSupport

 Linux only: The VM now provides automatic container detection

 support, which allows the VM to determine the amount of memory

 and number of processors that are available to a Java process

 running in docker containers. It uses this information to allo?

 cate system resources. The default for this flag is true, and

 container support is enabled by default. It can be disabled

 with -XX:-UseContainerSupport.

 Unified Logging is available to help to diagnose issues related

 to this support.

 Use -Xlog:os+container=trace for maximum logging of container

 information. See Enable Logging with the JVM Unified Logging

 Framework for a description of using Unified Logging.

 -XX:+UseHugeTLBFS

 Linux only: This option is the equivalent of specifying

 -XX:+UseLargePages. This option is disabled by default. This

 option pre-allocates all large pages up-front, when memory is

 reserved; consequently the JVM can't dynamically grow or shrink

 large pages memory areas; see -XX:UseTransparentHugePages if you

 want this behavior.

 See Large Pages.

 -XX:+UseLargePages

 Enables the use of large page memory. By default, this option

 is disabled and large page memory isn't used.

 See Large Pages.

 -XX:+UseTransparentHugePages

 Linux only: Enables the use of large pages that can dynamically Page 35/97

 grow or shrink. This option is disabled by default. You may

 encounter performance problems with transparent huge pages as

 the OS moves other pages around to create huge pages; this op?

 tion is made available for experimentation.

 -XX:+AllowUserSignalHandlers

 Non-Windows: Enables installation of signal handlers by the ap?

 plication. By default, this option is disabled and the applica?

 tion isn't allowed to install signal handlers.

 -XX:VMOptionsFile=filename

 Allows user to specify VM options in a file, for example, java

 -XX:VMOptionsFile=/var/my_vm_options HelloWorld.

 -XX:UseBranchProtection=mode

 Linux AArch64 only: Specifies the branch protection mode. All

 options other than none require the VM to have been built with

 branch protection enabled. In addition, for full protection,

 any native libraries provided by applications should be compiled

 with the same level of protection.

 Possible mode arguments for this option include the following:

 none Do not use branch protection. This is the default value.

 standard

 Enables all branch protection modes available on the cur?

 rent platform.

 pac-ret

 Enables protection against ROP based attacks. (AArch64

 8.3+ only)

ADVANCED JIT COMPILER OPTIONS FOR JAVA

 These java options control the dynamic just-in-time (JIT) compilation

 performed by the Java HotSpot VM.

 -XX:AllocateInstancePrefetchLines=lines

 Sets the number of lines to prefetch ahead of the instance allo?

 cation pointer. By default, the number of lines to prefetch is

 set to 1:

 -XX:AllocateInstancePrefetchLines=1 Page 36/97

 -XX:AllocatePrefetchDistance=size

 Sets the size (in bytes) of the prefetch distance for object al?

 location. Memory about to be written with the value of new ob?

 jects is prefetched up to this distance starting from the ad?

 dress of the last allocated object. Each Java thread has its

 own allocation point.

 Negative values denote that prefetch distance is chosen based on

 the platform. Positive values are bytes to prefetch. Append

 the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. The default value

 is set to -1.

 The following example shows how to set the prefetch distance to

 1024 bytes:

 -XX:AllocatePrefetchDistance=1024

 -XX:AllocatePrefetchInstr=instruction

 Sets the prefetch instruction to prefetch ahead of the alloca?

 tion pointer. Possible values are from 0 to 3. The actual in?

 structions behind the values depend on the platform. By de?

 fault, the prefetch instruction is set to 0:

 -XX:AllocatePrefetchInstr=0

 -XX:AllocatePrefetchLines=lines

 Sets the number of cache lines to load after the last object al?

 location by using the prefetch instructions generated in com?

 piled code. The default value is 1 if the last allocated object

 was an instance, and 3 if it was an array.

 The following example shows how to set the number of loaded

 cache lines to 5:

 -XX:AllocatePrefetchLines=5

 -XX:AllocatePrefetchStepSize=size

 Sets the step size (in bytes) for sequential prefetch instruc?

 tions. Append the letter k or K to indicate kilobytes, m or M

 to indicate megabytes, g or G to indicate gigabytes. By de?

 fault, the step size is set to 16 bytes: Page 37/97

 -XX:AllocatePrefetchStepSize=16

 -XX:AllocatePrefetchStyle=style

 Sets the generated code style for prefetch instructions. The

 style argument is an integer from 0 to 3:

 0 Don't generate prefetch instructions.

 1 Execute prefetch instructions after each allocation.

 This is the default setting.

 2 Use the thread-local allocation block (TLAB) watermark

 pointer to determine when prefetch instructions are exe?

 cuted.

 3 Generate one prefetch instruction per cache line.

 -XX:+BackgroundCompilation

 Enables background compilation. This option is enabled by de?

 fault. To disable background compilation, specify -XX:-Back?

 groundCompilation (this is equivalent to specifying -Xbatch).

 -XX:CICompilerCount=threads

 Sets the number of compiler threads to use for compilation. By

 default, the number of compiler threads is selected automatical?

 ly depending on the number of CPUs and memory available for com?

 piled code. The following example shows how to set the number

 of threads to 2:

 -XX:CICompilerCount=2

 -XX:+UseDynamicNumberOfCompilerThreads

 Dynamically create compiler thread up to the limit specified by

 -XX:CICompilerCount. This option is enabled by default.

 -XX:CompileCommand=command,method[,option]

 Specifies a command to perform on a method. For example, to ex?

 clude the indexOf() method of the String class from being com?

 piled, use the following:

 -XX:CompileCommand=exclude,java/lang/String.indexOf

 Note that the full class name is specified, including all pack?

 ages and subpackages separated by a slash (/). For easier cut-

 and-paste operations, it's also possible to use the method name Page 38/97

 format produced by the -XX:+PrintCompilation and -XX:+LogCompi?

 lation options:

 -XX:CompileCommand=exclude,java.lang.String::indexOf

 If the method is specified without the signature, then the com?

 mand is applied to all methods with the specified name. Howev?

 er, you can also specify the signature of the method in the

 class file format. In this case, you should enclose the argu?

 ments in quotation marks, because otherwise the shell treats the

 semicolon as a command end. For example, if you want to exclude

 only the indexOf(String) method of the String class from being

 compiled, use the following:

 -XX:CompileCommand="exclude,java/lang/String.index?

 Of,(Ljava/lang/String;)I"

 You can also use the asterisk (*) as a wildcard for class and

 method names. For example, to exclude all indexOf() methods in

 all classes from being compiled, use the following:

 -XX:CompileCommand=exclude,*.indexOf

 The commas and periods are aliases for spaces, making it easier

 to pass compiler commands through a shell. You can pass argu?

 ments to -XX:CompileCommand using spaces as separators by en?

 closing the argument in quotation marks:

 -XX:CompileCommand="exclude java/lang/String indexOf"

 Note that after parsing the commands passed on the command line

 using the -XX:CompileCommand options, the JIT compiler then

 reads commands from the .hotspot_compiler file. You can add

 commands to this file or specify a different file using the

 -XX:CompileCommandFile option.

 To add several commands, either specify the -XX:CompileCommand

 option multiple times, or separate each argument with the new

 line separator (\n). The following commands are available:

 break Sets a breakpoint when debugging the JVM to stop at the

 beginning of compilation of the specified method.

 compileonly Page 39/97

 Excludes all methods from compilation except for the

 specified method. As an alternative, you can use the

 -XX:CompileOnly option, which lets you specify several

 methods.

 dontinline

 Prevents inlining of the specified method.

 exclude

 Excludes the specified method from compilation.

 help Prints a help message for the -XX:CompileCommand option.

 inline Attempts to inline the specified method.

 log Excludes compilation logging (with the -XX:+LogCompila?

 tion option) for all methods except for the specified

 method. By default, logging is performed for all com?

 piled methods.

 option Passes a JIT compilation option to the specified method

 in place of the last argument (option). The compilation

 option is set at the end, after the method name. For ex?

 ample, to enable the BlockLayoutByFrequency option for

 the append() method of the StringBuffer class, use the

 following:

 -XX:CompileCommand=option,java/lang/String?

 Buffer.append,BlockLayoutByFrequency

 You can specify multiple compilation options, separated

 by commas or spaces.

 print Prints generated assembler code after compilation of the

 specified method.

 quiet Instructs not to print the compile commands. By default,

 the commands that you specify with the -XX:CompileCommand

 option are printed; for example, if you exclude from com?

 pilation the indexOf() method of the String class, then

 the following is printed to standard output:

 CompilerOracle: exclude java/lang/String.indexOf

 You can suppress this by specifying the -XX:CompileCom? Page 40/97

 mand=quiet option before other -XX:CompileCommand op?

 tions.

 -XX:CompileCommandFile=filename

 Sets the file from which JIT compiler commands are read. By de?

 fault, the .hotspot_compiler file is used to store commands per?

 formed by the JIT compiler.

 Each line in the command file represents a command, a class

 name, and a method name for which the command is used. For ex?

 ample, this line prints assembly code for the toString() method

 of the String class:

 print java/lang/String toString

 If you're using commands for the JIT compiler to perform on

 methods, then see the -XX:CompileCommand option.

 -XX:CompilerDirectivesFile=file

 Adds directives from a file to the directives stack when a pro?

 gram starts. See Compiler Control [https://docs.ora?

 cle.com/en/java/javase/12/vm/compiler-con?

 trol1.html#GUID-94AD8194-786A-4F19-BFFF-278F8E237F3A].

 The -XX:CompilerDirectivesFile option has to be used together

 with the -XX:UnlockDiagnosticVMOptions option that unlocks diag?

 nostic JVM options.

 -XX:+CompilerDirectivesPrint

 Prints the directives stack when the program starts or when a

 new directive is added.

 The -XX:+CompilerDirectivesPrint option has to be used together

 with the -XX:UnlockDiagnosticVMOptions option that unlocks diag?

 nostic JVM options.

 -XX:CompileOnly=methods

 Sets the list of methods (separated by commas) to which compila?

 tion should be restricted. Only the specified methods are com?

 piled. Specify each method with the full class name (including

 the packages and subpackages). For example, to compile only the

 length() method of the String class and the size() method of the Page 41/97

 List class, use the following:

 -XX:CompileOnly=java/lang/String.length,ja?

 va/util/List.size

 Note that the full class name is specified, including all pack?

 ages and subpackages separated by a slash (/). For easier cut

 and paste operations, it's also possible to use the method name

 format produced by the -XX:+PrintCompilation and -XX:+LogCompi?

 lation options:

 -XX:CompileOnly=java.lang.String::length,ja?

 va.util.List::size

 Although wildcards aren't supported, you can specify only the

 class or package name to compile all methods in that class or

 package, as well as specify just the method to compile methods

 with this name in any class:

 -XX:CompileOnly=java/lang/String

 -XX:CompileOnly=java/lang

 -XX:CompileOnly=.length

 -XX:CompileThresholdScaling=scale

 Provides unified control of first compilation. This option con?

 trols when methods are first compiled for both the tiered and

 the nontiered modes of operation. The CompileThresholdScaling

 option has a floating point value between 0 and +Inf and scales

 the thresholds corresponding to the current mode of operation

 (both tiered and nontiered). Setting CompileThresholdScaling to

 a value less than 1.0 results in earlier compilation while val?

 ues greater than 1.0 delay compilation. Setting CompileThresh?

 oldScaling to 0 is equivalent to disabling compilation.

 -XX:+DoEscapeAnalysis

 Enables the use of escape analysis. This option is enabled by

 default. To disable the use of escape analysis, specify

 -XX:-DoEscapeAnalysis.

 -XX:InitialCodeCacheSize=size

 Sets the initial code cache size (in bytes). Append the letter Page 42/97

 k or K to indicate kilobytes, m or M to indicate megabytes, or g

 or G to indicate gigabytes. The default value depends on the

 platform. The initial code cache size shouldn't be less than

 the system's minimal memory page size. The following example

 shows how to set the initial code cache size to 32 KB:

 -XX:InitialCodeCacheSize=32k

 -XX:+Inline

 Enables method inlining. This option is enabled by default to

 increase performance. To disable method inlining, specify

 -XX:-Inline.

 -XX:InlineSmallCode=size

 Sets the maximum code size (in bytes) for already compiled meth?

 ods that may be inlined. This flag only applies to the C2 com?

 piler. Append the letter k or K to indicate kilobytes, m or M

 to indicate megabytes, or g or G to indicate gigabytes. The de?

 fault value depends on the platform and on whether tiered compi?

 lation is enabled. In the following example it is set to 1000

 bytes:

 -XX:InlineSmallCode=1000

 -XX:+LogCompilation

 Enables logging of compilation activity to a file named

 hotspot.log in the current working directory. You can specify a

 different log file path and name using the -XX:LogFile option.

 By default, this option is disabled and compilation activity

 isn't logged. The -XX:+LogCompilation option has to be used to?

 gether with the -XX:UnlockDiagnosticVMOptions option that un?

 locks diagnostic JVM options.

 You can enable verbose diagnostic output with a message printed

 to the console every time a method is compiled by using the

 -XX:+PrintCompilation option.

 -XX:FreqInlineSize=size

 Sets the maximum bytecode size (in bytes) of a hot method to be

 inlined. This flag only applies to the C2 compiler. Append the Page 43/97

 letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. The default value

 depends on the platform. In the following example it is set to

 325 bytes:

 -XX:FreqInlineSize=325

 -XX:MaxInlineSize=size

 Sets the maximum bytecode size (in bytes) of a cold method to be

 inlined. This flag only applies to the C2 compiler. Append the

 letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. By default, the

 maximum bytecode size is set to 35 bytes:

 -XX:MaxInlineSize=35

 -XX:C1MaxInlineSize=size

 Sets the maximum bytecode size (in bytes) of a cold method to be

 inlined. This flag only applies to the C1 compiler. Append the

 letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. By default, the

 maximum bytecode size is set to 35 bytes:

 -XX:MaxInlineSize=35

 -XX:MaxTrivialSize=size

 Sets the maximum bytecode size (in bytes) of a trivial method to

 be inlined. This flag only applies to the C2 compiler. Append

 the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. By default, the

 maximum bytecode size of a trivial method is set to 6 bytes:

 -XX:MaxTrivialSize=6

 -XX:C1MaxTrivialSize=size

 Sets the maximum bytecode size (in bytes) of a trivial method to

 be inlined. This flag only applies to the C1 compiler. Append

 the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, or g or G to indicate gigabytes. By default, the

 maximum bytecode size of a trivial method is set to 6 bytes:

 -XX:MaxTrivialSize=6 Page 44/97

 -XX:MaxNodeLimit=nodes

 Sets the maximum number of nodes to be used during single method

 compilation. By default the value depends on the features en?

 abled. In the following example the maximum number of nodes is

 set to 100,000:

 -XX:MaxNodeLimit=100000

 -XX:NonNMethodCodeHeapSize=size

 Sets the size in bytes of the code segment containing nonmethod

 code.

 A nonmethod code segment containing nonmethod code, such as com?

 piler buffers and the bytecode interpreter. This code type

 stays in the code cache forever. This flag is used only if

 -XX:SegmentedCodeCache is enabled.

 -XX:NonProfiledCodeHeapSize=size

 Sets the size in bytes of the code segment containing nonpro?

 filed methods. This flag is used only if -XX:SegmentedCodeCache

 is enabled.

 -XX:+OptimizeStringConcat

 Enables the optimization of String concatenation operations.

 This option is enabled by default. To disable the optimization

 of String concatenation operations, specify -XX:-OptimizeString?

 Concat.

 -XX:+PrintAssembly

 Enables printing of assembly code for bytecoded and native meth?

 ods by using the external hsdis-<arch>.so or .dll library. For

 64-bit VM on Windows, it's hsdis-amd64.dll. This lets you to

 see the generated code, which may help you to diagnose perfor?

 mance issues.

 By default, this option is disabled and assembly code isn't

 printed. The -XX:+PrintAssembly option has to be used together

 with the -XX:UnlockDiagnosticVMOptions option that unlocks diag?

 nostic JVM options.

 -XX:ProfiledCodeHeapSize=size Page 45/97

 Sets the size in bytes of the code segment containing profiled

 methods. This flag is used only if -XX:SegmentedCodeCache is

 enabled.

 -XX:+PrintCompilation

 Enables verbose diagnostic output from the JVM by printing a

 message to the console every time a method is compiled. This

 lets you to see which methods actually get compiled. By de?

 fault, this option is disabled and diagnostic output isn't

 printed.

 You can also log compilation activity to a file by using the

 -XX:+LogCompilation option.

 -XX:+PrintInlining

 Enables printing of inlining decisions. This let's you see

 which methods are getting inlined.

 By default, this option is disabled and inlining information

 isn't printed. The -XX:+PrintInlining option has to be used to?

 gether with the -XX:+UnlockDiagnosticVMOptions option that un?

 locks diagnostic JVM options.

 -XX:ReservedCodeCacheSize=size

 Sets the maximum code cache size (in bytes) for JIT-compiled

 code. Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, or g or G to indicate gigabytes. The de?

 fault maximum code cache size is 240 MB; if you disable tiered

 compilation with the option -XX:-TieredCompilation, then the de?

 fault size is 48 MB. This option has a limit of 2 GB; other?

 wise, an error is generated. The maximum code cache size

 shouldn't be less than the initial code cache size; see the op?

 tion -XX:InitialCodeCacheSize.

 -XX:RTMAbortRatio=abort_ratio

 Specifies the RTM abort ratio is specified as a percentage (%)

 of all executed RTM transactions. If a number of aborted trans?

 actions becomes greater than this ratio, then the compiled code

 is deoptimized. This ratio is used when the -XX:+UseRTMDeopt Page 46/97

 option is enabled. The default value of this option is 50.

 This means that the compiled code is deoptimized if 50% of all

 transactions are aborted.

 -XX:RTMRetryCount=number_of_retries

 Specifies the number of times that the RTM locking code is re?

 tried, when it is aborted or busy, before falling back to the

 normal locking mechanism. The default value for this option is

 5. The -XX:UseRTMLocking option must be enabled.

 -XX:+SegmentedCodeCache

 Enables segmentation of the code cache, without which the code

 cache consists of one large segment. With -XX:+SegmentedCode?

 Cache, separate segments will be used for non-method, profiled

 method, and non-profiled method code. The segments are not re?

 sized at runtime. The advantages are better control of the mem?

 ory footprint, reduced code fragmentation, and better CPU iTLB

 (instruction translation lookaside buffer) and instruction cache

 behavior due to improved locality.

 The feature is enabled by default if tiered compilation is en?

 abled (-XX:+TieredCompilation) and the reserved code cache size

 (-XX:ReservedCodeCacheSize) is at least 240 MB.

 -XX:StartAggressiveSweepingAt=percent

 Forces stack scanning of active methods to aggressively remove

 unused code when only the given percentage of the code cache is

 free. The default value is 10%.

 -XX:-TieredCompilation

 Disables the use of tiered compilation. By default, this option

 is enabled.

 -XX:UseSSE=version

 Enables the use of SSE instruction set of a specified version.

 Is set by default to the highest supported version available

 (x86 only).

 -XX:UseAVX=version

 Enables the use of AVX instruction set of a specified version. Page 47/97

 Is set by default to the highest supported version available

 (x86 only).

 -XX:+UseAES

 Enables hardware-based AES intrinsics for hardware that supports

 it. This option is on by default on hardware that has the nec?

 essary instructions. The -XX:+UseAES is used in conjunction

 with UseAESIntrinsics. Flags that control intrinsics now re?

 quire the option -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseAESIntrinsics

 Enables AES intrinsics. Specifying -XX:+UseAESIntrinsics is

 equivalent to also enabling -XX:+UseAES. To disable hardware-

 based AES intrinsics, specify -XX:-UseAES -XX:-UseAESIntrinsics.

 For example, to enable hardware AES, use the following flags:

 -XX:+UseAES -XX:+UseAESIntrinsics

 Flags that control intrinsics now require the option -XX:+Un?

 lockDiagnosticVMOptions.

 -XX:+UseAESCTRIntrinsics

 Analogous to -XX:+UseAESIntrinsics enables AES/CTR intrinsics.

 -XX:+UseGHASHIntrinsics

 Controls the use of GHASH intrinsics. Enabled by default on

 platforms that support the corresponding instructions. Flags

 that control intrinsics now require the option -XX:+UnlockDiag?

 nosticVMOptions.

 -XX:+UseChaCha20Intrinsics

 Enable ChaCha20 intrinsics. This option is on by default for

 supported platforms. To disable ChaCha20 intrinsics, specify

 -XX:-UseChaCha20Intrinsics. Flags that control intrinsics now

 require the option -XX:+UnlockDiagnosticVMOptions.

 -XX:+UsePoly1305Intrinsics

 Enable Poly1305 intrinsics. This option is on by default for

 supported platforms. To disable Poly1305 intrinsics, specify

 -XX:-UsePoly1305Intrinsics. Flags that control intrinsics now

 require the option -XX:+UnlockDiagnosticVMOptions. Page 48/97

 -XX:+UseBASE64Intrinsics

 Controls the use of accelerated BASE64 encoding routines for ja?

 va.util.Base64. Enabled by default on platforms that support

 it. Flags that control intrinsics now require the option

 -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseAdler32Intrinsics

 Controls the use of Adler32 checksum algorithm intrinsic for ja?

 va.util.zip.Adler32. Enabled by default on platforms that sup?

 port it. Flags that control intrinsics now require the option

 -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseCRC32Intrinsics

 Controls the use of CRC32 intrinsics for java.util.zip.CRC32.

 Enabled by default on platforms that support it. Flags that

 control intrinsics now require the option -XX:+UnlockDiagnos?

 ticVMOptions.

 -XX:+UseCRC32CIntrinsics

 Controls the use of CRC32C intrinsics for java.util.zip.CRC32C.

 Enabled by default on platforms that support it. Flags that

 control intrinsics now require the option -XX:+UnlockDiagnos?

 ticVMOptions.

 -XX:+UseSHA

 Enables hardware-based intrinsics for SHA crypto hash functions

 for some hardware. The UseSHA option is used in conjunction

 with the UseSHA1Intrinsics, UseSHA256Intrinsics, and Use?

 SHA512Intrinsics options.

 The UseSHA and UseSHA*Intrinsics flags are enabled by default on

 machines that support the corresponding instructions.

 This feature is applicable only when using the sun.securi?

 ty.provider.Sun provider for SHA operations. Flags that control

 intrinsics now require the option -XX:+UnlockDiagnosticVMOp?

 tions.

 To disable all hardware-based SHA intrinsics, specify the

 -XX:-UseSHA. To disable only a particular SHA intrinsic, use Page 49/97

 the appropriate corresponding option. For example: -XX:-Use?

 SHA256Intrinsics.

 -XX:+UseSHA1Intrinsics

 Enables intrinsics for SHA-1 crypto hash function. Flags that

 control intrinsics now require the option -XX:+UnlockDiagnos?

 ticVMOptions.

 -XX:+UseSHA256Intrinsics

 Enables intrinsics for SHA-224 and SHA-256 crypto hash func?

 tions. Flags that control intrinsics now require the option

 -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseSHA512Intrinsics

 Enables intrinsics for SHA-384 and SHA-512 crypto hash func?

 tions. Flags that control intrinsics now require the option

 -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseMathExactIntrinsics

 Enables intrinsification of various java.lang.Math.*Exact()

 functions. Enabled by default. Flags that control intrinsics

 now require the option -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseMultiplyToLenIntrinsic

 Enables intrinsification of BigInteger.multiplyToLen(). Enabled

 by default on platforms that support it. Flags that control in?

 trinsics now require the option -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseSquareToLenIntrinsic

 Enables intrinsification of BigInteger.squareToLen(). Enabled

 by default on platforms that support it. Flags that control in?

 trinsics now require the option -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseMulAddIntrinsic

 Enables intrinsification of BigInteger.mulAdd(). Enabled by de?

 fault on platforms that support it. Flags that control intrin?

 sics now require the option -XX:+UnlockDiagnosticVMOptions.

 -XX:+UseMontgomeryMultiplyIntrinsic

 Enables intrinsification of BigInteger.montgomeryMultiply().

 Enabled by default on platforms that support it. Flags that Page 50/97

 control intrinsics now require the option -XX:+UnlockDiagnos?

 ticVMOptions.

 -XX:+UseMontgomerySquareIntrinsic

 Enables intrinsification of BigInteger.montgomerySquare(). En?

 abled by default on platforms that support it. Flags that con?

 trol intrinsics now require the option -XX:+UnlockDiagnosticV?

 MOptions.

 -XX:+UseCMoveUnconditionally

 Generates CMove (scalar and vector) instructions regardless of

 profitability analysis.

 -XX:+UseCodeCacheFlushing

 Enables flushing of the code cache before shutting down the com?

 piler. This option is enabled by default. To disable flushing

 of the code cache before shutting down the compiler, specify

 -XX:-UseCodeCacheFlushing.

 -XX:+UseCondCardMark

 Enables checking if the card is already marked before updating

 the card table. This option is disabled by default. It should

 be used only on machines with multiple sockets, where it in?

 creases the performance of Java applications that rely on con?

 current operations.

 -XX:+UseCountedLoopSafepoints

 Keeps safepoints in counted loops. Its default value depends on

 whether the selected garbage collector requires low latency

 safepoints.

 -XX:LoopStripMiningIter=number_of_iterations

 Controls the number of iterations in the inner strip mined loop.

 Strip mining transforms counted loops into two level nested

 loops. Safepoints are kept in the outer loop while the inner

 loop can execute at full speed. This option controls the maxi?

 mum number of iterations in the inner loop. The default value

 is 1,000.

 -XX:LoopStripMiningIterShortLoop=number_of_iterations Page 51/97

 Controls loop strip mining optimization. Loops with the number

 of iterations less than specified will not have safepoints in

 them. Default value is 1/10th of -XX:LoopStripMiningIter.

 -XX:+UseFMA

 Enables hardware-based FMA intrinsics for hardware where FMA in?

 structions are available (such as, Intel and ARM64). FMA in?

 trinsics are generated for the java.lang.Math.fma(a, b, c) meth?

 ods that calculate the value of (a * b + c) expressions.

 -XX:+UseRTMDeopt

 Autotunes RTM locking depending on the abort ratio. This ratio

 is specified by the -XX:RTMAbortRatio option. If the number of

 aborted transactions exceeds the abort ratio, then the method

 containing the lock is deoptimized and recompiled with all locks

 as normal locks. This option is disabled by default. The

 -XX:+UseRTMLocking option must be enabled.

 -XX:+UseRTMLocking

 Generates Restricted Transactional Memory (RTM) locking code for

 all inflated locks, with the normal locking mechanism as the

 fallback handler. This option is disabled by default. Options

 related to RTM are available only on x86 CPUs that support

 Transactional Synchronization Extensions (TSX).

 RTM is part of Intel's TSX, which is an x86 instruction set ex?

 tension and facilitates the creation of multithreaded applica?

 tions. RTM introduces the new instructions XBEGIN, XABORT,

 XEND, and XTEST. The XBEGIN and XEND instructions enclose a set

 of instructions to run as a transaction. If no conflict is

 found when running the transaction, then the memory and register

 modifications are committed together at the XEND instruction.

 The XABORT instruction can be used to explicitly abort a trans?

 action and the XTEST instruction checks if a set of instructions

 is being run in a transaction.

 A lock on a transaction is inflated when another thread tries to

 access the same transaction, thereby blocking the thread that Page 52/97

 didn't originally request access to the transaction. RTM re?

 quires that a fallback set of operations be specified in case a

 transaction aborts or fails. An RTM lock is a lock that has

 been delegated to the TSX's system.

 RTM improves performance for highly contended locks with low

 conflict in a critical region (which is code that must not be

 accessed by more than one thread concurrently). RTM also im?

 proves the performance of coarse-grain locking, which typically

 doesn't perform well in multithreaded applications. (Coarse-

 grain locking is the strategy of holding locks for long periods

 to minimize the overhead of taking and releasing locks, while

 fine-grained locking is the strategy of trying to achieve maxi?

 mum parallelism by locking only when necessary and unlocking as

 soon as possible.) Also, for lightly contended locks that are

 used by different threads, RTM can reduce false cache line shar?

 ing, also known as cache line ping-pong. This occurs when mul?

 tiple threads from different processors are accessing different

 resources, but the resources share the same cache line. As a

 result, the processors repeatedly invalidate the cache lines of

 other processors, which forces them to read from main memory in?

 stead of their cache.

 -XX:+UseSuperWord

 Enables the transformation of scalar operations into superword

 operations. Superword is a vectorization optimization. This

 option is enabled by default. To disable the transformation of

 scalar operations into superword operations, specify -XX:-UseSu?

 perWord.

ADVANCED SERVICEABILITY OPTIONS FOR JAVA

 These java options provide the ability to gather system information and

 perform extensive debugging.

 -XX:+DisableAttachMechanism

 Disables the mechanism that lets tools attach to the JVM. By

 default, this option is disabled, meaning that the attach mecha? Page 53/97

 nism is enabled and you can use diagnostics and troubleshooting

 tools such as jcmd, jstack, jmap, and jinfo.

 Note: The tools such as jcmd, jinfo, jmap, and jstack

 shipped with the JDK aren't supported when using the

 tools from one JDK version to troubleshoot a different

 JDK version.

 -XX:+DTraceAllocProbes

 Linux and macOS: Enable dtrace tool probes for object alloca?

 tion.

 -XX:+DTraceMethodProbes

 Linux and macOS: Enable dtrace tool probes for method-entry and

 method-exit.

 -XX:+DTraceMonitorProbes

 Linux and macOS: Enable dtrace tool probes for monitor events.

 -XX:+HeapDumpOnOutOfMemoryError

 Enables the dumping of the Java heap to a file in the current

 directory by using the heap profiler (HPROF) when a ja?

 va.lang.OutOfMemoryError exception is thrown. You can explicit?

 ly set the heap dump file path and name using the -XX:HeapDump?

 Path option. By default, this option is disabled and the heap

 isn't dumped when an OutOfMemoryError exception is thrown.

 -XX:HeapDumpPath=path

 Sets the path and file name for writing the heap dump provided

 by the heap profiler (HPROF) when the -XX:+HeapDumpOnOutOfMemo?

 ryError option is set. By default, the file is created in the

 current working directory, and it's named java_pid<pid>.hprof

 where <pid> is the identifier of the process that caused the er?

 ror. The following example shows how to set the default file

 explicitly (%p represents the current process identifier):

 -XX:HeapDumpPath=./java_pid%p.hprof

 ? Non-Windows: The following example shows how to set the heap

 dump file to /var/log/java/java_heapdump.hprof:

 -XX:HeapDumpPath=/var/log/java/java_heapdump.hprof Page 54/97

 ? Windows: The following example shows how to set the heap dump

 file to C:/log/java/java_heapdump.log:

 -XX:HeapDumpPath=C:/log/java/java_heapdump.log

 -XX:LogFile=path

 Sets the path and file name to where log data is written. By

 default, the file is created in the current working directory,

 and it's named hotspot.log.

 ? Non-Windows: The following example shows how to set the log

 file to /var/log/java/hotspot.log:

 -XX:LogFile=/var/log/java/hotspot.log

 ? Windows: The following example shows how to set the log file

 to C:/log/java/hotspot.log:

 -XX:LogFile=C:/log/java/hotspot.log

 -XX:+PrintClassHistogram

 Enables printing of a class instance histogram after one of the

 following events:

 ? Non-Windows: Control+\ (SIGQUIT)

 ? Windows: Control+C (SIGTERM)

 By default, this option is disabled.

 Setting this option is equivalent to running the jmap -histo

 command, or the jcmd pid GC.class_histogram command, where pid

 is the current Java process identifier.

 -XX:+PrintConcurrentLocks

 Enables printing of java.util.concurrent locks after one of the

 following events:

 ? Non-Windows: Control+\ (SIGQUIT)

 ? Windows: Control+C (SIGTERM)

 By default, this option is disabled.

 Setting this option is equivalent to running the jstack -l com?

 mand or the jcmd pid Thread.print -l command, where pid is the

 current Java process identifier.

 -XX:+PrintFlagsRanges

 Prints the range specified and allows automatic testing of the Page 55/97

 values. See Validate Java Virtual Machine Flag Arguments.

 -XX:+PerfDataSaveToFile

 If enabled, saves jstat binary data when the Java application

 exits. This binary data is saved in a file named hsperfda?

 ta_pid, where pid is the process identifier of the Java applica?

 tion that you ran. Use the jstat command to display the perfor?

 mance data contained in this file as follows:

 jstat -class file:///path/hsperfdata_pid

 jstat -gc file:///path/hsperfdata_pid

 -XX:+UsePerfData

 Enables the perfdata feature. This option is enabled by default

 to allow JVM monitoring and performance testing. Disabling it

 suppresses the creation of the hsperfdata_userid directories.

 To disable the perfdata feature, specify -XX:-UsePerfData.

ADVANCED GARBAGE COLLECTION OPTIONS FOR JAVA

 These java options control how garbage collection (GC) is performed by

 the Java HotSpot VM.

 -XX:+AggressiveHeap

 Enables Java heap optimization. This sets various parameters to

 be optimal for long-running jobs with intensive memory alloca?

 tion, based on the configuration of the computer (RAM and CPU).

 By default, the option is disabled and the heap sizes are con?

 figured less aggressively.

 -XX:+AlwaysPreTouch

 Requests the VM to touch every page on the Java heap after re?

 questing it from the operating system and before handing memory

 out to the application. By default, this option is disabled and

 all pages are committed as the application uses the heap space.

 -XX:ConcGCThreads=threads

 Sets the number of threads used for concurrent GC. Sets threads

 to approximately 1/4 of the number of parallel garbage collec?

 tion threads. The default value depends on the number of CPUs

 available to the JVM. Page 56/97

 For example, to set the number of threads for concurrent GC to

 2, specify the following option:

 -XX:ConcGCThreads=2

 -XX:+DisableExplicitGC

 Enables the option that disables processing of calls to the Sys?

 tem.gc() method. This option is disabled by default, meaning

 that calls to System.gc() are processed. If processing of calls

 to System.gc() is disabled, then the JVM still performs GC when

 necessary.

 -XX:+ExplicitGCInvokesConcurrent

 Enables invoking of concurrent GC by using the System.gc() re?

 quest. This option is disabled by default and can be enabled

 only with the -XX:+UseG1GC option.

 -XX:G1AdaptiveIHOPNumInitialSamples=number

 When -XX:UseAdaptiveIHOP is enabled, this option sets the number

 of completed marking cycles used to gather samples until G1

 adaptively determines the optimum value of -XX:InitiatingHeapOc?

 cupancyPercent. Before, G1 uses the value of -XX:Initiat?

 ingHeapOccupancyPercent directly for this purpose. The default

 value is 3.

 -XX:G1HeapRegionSize=size

 Sets the size of the regions into which the Java heap is subdi?

 vided when using the garbage-first (G1) collector. The value is

 a power of 2 and can range from 1 MB to 32 MB. The default re?

 gion size is determined ergonomically based on the heap size

 with a goal of approximately 2048 regions.

 The following example sets the size of the subdivisions to 16

 MB:

 -XX:G1HeapRegionSize=16m

 -XX:G1HeapWastePercent=percent

 Sets the percentage of heap that you're willing to waste. The

 Java HotSpot VM doesn't initiate the mixed garbage collection

 cycle when the reclaimable percentage is less than the heap Page 57/97

 waste percentage. The default is 5 percent.

 -XX:G1MaxNewSizePercent=percent

 Sets the percentage of the heap size to use as the maximum for

 the young generation size. The default value is 60 percent of

 your Java heap.

 This is an experimental flag. This setting replaces the -XX:De?

 faultMaxNewGenPercent setting.

 -XX:G1MixedGCCountTarget=number

 Sets the target number of mixed garbage collections after a

 marking cycle to collect old regions with at most G1MixedG?

 CLIveThresholdPercent live data. The default is 8 mixed garbage

 collections. The goal for mixed collections is to be within

 this target number.

 -XX:G1MixedGCLiveThresholdPercent=percent

 Sets the occupancy threshold for an old region to be included in

 a mixed garbage collection cycle. The default occupancy is 85

 percent.

 This is an experimental flag. This setting replaces the

 -XX:G1OldCSetRegionLiveThresholdPercent setting.

 -XX:G1NewSizePercent=percent

 Sets the percentage of the heap to use as the minimum for the

 young generation size. The default value is 5 percent of your

 Java heap.

 This is an experimental flag. This setting replaces the -XX:De?

 faultMinNewGenPercent setting.

 -XX:G1OldCSetRegionThresholdPercent=percent

 Sets an upper limit on the number of old regions to be collected

 during a mixed garbage collection cycle. The default is 10 per?

 cent of the Java heap.

 -XX:G1ReservePercent=percent

 Sets the percentage of the heap (0 to 50) that's reserved as a

 false ceiling to reduce the possibility of promotion failure for

 the G1 collector. When you increase or decrease the percentage, Page 58/97

 ensure that you adjust the total Java heap by the same amount.

 By default, this option is set to 10%.

 The following example sets the reserved heap to 20%:

 -XX:G1ReservePercent=20

 -XX:+G1UseAdaptiveIHOP

 Controls adaptive calculation of the old generation occupancy to

 start background work preparing for an old generation collec?

 tion. If enabled, G1 uses -XX:InitiatingHeapOccupancyPercent

 for the first few times as specified by the value of -XX:G1Adap?

 tiveIHOPNumInitialSamples, and after that adaptively calculates

 a new optimum value for the initiating occupancy automatically.

 Otherwise, the old generation collection process always starts

 at the old generation occupancy determined by -XX:Initiat?

 ingHeapOccupancyPercent.

 The default is enabled.

 -XX:InitialHeapSize=size

 Sets the initial size (in bytes) of the memory allocation pool.

 This value must be either 0, or a multiple of 1024 and greater

 than 1 MB. Append the letter k or K to indicate kilobytes, m or

 M to indicate megabytes, or g or G to indicate gigabytes. The

 default value is selected at run time based on the system con?

 figuration.

 The following examples show how to set the size of allocated

 memory to 6 MB using various units:

 -XX:InitialHeapSize=6291456

 -XX:InitialHeapSize=6144k

 -XX:InitialHeapSize=6m

 If you set this option to 0, then the initial size is set as the

 sum of the sizes allocated for the old generation and the young

 generation. The size of the heap for the young generation can

 be set using the -XX:NewSize option. Note that the -Xms option

 sets both the minimum and the initial heap size of the heap. If

 -Xms appears after -XX:InitialHeapSize on the command line, then Page 59/97

 the initial heap size gets set to the value specified with -Xms.

 -XX:InitialRAMPercentage=percent

 Sets the initial amount of memory that the JVM will use for the

 Java heap before applying ergonomics heuristics as a percentage

 of the maximum amount determined as described in the -XX:MaxRAM

 option. The default value is 1.5625 percent.

 The following example shows how to set the percentage of the

 initial amount of memory used for the Java heap:

 -XX:InitialRAMPercentage=5

 -XX:InitialSurvivorRatio=ratio

 Sets the initial survivor space ratio used by the throughput

 garbage collector (which is enabled by the -XX:+UseParallelGC

 option). Adaptive sizing is enabled by default with the

 throughput garbage collector by using the -XX:+UseParallelGC op?

 tion, and the survivor space is resized according to the appli?

 cation behavior, starting with the initial value. If adaptive

 sizing is disabled (using the -XX:-UseAdaptiveSizePolicy op?

 tion), then the -XX:SurvivorRatio option should be used to set

 the size of the survivor space for the entire execution of the

 application.

 The following formula can be used to calculate the initial size

 of survivor space (S) based on the size of the young generation

 (Y), and the initial survivor space ratio (R):

 S=Y/(R+2)

 The 2 in the equation denotes two survivor spaces. The larger

 the value specified as the initial survivor space ratio, the

 smaller the initial survivor space size.

 By default, the initial survivor space ratio is set to 8. If

 the default value for the young generation space size is used (2

 MB), then the initial size of the survivor space is 0.2 MB.

 The following example shows how to set the initial survivor

 space ratio to 4:

 -XX:InitialSurvivorRatio=4 Page 60/97

 -XX:InitiatingHeapOccupancyPercent=percent

 Sets the percentage of the old generation occupancy (0 to 100)

 at which to start the first few concurrent marking cycles for

 the G1 garbage collector.

 By default, the initiating value is set to 45%. A value of 0

 implies nonstop concurrent GC cycles from the beginning until G1

 adaptively sets this value.

 See also the -XX:G1UseAdaptiveIHOP and -XX:G1AdaptiveIHOPNumIni?

 tialSamples options.

 The following example shows how to set the initiating heap occu?

 pancy to 75%:

 -XX:InitiatingHeapOccupancyPercent=75

 -XX:MaxGCPauseMillis=time

 Sets a target for the maximum GC pause time (in milliseconds).

 This is a soft goal, and the JVM will make its best effort to

 achieve it. The specified value doesn't adapt to your heap

 size. By default, for G1 the maximum pause time target is 200

 milliseconds. The other generational collectors do not use a

 pause time goal by default.

 The following example shows how to set the maximum target pause

 time to 500 ms:

 -XX:MaxGCPauseMillis=500

 -XX:MaxHeapSize=size

 Sets the maximum size (in byes) of the memory allocation pool.

 This value must be a multiple of 1024 and greater than 2 MB.

 Append the letter k or K to indicate kilobytes, m or M to indi?

 cate megabytes, or g or G to indicate gigabytes. The default

 value is selected at run time based on the system configuration.

 For server deployments, the options -XX:InitialHeapSize and

 -XX:MaxHeapSize are often set to the same value.

 The following examples show how to set the maximum allowed size

 of allocated memory to 80 MB using various units:

 -XX:MaxHeapSize=83886080 Page 61/97

 -XX:MaxHeapSize=81920k

 -XX:MaxHeapSize=80m

 The -XX:MaxHeapSize option is equivalent to -Xmx.

 -XX:MaxHeapFreeRatio=percent

 Sets the maximum allowed percentage of free heap space (0 to

 100) after a GC event. If free heap space expands above this

 value, then the heap is shrunk. By default, this value is set

 to 70%.

 Minimize the Java heap size by lowering the values of the param?

 eters MaxHeapFreeRatio (default value is 70%) and MinHeapFreeRa?

 tio (default value is 40%) with the command-line options

 -XX:MaxHeapFreeRatio and -XX:MinHeapFreeRatio. Lowering Max?

 HeapFreeRatio to as low as 10% and MinHeapFreeRatio to 5% has

 successfully reduced the heap size without too much performance

 regression; however, results may vary greatly depending on your

 application. Try different values for these parameters until

 they're as low as possible yet still retain acceptable perfor?

 mance.

 -XX:MaxHeapFreeRatio=10 -XX:MinHeapFreeRatio=5

 Customers trying to keep the heap small should also add the op?

 tion -XX:-ShrinkHeapInSteps. See Performance Tuning Examples

 for a description of using this option to keep the Java heap

 small by reducing the dynamic footprint for embedded applica?

 tions.

 -XX:MaxMetaspaceSize=size

 Sets the maximum amount of native memory that can be allocated

 for class metadata. By default, the size isn't limited. The

 amount of metadata for an application depends on the application

 itself, other running applications, and the amount of memory

 available on the system.

 The following example shows how to set the maximum class metada?

 ta size to 256 MB:

 -XX:MaxMetaspaceSize=256m Page 62/97

 -XX:MaxNewSize=size

 Sets the maximum size (in bytes) of the heap for the young gen?

 eration (nursery). The default value is set ergonomically.

 -XX:MaxRAM=size

 Sets the maximum amount of memory that the JVM may use for the

 Java heap before applying ergonomics heuristics. The default

 value is the maximum amount of available memory to the JVM

 process or 128 GB, whichever is lower.

 The maximum amount of available memory to the JVM process is the

 minimum of the machine's physical memory and any constraints set

 by the environment (e.g. container).

 Specifying this option disables automatic use of compressed oops

 if the combined result of this and other options influencing the

 maximum amount of memory is larger than the range of memory ad?

 dressable by compressed oops. See -XX:UseCompressedOops for

 further information about compressed oops.

 The following example shows how to set the maximum amount of

 available memory for sizing the Java heap to 2 GB:

 -XX:MaxRAM=2G

 -XX:MaxRAMPercentage=percent

 Sets the maximum amount of memory that the JVM may use for the

 Java heap before applying ergonomics heuristics as a percentage

 of the maximum amount determined as described in the -XX:MaxRAM

 option. The default value is 25 percent.

 Specifying this option disables automatic use of compressed oops

 if the combined result of this and other options influencing the

 maximum amount of memory is larger than the range of memory ad?

 dressable by compressed oops. See -XX:UseCompressedOops for

 further information about compressed oops.

 The following example shows how to set the percentage of the

 maximum amount of memory used for the Java heap:

 -XX:MaxRAMPercentage=75

 -XX:MinRAMPercentage=percent Page 63/97

 Sets the maximum amount of memory that the JVM may use for the

 Java heap before applying ergonomics heuristics as a percentage

 of the maximum amount determined as described in the -XX:MaxRAM

 option for small heaps. A small heap is a heap of approximately

 125 MB. The default value is 50 percent.

 The following example shows how to set the percentage of the

 maximum amount of memory used for the Java heap for small heaps:

 -XX:MinRAMPercentage=75

 -XX:MaxTenuringThreshold=threshold

 Sets the maximum tenuring threshold for use in adaptive GC siz?

 ing. The largest value is 15. The default value is 15 for the

 parallel (throughput) collector.

 The following example shows how to set the maximum tenuring

 threshold to 10:

 -XX:MaxTenuringThreshold=10

 -XX:MetaspaceSize=size

 Sets the size of the allocated class metadata space that trig?

 gers a garbage collection the first time it's exceeded. This

 threshold for a garbage collection is increased or decreased de?

 pending on the amount of metadata used. The default size de?

 pends on the platform.

 -XX:MinHeapFreeRatio=percent

 Sets the minimum allowed percentage of free heap space (0 to

 100) after a GC event. If free heap space falls below this val?

 ue, then the heap is expanded. By default, this value is set to

 40%.

 Minimize Java heap size by lowering the values of the parameters

 MaxHeapFreeRatio (default value is 70%) and MinHeapFreeRatio

 (default value is 40%) with the command-line options -XX:Max?

 HeapFreeRatio and -XX:MinHeapFreeRatio. Lowering MaxHeapFreeRa?

 tio to as low as 10% and MinHeapFreeRatio to 5% has successfully

 reduced the heap size without too much performance regression;

 however, results may vary greatly depending on your application. Page 64/97

 Try different values for these parameters until they're as low

 as possible, yet still retain acceptable performance.

 -XX:MaxHeapFreeRatio=10 -XX:MinHeapFreeRatio=5

 Customers trying to keep the heap small should also add the op?

 tion -XX:-ShrinkHeapInSteps. See Performance Tuning Examples

 for a description of using this option to keep the Java heap

 small by reducing the dynamic footprint for embedded applica?

 tions.

 -XX:MinHeapSize=size

 Sets the minimum size (in bytes) of the memory allocation pool.

 This value must be either 0, or a multiple of 1024 and greater

 than 1 MB. Append the letter k or K to indicate kilobytes, m or

 M to indicate megabytes, or g or G to indicate gigabytes. The

 default value is selected at run time based on the system con?

 figuration.

 The following examples show how to set the minimum size of allo?

 cated memory to 6 MB using various units:

 -XX:MinHeapSize=6291456

 -XX:MinHeapSize=6144k

 -XX:MinHeapSize=6m

 If you set this option to 0, then the minimum size is set to the

 same value as the initial size.

 -XX:NewRatio=ratio

 Sets the ratio between young and old generation sizes. By de?

 fault, this option is set to 2. The following example shows how

 to set the young-to-old ratio to 1:

 -XX:NewRatio=1

 -XX:NewSize=size

 Sets the initial size (in bytes) of the heap for the young gen?

 eration (nursery). Append the letter k or K to indicate kilo?

 bytes, m or M to indicate megabytes, or g or G to indicate giga?

 bytes.

 The young generation region of the heap is used for new objects. Page 65/97

 GC is performed in this region more often than in other regions.

 If the size for the young generation is too low, then a large

 number of minor GCs are performed. If the size is too high,

 then only full GCs are performed, which can take a long time to

 complete. It is recommended that you keep the size for the

 young generation greater than 25% and less than 50% of the over?

 all heap size.

 The following examples show how to set the initial size of the

 young generation to 256 MB using various units:

 -XX:NewSize=256m

 -XX:NewSize=262144k

 -XX:NewSize=268435456

 The -XX:NewSize option is equivalent to -Xmn.

 -XX:ParallelGCThreads=threads

 Sets the number of the stop-the-world (STW) worker threads. The

 default value depends on the number of CPUs available to the JVM

 and the garbage collector selected.

 For example, to set the number of threads for G1 GC to 2, speci?

 fy the following option:

 -XX:ParallelGCThreads=2

 -XX:+ParallelRefProcEnabled

 Enables parallel reference processing. By default, this option

 is disabled.

 -XX:+PrintAdaptiveSizePolicy

 Enables printing of information about adaptive-generation siz?

 ing. By default, this option is disabled.

 -XX:+ScavengeBeforeFullGC

 Enables GC of the young generation before each full GC. This

 option is enabled by default. It is recommended that you don't

 disable it, because scavenging the young generation before a

 full GC can reduce the number of objects reachable from the old

 generation space into the young generation space. To disable GC

 of the young generation before each full GC, specify the option Page 66/97

 -XX:-ScavengeBeforeFullGC.

 -XX:SoftRefLRUPolicyMSPerMB=time

 Sets the amount of time (in milliseconds) a softly reachable ob?

 ject is kept active on the heap after the last time it was ref?

 erenced. The default value is one second of lifetime per free

 megabyte in the heap. The -XX:SoftRefLRUPolicyMSPerMB option

 accepts integer values representing milliseconds per one

 megabyte of the current heap size (for Java HotSpot Client VM)

 or the maximum possible heap size (for Java HotSpot Server VM).

 This difference means that the Client VM tends to flush soft

 references rather than grow the heap, whereas the Server VM

 tends to grow the heap rather than flush soft references. In

 the latter case, the value of the -Xmx option has a significant

 effect on how quickly soft references are garbage collected.

 The following example shows how to set the value to 2.5 seconds:

 -XX:SoftRefLRUPolicyMSPerMB=2500

 -XX:-ShrinkHeapInSteps

 Incrementally reduces the Java heap to the target size, speci?

 fied by the option -XX:MaxHeapFreeRatio. This option is enabled

 by default. If disabled, then it immediately reduces the Java

 heap to the target size instead of requiring multiple garbage

 collection cycles. Disable this option if you want to minimize

 the Java heap size. You will likely encounter performance

 degradation when this option is disabled.

 See Performance Tuning Examples for a description of using the

 MaxHeapFreeRatio option to keep the Java heap small by reducing

 the dynamic footprint for embedded applications.

 -XX:StringDeduplicationAgeThreshold=threshold

 Identifies String objects reaching the specified age that are

 considered candidates for deduplication. An object's age is a

 measure of how many times it has survived garbage collection.

 This is sometimes referred to as tenuring.

 Note: String objects that are promoted to an old heap re? Page 67/97

 gion before this age has been reached are always consid?

 ered candidates for deduplication. The default value for

 this option is 3. See the -XX:+UseStringDeduplication

 option.

 -XX:SurvivorRatio=ratio

 Sets the ratio between eden space size and survivor space size.

 By default, this option is set to 8. The following example

 shows how to set the eden/survivor space ratio to 4:

 -XX:SurvivorRatio=4

 -XX:TargetSurvivorRatio=percent

 Sets the desired percentage of survivor space (0 to 100) used

 after young garbage collection. By default, this option is set

 to 50%.

 The following example shows how to set the target survivor space

 ratio to 30%:

 -XX:TargetSurvivorRatio=30

 -XX:TLABSize=size

 Sets the initial size (in bytes) of a thread-local allocation

 buffer (TLAB). Append the letter k or K to indicate kilobytes,

 m or M to indicate megabytes, or g or G to indicate gigabytes.

 If this option is set to 0, then the JVM selects the initial

 size automatically.

 The following example shows how to set the initial TLAB size to

 512 KB:

 -XX:TLABSize=512k

 -XX:+UseAdaptiveSizePolicy

 Enables the use of adaptive generation sizing. This option is

 enabled by default. To disable adaptive generation sizing,

 specify -XX:-UseAdaptiveSizePolicy and set the size of the memo?

 ry allocation pool explicitly. See the -XX:SurvivorRatio op?

 tion.

 -XX:+UseG1GC

 Enables the use of the garbage-first (G1) garbage collector. Page 68/97

 It's a server-style garbage collector, targeted for multiproces?

 sor machines with a large amount of RAM. This option meets GC

 pause time goals with high probability, while maintaining good

 throughput. The G1 collector is recommended for applications

 requiring large heaps (sizes of around 6 GB or larger) with lim?

 ited GC latency requirements (a stable and predictable pause

 time below 0.5 seconds). By default, this option is enabled and

 G1 is used as the default garbage collector.

 -XX:+UseGCOverheadLimit

 Enables the use of a policy that limits the proportion of time

 spent by the JVM on GC before an OutOfMemoryError exception is

 thrown. This option is enabled, by default, and the parallel GC

 will throw an OutOfMemoryError if more than 98% of the total

 time is spent on garbage collection and less than 2% of the heap

 is recovered. When the heap is small, this feature can be used

 to prevent applications from running for long periods of time

 with little or no progress. To disable this option, specify the

 option -XX:-UseGCOverheadLimit.

 -XX:+UseNUMA

 Enables performance optimization of an application on a machine

 with nonuniform memory architecture (NUMA) by increasing the ap?

 plication's use of lower latency memory. By default, this op?

 tion is disabled and no optimization for NUMA is made. The op?

 tion is available only when the parallel garbage collector is

 used (-XX:+UseParallelGC).

 -XX:+UseParallelGC

 Enables the use of the parallel scavenge garbage collector (also

 known as the throughput collector) to improve the performance of

 your application by leveraging multiple processors.

 By default, this option is disabled and the default collector is

 used.

 -XX:+UseSerialGC

 Enables the use of the serial garbage collector. This is gener? Page 69/97

 ally the best choice for small and simple applications that

 don't require any special functionality from garbage collection.

 By default, this option is disabled and the default collector is

 used.

 -XX:+UseSHM

 Linux only: Enables the JVM to use shared memory to set up large

 pages.

 See Large Pages for setting up large pages.

 -XX:+UseStringDeduplication

 Enables string deduplication. By default, this option is dis?

 abled. To use this option, you must enable the garbage-first

 (G1) garbage collector.

 String deduplication reduces the memory footprint of String ob?

 jects on the Java heap by taking advantage of the fact that many

 String objects are identical. Instead of each String object

 pointing to its own character array, identical String objects

 can point to and share the same character array.

 -XX:+UseTLAB

 Enables the use of thread-local allocation blocks (TLABs) in the

 young generation space. This option is enabled by default. To

 disable the use of TLABs, specify the option -XX:-UseTLAB.

 -XX:+UseZGC

 Enables the use of the Z garbage collector (ZGC). This is a low

 latency garbage collector, providing max pause times of a few

 milliseconds, at some throughput cost. Pause times are indepen?

 dent of what heap size is used. Supports heap sizes from 8MB to

 16TB.

 -XX:ZAllocationSpikeTolerance=factor

 Sets the allocation spike tolerance for ZGC. By default, this

 option is set to 2.0. This factor describes the level of allo?

 cation spikes to expect. For example, using a factor of 3.0

 means the current allocation rate can be expected to triple at

 any time. Page 70/97

 -XX:ZCollectionInterval=seconds

 Sets the maximum interval (in seconds) between two GC cycles

 when using ZGC. By default, this option is set to 0 (disabled).

 -XX:ZFragmentationLimit=percent

 Sets the maximum acceptable heap fragmentation (in percent) for

 ZGC. By default, this option is set to 25. Using a lower value

 will cause the heap to be compacted more aggressively, to re?

 claim more memory at the cost of using more CPU time.

 -XX:+ZProactive

 Enables proactive GC cycles when using ZGC. By default, this

 option is enabled. ZGC will start a proactive GC cycle if doing

 so is expected to have minimal impact on the running applica?

 tion. This is useful if the application is mostly idle or allo?

 cates very few objects, but you still want to keep the heap size

 down and allow reference processing to happen even when there

 are a lot of free space on the heap.

 -XX:+ZUncommit

 Enables uncommitting of unused heap memory when using ZGC. By

 default, this option is enabled. Uncommitting unused heap memo?

 ry will lower the memory footprint of the JVM, and make that

 memory available for other processes to use.

 -XX:ZUncommitDelay=seconds

 Sets the amount of time (in seconds) that heap memory must have

 been unused before being uncommitted. By default, this option

 is set to 300 (5 minutes). Committing and uncommitting memory

 are relatively expensive operations. Using a lower value will

 cause heap memory to be uncommitted earlier, at the risk of soon

 having to commit it again.

DEPRECATED JAVA OPTIONS

 These java options are deprecated and might be removed in a future JDK

 release. They're still accepted and acted upon, but a warning is is?

 sued when they're used.

 -Xfuture Page 71/97

 Enables strict class-file format checks that enforce close con?

 formance to the class-file format specification. Developers

 should use this flag when developing new code. Stricter checks

 may become the default in future releases.

 -Xloggc:filename

 Sets the file to which verbose GC events information should be

 redirected for logging. The -Xloggc option overrides -ver?

 bose:gc if both are given with the same java command. -Xlog?

 gc:filename is replaced by -Xlog:gc:filename. See Enable Log?

 ging with the JVM Unified Logging Framework.

 Example:

 -Xlog:gc:garbage-collection.log

 -XX:+FlightRecorder

 Enables the use of Java Flight Recorder (JFR) during the runtime

 of the application. Since JDK 8u40 this option has not been re?

 quired to use JFR.

 -XX:InitialRAMFraction=ratio

 Sets the initial amount of memory that the JVM may use for the

 Java heap before applying ergonomics heuristics as a ratio of

 the maximum amount determined as described in the -XX:MaxRAM op?

 tion. The default value is 64.

 Use the option -XX:InitialRAMPercentage instead.

 -XX:MaxRAMFraction=ratio

 Sets the maximum amount of memory that the JVM may use for the

 Java heap before applying ergonomics heuristics as a fraction of

 the maximum amount determined as described in the -XX:MaxRAM op?

 tion. The default value is 4.

 Specifying this option disables automatic use of compressed oops

 if the combined result of this and other options influencing the

 maximum amount of memory is larger than the range of memory ad?

 dressable by compressed oops. See -XX:UseCompressedOops for

 further information about compressed oops.

 Use the option -XX:MaxRAMPercentage instead. Page 72/97

 -XX:MinRAMFraction=ratio

 Sets the maximum amount of memory that the JVM may use for the

 Java heap before applying ergonomics heuristics as a fraction of

 the maximum amount determined as described in the -XX:MaxRAM op?

 tion for small heaps. A small heap is a heap of approximately

 125 MB. The default value is 2.

 Use the option -XX:MinRAMPercentage instead.

OBSOLETE JAVA OPTIONS

 These java options are still accepted but ignored, and a warning is is?

 sued when they're used.

 --illegal-access=parameter

 Controlled relaxed strong encapsulation, as defined in JEP 261

 [https://openjdk.org/jeps/261#Relaxed-strong-encapsulation].

 This option was deprecated in JDK 16 by JEP 396 [https://open?

 jdk.org/jeps/396] and made obsolete in JDK 17 by JEP 403

 [https://openjdk.org/jeps/403].

 -XX:+ExtendedDTraceProbes

 Linux and macOS: Enables additional dtrace tool probes that af?

 fect performance. By default, this option is disabled and

 dtrace performs only standard probes. Use the combination of

 these flags instead: -XX:+DTraceMethodProbes, -XX:+DTraceAl?

 locProbes, -XX:+DTraceMonitorProbes.

REMOVED JAVA OPTIONS

 No documented java options have been removed in JDK 20.

 For the lists and descriptions of options removed in previous releases

 see the Removed Java Options section in:

 ? The java Command, Release 19 [https://docs.oracle.com/en/ja?

 va/javase/19/docs/specs/man/java.html]

 ? The java Command, Release 18 [https://docs.oracle.com/en/ja?

 va/javase/18/docs/specs/man/java.html]

 ? The java Command, Release 17 [https://docs.oracle.com/en/ja?

 va/javase/17/docs/specs/man/java.html]

 ? The java Command, Release 16 [https://docs.oracle.com/en/ja? Page 73/97

 va/javase/16/docs/specs/man/java.html]

 ? The java Command, Release 15 [https://docs.oracle.com/en/ja?

 va/javase/15/docs/specs/man/java.html]

 ? The java Command, Release 14 [https://docs.oracle.com/en/ja?

 va/javase/14/docs/specs/man/java.html]

 ? The java Command, Release 13 [https://docs.oracle.com/en/ja?

 va/javase/13/docs/specs/man/java.html]

 ? Java Platform, Standard Edition Tools Reference, Release 12

 [https://docs.oracle.com/en/java/javase/12/tools/ja?

 va.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE]

 ? Java Platform, Standard Edition Tools Reference, Release 11

 [https://docs.oracle.com/en/java/javase/11/tools/ja?

 va.html#GUID-741FC470-AA3E-494A-8D2B-1B1FE4A990D1]

 ? Java Platform, Standard Edition Tools Reference, Release 10

 [https://docs.oracle.com/javase/10/tools/java.htm#JSWOR624]

 ? Java Platform, Standard Edition Tools Reference, Release 9

 [https://docs.oracle.com/javase/9/tools/java.htm#JSWOR624]

 ? Java Platform, Standard Edition Tools Reference, Release 8 for Oracle

 JDK on Windows [https://docs.oracle.com/javase/8/docs/tech?

 notes/tools/windows/java.html#BGBCIEFC]

 ? Java Platform, Standard Edition Tools Reference, Release 8 for Oracle

 JDK on Solaris, Linux, and macOS [https://docs.ora?

 cle.com/javase/8/docs/technotes/tools/unix/java.html#BGBCIEFC]

JAVA COMMAND-LINE ARGUMENT FILES

 You can shorten or simplify the java command by using @ argument files

 to specify one or more text files that contain arguments, such as op?

 tions and class names, which are passed to the java command. This

 let's you to create java commands of any length on any operating sys?

 tem.

 In the command line, use the at sign (@) prefix to identify an argument

 file that contains java options and class names. When the java command

 encounters a file beginning with the at sign (@), it expands the con?

 tents of that file into an argument list just as they would be speci? Page 74/97

 fied on the command line.

 The java launcher expands the argument file contents until it encoun?

 ters the --disable-@files option. You can use the --disable-@files op?

 tion anywhere on the command line, including in an argument file, to

 stop @ argument files expansion.

 The following items describe the syntax of java argument files:

 ? The argument file must contain only ASCII characters or characters in

 system default encoding that's ASCII friendly, such as UTF-8.

 ? The argument file size must not exceed MAXINT (2,147,483,647) bytes.

 ? The launcher doesn't expand wildcards that are present within an ar?

 gument file.

 ? Use white space or new line characters to separate arguments included

 in the file.

 ? White space includes a white space character, \t, \n, \r, and \f.

 For example, it is possible to have a path with a space, such as

 c:\Program Files that can be specified as either "c:\\Program Files"

 or, to avoid an escape, c:\Program" "Files.

 ? Any option that contains spaces, such as a path component, must be

 within quotation marks using quotation ('"') characters in its en?

 tirety.

 ? A string within quotation marks may contain the characters \n, \r,

 \t, and \f. They are converted to their respective ASCII codes.

 ? If a file name contains embedded spaces, then put the whole file name

 in double quotation marks.

 ? File names in an argument file are relative to the current directory,

 not to the location of the argument file.

 ? Use the number sign # in the argument file to identify comments. All

 characters following the # are ignored until the end of line.

 ? Additional at sign @ prefixes to @ prefixed options act as an escape,

 (the first @ is removed and the rest of the arguments are presented

 to the launcher literally).

 ? Lines may be continued using the continuation character (\) at the

 end-of-line. The two lines are concatenated with the leading white Page 75/97

 spaces trimmed. To prevent trimming the leading white spaces, a con?

 tinuation character (\) may be placed at the first column.

 ? Because backslash (\) is an escape character, a backslash character

 must be escaped with another backslash character.

 ? Partial quote is allowed and is closed by an end-of-file.

 ? An open quote stops at end-of-line unless \ is the last character,

 which then joins the next line by removing all leading white space

 characters.

 ? Wildcards (*) aren't allowed in these lists (such as specifying *.ja?

 va).

 ? Use of the at sign (@) to recursively interpret files isn't support?

 ed.

 Example of Open or Partial Quotes in an Argument File

 In the argument file,

 -cp "lib/

 cool/

 app/

 jars

 this is interpreted as:

 -cp lib/cool/app/jars

 Example of a Backslash Character Escaped with Another Backslash Character

 in an Argument File

 To output the following:

 -cp c:\Program Files (x86)\Java\jre\lib\ext;c:\Program Files\Ja?

 va\jre9\lib\ext

 The backslash character must be specified in the argument file as:

 -cp "c:\\Program Files (x86)\\Java\\jre\\lib\\ext;c:\\Program

 Files\\Java\\jre9\\lib\\ext"

 Example of an EOL Escape Used to Force Concatenation of Lines in an Argu?

 ment File

 In the argument file,

 -cp "/lib/cool app/jars:\

 /lib/another app/jars" Page 76/97

 This is interpreted as:

 -cp /lib/cool app/jars:/lib/another app/jars

 Example of Line Continuation with Leading Spaces in an Argument File

 In the argument file,

 -cp "/lib/cool\

 \app/jars"

 This is interpreted as:

 -cp /lib/cool app/jars

 Examples of Using Single Argument File

 You can use a single argument file, such as myargumentfile in the fol?

 lowing example, to hold all required java arguments:

 java @myargumentfile

 Examples of Using Argument Files with Paths

 You can include relative paths in argument files; however, they're rel?

 ative to the current working directory and not to the paths of the ar?

 gument files themselves. In the following example, path1/options and

 path2/options represent argument files with different paths. Any rela?

 tive paths that they contain are relative to the current working direc?

 tory and not to the argument files:

 java @path1/options @path2/classes

CODE HEAP STATE ANALYTICS

 Overview

 There are occasions when having insight into the current state of the

 JVM code heap would be helpful to answer questions such as:

 ? Why was the JIT turned off and then on again and again?

 ? Where has all the code heap space gone?

 ? Why is the method sweeper not working effectively?

 To provide this insight, a code heap state analytics feature has been

 implemented that enables on-the-fly analysis of the code heap. The an?

 alytics process is divided into two parts. The first part examines the

 entire code heap and aggregates all information that is believed to be

 useful or important. The second part consists of several independent

 steps that print the collected information with an emphasis on differ? Page 77/97

 ent aspects of the data. Data collection and printing are done on an

 "on request" basis.

 Syntax

 Requests for real-time, on-the-fly analysis can be issued with the fol?

 lowing command:

 jcmd pid Compiler.CodeHeap_Analytics [function] [granularity]

 If you are only interested in how the code heap looks like after run?

 ning a sample workload, you can use the command line option:

 -Xlog:codecache=Trace

 To see the code heap state when a "CodeCache full" condition exists,

 start the VM with the command line option:

 -Xlog:codecache=Debug

 See CodeHeap State Analytics (OpenJDK) [https://bugs.openjdk.org/se?

 cure/attachment/75649/JVM_CodeHeap_StateAnalytics_V2.pdf] for a de?

 tailed description of the code heap state analytics feature, the sup?

 ported functions, and the granularity options.

ENABLE LOGGING WITH THE JVM UNIFIED LOGGING FRAMEWORK

 You use the -Xlog option to configure or enable logging with the Java

 Virtual Machine (JVM) unified logging framework.

 Synopsis

 -Xlog[:[what][:[output][:[decorators][:output-options[,...]]]]]

 -Xlog:directive

 what Specifies a combination of tags and levels of the form

 tag1[+tag2...][*][=level][,...]. Unless the wildcard (*) is

 specified, only log messages tagged with exactly the tags speci?

 fied are matched. See -Xlog Tags and Levels.

 output Sets the type of output. Omitting the output type defaults to

 stdout. See -Xlog Output.

 decorators

 Configures the output to use a custom set of decorators. Omit?

 ting decorators defaults to uptime, level, and tags. See Deco?

 rations.

 output-options Page 78/97

 Sets the -Xlog logging output options.

 directive

 A global option or subcommand: help, disable, async

 Description

 The Java Virtual Machine (JVM) unified logging framework provides a

 common logging system for all components of the JVM. GC logging for

 the JVM has been changed to use the new logging framework. The mapping

 of old GC flags to the corresponding new Xlog configuration is de?

 scribed in Convert GC Logging Flags to Xlog. In addition, runtime log?

 ging has also been changed to use the JVM unified logging framework.

 The mapping of legacy runtime logging flags to the corresponding new

 Xlog configuration is described in Convert Runtime Logging Flags to

 Xlog.

 The following provides quick reference to the -Xlog command and syntax

 for options:

 -Xlog Enables JVM logging on an info level.

 -Xlog:help

 Prints -Xlog usage syntax and available tags, levels, and deco?

 rators along with example command lines with explanations.

 -Xlog:disable

 Turns off all logging and clears all configuration of the log?

 ging framework including the default configuration for warnings

 and errors.

 -Xlog[:option]

 Applies multiple arguments in the order that they appear on the

 command line. Multiple -Xlog arguments for the same output

 override each other in their given order.

 The option is set as:

 [tag-selection][:[output][:[decorators][:output-op?

 tions]]]

 Omitting the tag-selection defaults to a tag-set of all and a

 level of info.

 tag[+...] all Page 79/97

 The all tag is a meta tag consisting of all tag-sets available.

 The asterisk * in a tag set definition denotes a wildcard tag

 match. Matching with a wildcard selects all tag sets that con?

 tain at least the specified tags. Without the wildcard, only

 exact matches of the specified tag sets are selected.

 output-options is

 filecount=file-count filesize=file size with optional K,

 M or G suffix foldmultilines=<true|false>

 When foldmultilines is true, a log event that consists of multi?

 ple lines will be folded into a single line by replacing newline

 characters with the sequence '\' and 'n' in the output. Exist?

 ing single backslash characters will also be replaced with a se?

 quence of two backslashes so that the conversion can be re?

 versed. This option is safe to use with UTF-8 character encod?

 ings, but other encodings may not work. For example, it may in?

 correctly convert multi-byte sequences in Shift JIS and BIG5.

 Default Configuration

 When the -Xlog option and nothing else is specified on the command

 line, the default configuration is used. The default configuration

 logs all messages with a level that matches either warning or error re?

 gardless of what tags the message is associated with. The default con?

 figuration is equivalent to entering the following on the command line:

 -Xlog:all=warning:stdout:uptime,level,tags

 Controlling Logging at Runtime

 Logging can also be controlled at run time through Diagnostic Commands

 (with the jcmd utility). Everything that can be specified on the com?

 mand line can also be specified dynamically with the VM.log command.

 As the diagnostic commands are automatically exposed as MBeans, you can

 use JMX to change logging configuration at run time.

 -Xlog Tags and Levels

 Each log message has a level and a tag set associated with it. The

 level of the message corresponds to its details, and the tag set corre?

 sponds to what the message contains or which JVM component it involves Page 80/97

 (such as, gc, jit, or os). Mapping GC flags to the Xlog configuration

 is described in Convert GC Logging Flags to Xlog. Mapping legacy run?

 time logging flags to the corresponding Xlog configuration is described

 in Convert Runtime Logging Flags to Xlog.

 Available log levels:

 ? off

 ? trace

 ? debug

 ? info

 ? warning

 ? error

 Available log tags:

 There are literally dozens of log tags, which in the right combina?

 tions, will enable a range of logging output. The full set of avail?

 able log tags can be seen using -Xlog:help. Specifying all instead of

 a tag combination matches all tag combinations.

 -Xlog Output

 The -Xlog option supports the following types of outputs:

 ? stdout --- Sends output to stdout

 ? stderr --- Sends output to stderr

 ? file=filename --- Sends output to text file(s).

 When using file=filename, specifying %p and/or %t in the file name ex?

 pands to the JVM's PID and startup timestamp, respectively. You can

 also configure text files to handle file rotation based on file size

 and a number of files to rotate. For example, to rotate the log file

 every 10 MB and keep 5 files in rotation, specify the options file?

 size=10M, filecount=5. The target size of the files isn't guaranteed

 to be exact, it's just an approximate value. Files are rotated by de?

 fault with up to 5 rotated files of target size 20 MB, unless config?

 ured otherwise. Specifying filecount=0 means that the log file

 shouldn't be rotated. There's a possibility of the pre-existing log

 file getting overwritten.

 -Xlog Output Mode Page 81/97

 By default logging messages are output synchronously - each log message

 is written to the designated output when the logging call is made. But

 you can instead use asynchronous logging mode by specifying:

 -Xlog:async

 Write all logging asynchronously.

 In asynchronous logging mode, log sites enqueue all logging messages to

 an intermediate buffer and a standalone thread is responsible for

 flushing them to the corresponding outputs. The intermediate buffer is

 bounded and on buffer exhaustion the enqueuing message is discarded.

 Log entry write operations are guaranteed non-blocking.

 The option -XX:AsyncLogBufferSize=N specifies the memory budget in

 bytes for the intermediate buffer. The default value should be big

 enough to cater for most cases. Users can provide a custom value to

 trade memory overhead for log accuracy if they need to.

 Decorations

 Logging messages are decorated with information about the message. You

 can configure each output to use a custom set of decorators. The order

 of the output is always the same as listed in the table. You can con?

 figure the decorations to be used at run time. Decorations are

 prepended to the log message. For example:

 [6.567s][info][gc,old] Old collection complete

 Omitting decorators defaults to uptime, level, and tags. The none dec?

 orator is special and is used to turn off all decorations.

 time (t), utctime (utc), uptime (u), timemillis (tm), uptimemillis

 (um), timenanos (tn), uptimenanos (un), hostname (hn), pid (p), tid

 (ti), level (l), tags (tg) decorators can also be specified as none for

 no decoration.

 Logging Messages Decorations

 Decorations Description

 ??

 time or t Current time and date in ISO-8601 format.

 utctime or utc Universal Time Coordinated or Coordinated Universal

 Time. Page 82/97

 uptime or u Time since the start of the JVM in seconds and mil?

 liseconds. For example, 6.567s.

 timemillis or The same value as generated by System.currentTimeMil?

 tm lis()

 uptimemillis or Milliseconds since the JVM started.

 um

 timenanos or tn The same value generated by System.nanoTime().

 uptimenanos or Nanoseconds since the JVM started.

 un

 hostname or hn The host name.

 pid or p The process identifier.

 tid or ti The thread identifier.

 level or l The level associated with the log message.

 tags or tg The tag-set associated with the log message.

 Convert GC Logging Flags to Xlog

 Legacy GC Logging Flags to Xlog Configuration Mapping

 Legacy Garbage Collec? Xlog Configura? Comment

 tion (GC) Flag tion

 ???

 G1PrintHeapRegions -Xlog:gc+re? Not Applicable

 gion=trace

 GCLogFileSize No configuration Log rotation is handled by the

 available framework.

 NumberOfGCLogFiles Not Applicable Log rotation is handled by the

 framework.

 PrintAdaptiveSizePoli? -Xlog:gc+er? Use a level of debug for most

 cy go*=level of the information, or a level

 of trace for all of what was

 logged for PrintAdaptive?

 SizePolicy.

 PrintGC -Xlog:gc Not Applicable

 PrintGCApplicationCon? -Xlog:safepoint Note that PrintGCApplication?

 currentTime ConcurrentTime and PrintGCAp? Page 83/97

 plicationStoppedTime are logged

 on the same tag and aren't sep?

 arated in the new logging.

 PrintGCApplication? -Xlog:safepoint Note that PrintGCApplication?

 StoppedTime ConcurrentTime and PrintGCAp?

 plicationStoppedTime are logged

 on the same tag and not sepa?

 rated in the new logging.

 PrintGCCause Not Applicable GC cause is now always logged.

 PrintGCDateStamps Not Applicable Date stamps are logged by the

 framework.

 PrintGCDetails -Xlog:gc* Not Applicable

 PrintGCID Not Applicable GC ID is now always logged.

 PrintGCTaskTimeStamps -Xlog:gc+task*=de? Not Applicable

 bug

 PrintGCTimeStamps Not Applicable Time stamps are logged by the

 framework.

 PrintHeapAtGC -Xlog:gc+heap=trace Not Applicable

 PrintReferenceGC -Xlog:gc+ref*=debug Note that in the old logging,

 PrintReferenceGC had an effect

 only if PrintGCDetails was also

 enabled.

 PrintStringDeduplica? `-Xlog:gc+stringdedup*=de? ` Not Applicable

 tionStatistics bug

 PrintTenuringDistribu? -Xlog:gc+age*=level Use a level of debug for the

 tion most relevant information, or a

 level of trace for all of what

 was logged for PrintTenur?

 ingDistribution.

 UseGCLogFileRotation Not Applicable What was logged for PrintTenur?

 ingDistribution.

 Convert Runtime Logging Flags to Xlog

 These legacy flags are no longer recognized and will cause an error if Page 84/97

 used directly. Use their unified logging equivalent instead.

 Runtime Logging Flags to Xlog Configuration Mapping

 Legacy Runtime Xlog Configuration Comment

 Flag

 ??

 TraceExceptions -Xlog:exceptions=in? Not Applicable

 fo

 TraceClassLoad? -Xlog:class+load=lev? Use level=info for regular informa?

 ing el tion, or level=debug for additional

 information. In Unified Logging

 syntax, -verbose:class equals

 -Xlog:class+load=info,class+un?

 load=info.

 TraceClassLoad? -Xlog:class+pre? Not Applicable

 ingPreorder order=debug

 TraceClassUn? -Xlog:class+un? Use level=info for regular informa?

 loading load=level tion, or level=trace for additional

 information. In Unified Logging

 syntax, -verbose:class equals

 -Xlog:class+load=info,class+un?

 load=info.

 VerboseVerifi? -Xlog:verifica? Not Applicable

 cation tion=info

 TraceClassPaths -Xlog:class+path=info Not Applicable

 TraceClassReso? -Xlog:class+re? Not Applicable

 lution solve=debug

 TraceClassIni? -Xlog:class+init=info Not Applicable

 tialization

 TraceLoaderCon? -Xlog:class+load? Not Applicable

 straints er+constraints=info

 TraceClassLoad? -Xlog:class+load? Use level=debug for regular infor?

 erData er+data=level mation or level=trace for addition?

 al information. Page 85/97

 TraceSafepoint? -Xlog:safe? Not Applicable

 CleanupTime point+cleanup=info

 TraceSafepoint -Xlog:safepoint=debug Not Applicable

 TraceMonitorIn? -Xlog:monitorinfla? Not Applicable

 flation tion=debug

 TraceRede? -Xlog:rede? level=info, debug, and trace pro?

 fineClasses fine+class*=level vide increasing amounts of informa?

 tion.

 -Xlog Usage Examples

 The following are -Xlog examples.

 -Xlog Logs all messages by using the info level to stdout with uptime,

 levels, and tags decorations. This is equivalent to using:

 -Xlog:all=info:stdout:uptime,levels,tags

 -Xlog:gc

 Logs messages tagged with the gc tag using info level to stdout.

 The default configuration for all other messages at level warn?

 ing is in effect.

 -Xlog:gc,safepoint

 Logs messages tagged either with the gc or safepoint tags, both

 using the info level, to stdout, with default decorations. Mes?

 sages tagged with both gc and safepoint won't be logged.

 -Xlog:gc+ref=debug

 Logs messages tagged with both gc and ref tags, using the debug

 level to stdout, with default decorations. Messages tagged only

 with one of the two tags won't be logged.

 -Xlog:gc=debug:file=gc.txt:none

 Logs messages tagged with the gc tag using the debug level to a

 file called gc.txt with no decorations. The default configura?

 tion for all other messages at level warning is still in effect.

 -Xlog:gc=trace:file=gctrace.txt:uptimemillis,pids:filecount=5,file?

 size=1024

 Logs messages tagged with the gc tag using the trace level to a

 rotating file set with 5 files with size 1 MB with the base name Page 86/97

 gctrace.txt and uses decorations uptimemillis and pid.

 The default configuration for all other messages at level warn?

 ing is still in effect.

 -Xlog:gc::uptime,tid

 Logs messages tagged with the gc tag using the default 'info'

 level to default the output stdout and uses decorations uptime

 and tid. The default configuration for all other messages at

 level warning is still in effect.

 -Xlog:gc*=info,safepoint*=off

 Logs messages tagged with at least gc using the info level, but

 turns off logging of messages tagged with safepoint. Messages

 tagged with both gc and safepoint won't be logged.

 -Xlog:disable -Xlog:safepoint=trace:safepointtrace.txt

 Turns off all logging, including warnings and errors, and then

 enables messages tagged with safepointusing tracelevel to the

 file safepointtrace.txt. The default configuration doesn't ap?

 ply, because the command line started with -Xlog:disable.

 Complex -Xlog Usage Examples

 The following describes a few complex examples of using the -Xlog op?

 tion.

 -Xlog:gc+class*=debug

 Logs messages tagged with at least gc and class tags using the

 debug level to stdout. The default configuration for all other

 messages at the level warning is still in effect

 -Xlog:gc+meta*=trace,class*=off:file=gcmetatrace.txt

 Logs messages tagged with at least the gc and meta tags using

 the trace level to the file metatrace.txt but turns off all mes?

 sages tagged with class. Messages tagged with gc, meta, and

 class aren't be logged as class* is set to off. The default

 configuration for all other messages at level warning is in ef?

 fect except for those that include class.

 -Xlog:gc+meta=trace

 Logs messages tagged with exactly the gc and meta tags using the Page 87/97

 trace level to stdout. The default configuration for all other

 messages at level warning is still be in effect.

 -Xlog:gc+class+heap*=debug,meta*=warning,threads*=off

 Logs messages tagged with at least gc, class, and heap tags us?

 ing the trace level to stdout but only log messages tagged with

 meta with level. The default configuration for all other mes?

 sages at the level warning is in effect except for those that

 include threads.

VALIDATE JAVA VIRTUAL MACHINE FLAG ARGUMENTS

 You use values provided to all Java Virtual Machine (JVM) command-line

 flags for validation and, if the input value is invalid or out-of-

 range, then an appropriate error message is displayed.

 Whether they're set ergonomically, in a command line, by an input tool,

 or through the APIs (for example, classes contained in the package ja?

 va.lang.management) the values provided to all Java Virtual Machine

 (JVM) command-line flags are validated. Ergonomics are described in

 Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collec?

 tion Tuning Guide.

 Range and constraints are validated either when all flags have their

 values set during JVM initialization or a flag's value is changed dur?

 ing runtime (for example using the jcmd tool). The JVM is terminated

 if a value violates either the range or constraint check and an appro?

 priate error message is printed on the error stream.

 For example, if a flag violates a range or a constraint check, then the

 JVM exits with an error:

 java -XX:AllocatePrefetchStyle=5 -version

 intx AllocatePrefetchStyle=5 is outside the allowed range [0 ... 3]

 Improperly specified VM option 'AllocatePrefetchStyle=5'

 Error: Could not create the Java Virtual Machine.

 Error: A fatal exception has occurred. Program will exit.

 The flag -XX:+PrintFlagsRanges prints the range of all the flags. This

 flag allows automatic testing of the flags by the values provided by

 the ranges. For the flags that have the ranges specified, the type, Page 88/97

 name, and the actual range is printed in the output.

 For example,

 intx ThreadStackSize [0 ... 9007199254740987] {pd product}

 For the flags that don't have the range specified, the values aren't

 displayed in the print out. For example:

 size_t NewSize [...] {product}

 This helps to identify the flags that need to be implemented. The au?

 tomatic testing framework can skip those flags that don't have values

 and aren't implemented.

LARGE PAGES

 You use large pages, also known as huge pages, as memory pages that are

 significantly larger than the standard memory page size (which varies

 depending on the processor and operating system). Large pages optimize

 processor Translation-Lookaside Buffers.

 A Translation-Lookaside Buffer (TLB) is a page translation cache that

 holds the most-recently used virtual-to-physical address translations.

 A TLB is a scarce system resource. A TLB miss can be costly because

 the processor must then read from the hierarchical page table, which

 may require multiple memory accesses. By using a larger memory page

 size, a single TLB entry can represent a larger memory range. This re?

 sults in less pressure on a TLB, and memory-intensive applications may

 have better performance.

 However, using large pages can negatively affect system performance.

 For example, when a large amount of memory is pinned by an application,

 it may create a shortage of regular memory and cause excessive paging

 in other applications and slow down the entire system. Also, a system

 that has been up for a long time could produce excessive fragmentation,

 which could make it impossible to reserve enough large page memory.

 When this happens, either the OS or JVM reverts to using regular pages.

 Linux and Windows support large pages.

 Large Pages Support for Linux

 Linux supports large pages since version 2.6. To check if your envi?

 ronment supports large pages, try the following: Page 89/97

 # cat /proc/meminfo | grep Huge

 HugePages_Total: 0

 HugePages_Free: 0

 ...

 Hugepagesize: 2048 kB

 If the output contains items prefixed with "Huge", then your system

 supports large pages. The values may vary depending on environment.

 The Hugepagesize field shows the default large page size in your envi?

 ronment, and the other fields show details for large pages of this

 size. Newer kernels have support for multiple large page sizes. To

 list the supported page sizes, run this:

 # ls /sys/kernel/mm/hugepages/

 hugepages-1048576kB hugepages-2048kB

 The above environment supports 2 MB and 1 GB large pages, but they need

 to be configured so that the JVM can use them. When using large pages

 and not enabling transparent huge pages (option -XX:+UseTransparen?

 tHugePages), the number of large pages must be pre-allocated. For ex?

 ample, to enable 8 GB of memory to be backed by 2 MB large pages, login

 as root and run:

 # echo 4096 > /sys/ker?

 nel/mm/hugepages/hugepages-2048kB/nr_hugepages

 It is always recommended to check the value of nr_hugepages after the

 request to make sure the kernel was able to allocate the requested num?

 ber of large pages.

 When using the option -XX:+UseSHM to enable large pages you also need

 to make sure the SHMMAX parameter is configured to allow large enough

 shared memory segments to be allocated. To allow a maximum shared seg?

 ment of 8 GB, login as root and run:

 # echo 8589934592 > /proc/sys/kernel/shmmax

 In some environments this is not needed since the default value is

 large enough, but it is important to make sure the value is large

 enough to fit the amount of memory intended to be backed by large

 pages. Page 90/97

 Note: The values contained in /proc and /sys reset after you re?

 boot your system, so may want to set them in an initialization

 script (for example, rc.local or sysctl.conf).

 If you configure the OS kernel parameters to enable use of large pages,

 the Java processes may allocate large pages for the Java heap as well

 as other internal areas, for example:

 ? Code cache

 ? Marking bitmaps

 Consequently, if you configure the nr_hugepages parameter to the size

 of the Java heap, then the JVM can still fail to allocate the heap us?

 ing large pages because other areas such as the code cache might al?

 ready have used some of the configured large pages.

 Large Pages Support for Windows

 To use large pages support on Windows, the administrator must first as?

 sign additional privileges to the user who is running the application:

 1. Select Control Panel, Administrative Tools, and then Local Security

 Policy.

 2. Select Local Policies and then User Rights Assignment.

 3. Double-click Lock pages in memory, then add users and/or groups.

 4. Reboot your system.

 Note that these steps are required even if it's the administrator who's

 running the application, because administrators by default don't have

 the privilege to lock pages in memory.

APPLICATION CLASS DATA SHARING

 Application Class Data Sharing (AppCDS) stores classes used by your ap?

 plications in an archive file. Since these classes are stored in a

 format that can be loaded very quickly (compared to classes stored in a

 JAR file), AppCDS can improve the start-up time of your applications.

 In addition, AppCDS can reduce the runtime memory footprint by sharing

 parts of these classes across multiple processes.

 Classes in the CDS archive are stored in an optimized format that's

 about 2 to 5 times larger than classes stored in JAR files or the JDK

 runtime image. Therefore, it's a good idea to archive only those Page 91/97

 classes that are actually used by your application. These usually are

 just a small portion of all available classes. For example, your ap?

 plication may use only a few APIs provided by a large library.

 Using CDS Archives

 By default, in most JDK distributions, unless -Xshare:off is specified,

 the JVM starts up with a default CDS archive, which is usually located

 in JAVA_HOME/lib/server/classes.jsa (or JAVA_HOME\bin\server\class?

 es.jsa on Windows). This archive contains about 1300 core library

 classes that are used by most applications.

 To use CDS for the exact set of classes used by your application, you

 can use the -XX:SharedArchiveFile option, which has the general form:

 -XX:SharedArchiveFile=<static_archive>:<dynamic_archive>

 ? The <static_archive> overrides the default CDS archive.

 ? The <dynamic_archive> provides additional classes that can be loaded

 on top of those in the <static_archive>.

 ? On Windows, the above path delimiter : should be replaced with ;

 (The names "static" and "dynamic" are used for historical reasons. The

 only significance is that the "static" archive is loaded first and the

 "dynamic" archive is loaded second).

 The JVM can use up to two archives. To use only a single <static_ar?

 chive>, you can omit the <dynamic_archive> portion:

 -XX:SharedArchiveFile=<static_archive>

 For convenience, the <dynamic_archive> records the location of the

 <static_archive>. Therefore, you can omit the <static_archive> by say?

 ing only:

 -XX:SharedArchiveFile=<dynamic_archive>

 Manually Creating CDS Archives

 CDS archives can be created manually using several methods:

 ? -Xshare:dump

 ? -XX:ArchiveClassesAtExit

 ? jcmd VM.cds

 One common operation in all these methods is a "trial run", where you

 run the application once to determine the classes that should be stored Page 92/97

 in the archive.

 Creating a Static CDS Archive File with -Xshare:dump

 The following steps create a static CDS archive file that contains all

 the classes used by the test.Hello application.

 1. Create a list of all classes used by the test.Hello application.

 The following command creates a file named hello.classlist that con?

 tains a list of all classes used by this application:

 java -Xshare:off -XX:DumpLoadedClassList=hello.classlist -cp

 hello.jar test.Hello

 The classpath specified by the -cp parameter must contain only JAR

 files.

 2. Create a static archive, named hello.jsa, that contains all the

 classes in hello.classlist:

 java -Xshare:dump -XX:SharedArchiveFile=hello.jsa

 -XX:SharedClassListFile=hello.classlist -cp hello.jar

 3. Run the application test.Hello with the archive hello.jsa:

 java -XX:SharedArchiveFile=hello.jsa -cp hello.jar test.Hel?

 lo

 4. Optional Verify that the test.Hello application is using the class

 contained in the hello.jsa shared archive:

 java -XX:SharedArchiveFile=hello.jsa -cp hello.jar

 -Xlog:class+load test.Hello

 The output of this command should contain the following text:

 [info][class,load] test.Hello source: shared objects file

 Creating a Dynamic CDS Archive File with -XX:ArchiveClassesAtExit

 Advantages of dynamic CDS archives are:

 ? They usually use less disk space, since they don't need to store the

 classes that are already in the static archive.

 ? They are created with one fewer step than the comparable static ar?

 chive.

 The following steps create a dynamic CDS archive file that contains the

 classes that are used by the test.Hello application, excluding those

 that are already in the default CDS archive. Page 93/97

 1. Create a dynamic CDS archive, named hello.jsa, that contains all the

 classes in hello.jar loaded by the application test.Hello:

 java -XX:ArchiveClassesAtExit=hello.jsa -cp hello.jar Hello

 2. Run the application test.Hello with the shared archive hello.jsa:

 java -XX:SharedArchiveFile=hello.jsa -cp hello.jar test.Hel?

 lo

 3. Optional Repeat step 4 of the previous section to verify that the

 test.Hello application is using the class contained in the hello.jsa

 shared archive.

 It's also possible to create a dynamic CDS archive with a non-default

 static CDS archive. E.g.,

 java -XX:SharedArchiveFile=base.jsa -XX:ArchiveClassesAtEx?

 it=hello.jsa -cp hello.jar Hello

 To run the application using this dynamic CDS archive:

 java -XX:SharedArchiveFile=base.jsa:hello.jsa -cp hello.jar Hel?

 lo

 (On Windows, the above path delimiter : should be replaced with ;)

 As mention above, the name of the static archive can be skipped:

 java -XX:SharedArchiveFile=hello.jsa -cp hello.jar Hello

 Creating CDS Archive Files with jcmd

 The previous two sections require you to modify the application's

 start-up script in order to create a CDS archive. Sometimes this could

 be difficult, for example, if the application's class path is set up by

 complex routines.

 The jcmd VM.cds command provides a less intrusive way for creating a

 CDS archive by connecting to a running JVM process. You can create ei?

 ther a static:

 jcmd <pid> VM.cds static_dump my_static_archive.jsa

 or a dynamic archive:

 jcmd <pid> VM.cds dynamic_dump my_dynamic_archive.jsa

 To use the resulting archive file in a subsequent run of the applica?

 tion without modifying the application's start-up script, you can use

 the following technique: Page 94/97

 env JAVA_TOOL_OPTIONS=-XX:SharedArchiveFile=my_static_ar?

 chive.jsa bash app_start.sh

 Note: to use jcmd <pid> VM.cds dynamic_dump, the JVM process identified

 by <pid> must be started with -XX:+RecordDynamicDumpInfo, which can al?

 so be passed to the application start-up script with the same tech?

 nique:

 env JAVA_TOOL_OPTIONS=-XX:+RecordDynamicDumpInfo bash

 app_start.sh

 Creating Dynamic CDS Archive File with -XX:+AutoCreateSharedArchive

 -XX:+AutoCreateSharedArchive is a more convenient way of creating/using

 CDS archives. Unlike the methods of manual CDS archive creation de?

 scribed in the previous section, with -XX:+AutoCreateSharedArchive,

 it's no longer necessary to have a separate trial run. Instead, you

 can always run the application with the same command-line and enjoy the

 benefits of CDS automatically.

 java -XX:+AutoCreateSharedArchive -XX:SharedArchiveFile=hel?

 lo.jsa -cp hello.jar Hello

 If the specified archive file exists and was created by the same ver?

 sion of the JDK, then it will be loaded as a dynamic archive; otherwise

 it is ignored at VM startup.

 At VM exit, if the specified archive file does not exist, it will be

 created. If it exists but was created with a different (but post JDK

 19) version of the JDK, then it will be replaced. In both cases the

 archive will be ready to be loaded the next time the JVM is launched

 with the same command line.

 If the specified archive file exists but was created by a JDK version

 prior to JDK 19, then it will be ignored: neither loaded at startup,

 nor replaced at exit.

 Developers should note that the contents of the CDS archive file are

 specific to each build of the JDK. Therefore, if you switch to a dif?

 ferent JDK build, -XX:+AutoCreateSharedArchive will automatically

 recreate the archive to match the JDK. If you intend to use this fea?

 ture with an existing archive, you should make sure that the archive is Page 95/97

 created by at least version 19 of the JDK.

 Restrictions on Class Path and Module Path

 ? Neither the class path (-classpath and -Xbootclasspath/a) nor the

 module path (--module-path) can contain non-empty directories.

 ? Only modular JAR files are supported in --module-path. Exploded mod?

 ules are not supported.

 ? The class path used at archive creation time must be the same as (or

 a prefix of) the class path used at run time. (There's no such re?

 quirement for the module path.)

 ? The CDS archive cannot be loaded if any JAR files in the class path

 or module path are modified after the archive is generated.

 ? If any of the VM options --upgrade-module-path, --patch-module or

 --limit-modules are specified, CDS is disabled. This means that the

 JVM will execute without loading any CDS archives. In addition, if

 you try to create a CDS archive with any of these 3 options speci?

 fied, the JVM will report an error.

PERFORMANCE TUNING EXAMPLES

 You can use the Java advanced runtime options to optimize the perfor?

 mance of your applications.

 Tuning for Higher Throughput

 Use the following commands and advanced options to achieve higher

 throughput performance for your application:

 java -server -XX:+UseParallelGC -XX:+UseLargePages -Xmn10g

 -Xms26g -Xmx26g

 Tuning for Lower Response Time

 Use the following commands and advanced options to achieve lower re?

 sponse times for your application:

 java -XX:+UseG1GC -XX:MaxGCPauseMillis=100

 Keeping the Java Heap Small and Reducing the Dynamic Footprint of Embedded

 Applications

 Use the following advanced runtime options to keep the Java heap small

 and reduce the dynamic footprint of embedded applications:

 -XX:MaxHeapFreeRatio=10 -XX:MinHeapFreeRatio=5 Page 96/97

 Note: The defaults for these two options are 70% and 40% respec?

 tively. Because performance sacrifices can occur when using

 these small settings, you should optimize for a small footprint

 by reducing these settings as much as possible without introduc?

 ing unacceptable performance degradation.

EXIT STATUS

 The following exit values are typically returned by the launcher when

 the launcher is called with the wrong arguments, serious errors, or ex?

 ceptions thrown by the JVM. However, a Java application may choose to

 return any value by using the API call System.exit(exitValue). The

 values are:

 ? 0: Successful completion

 ? >0: An error occurred

JDK 20 2023 JAVA(1)

Page 97/97

