
Rocky Enterprise Linux 9.2 Manual Pages on command 'jar-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1'

$ man jar-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

jar(1) Basic Tools jar(1)

NAME

 jar - Manipulates Java Archive (JAR) files.

SYNOPSIS

 Create JAR file

 jar c[efmMnv0] [entrypoint] [jarfile] [manifest] [-C dir] file ... [-Joption ...] [@arg-file ...]

 Update JAR file

 jar u[efmMnv0] [entrypoint] [jarfile] [manifest] [-C dir] file ... [-Joption ...] [@arg-file ...]

 Extract JAR file

 jar x[vf] [jarfile] file ... [-Joption ...] [@arg-file ...]

 List Contents of JAR file

 jar t[vf] [jarfile] file ... [-Joption ...] [@arg-file ...]

 Add Index to JAR file

 jar i jarfile [-Joption ...] [@arg-file ...]

DESCRIPTION

 The jar command is a general-purpose archiving and compression tool,

 based on ZIP and the ZLIB compression format. However, the jar command

 was designed mainly to package Java applets or applications into a Page 1/9

 single archive. When the components of an applet or application (files,

 images and sounds) are combined into a single archive, they can be

 downloaded by a Java agent (such as a browser) in a single HTTP

 transaction, rather than requiring a new connection for each piece.

 This dramatically improves download times. The jar command also

 compresses files, which further improves download time. The jar command

 also allows individual entries in a file to be signed by the applet

 author so that their origin can be authenticated. A JAR file can be

 used as a class path entry, whether or not it is compressed.

 The syntax for the jar command resembles the syntax for the tar

 command. It has several operation modes, defined by one of the

 mandatory operation arguments. Other arguments are either options that

 modify the behavior of the operation, or operands required to perform

 the operation.

OPERATION ARGUMENTS

 When using the jar command, you have to select an operation to be

 performed by specifying one of the following operation arguments. You

 can mix them up with other one-letter options on the command line, but

 usually the operation argument is the first argument specified.

 c Create a new JAR archive.

 i Generate index information for a JAR archive.

 t List the contents of a JAR archive.

 u Update a JAR archive.

 x Extract files from a JAR archive.

OPTIONS

 Use the following options to customize how the JAR file is created,

 updated, extracted, or viewed:

 e Sets the class specified by the entrypoint operand to be the

 entry point for a standalone Java application bundled into an

 executable JAR file. The use of this option creates or overrides

 the Main-Class attribute value in the manifest file. The e

 option can be used when creating (c) or updating (u) the JAR

 file. Page 2/9

 For example, the following command creates the Main.jar archive

 with the Main.class file where the Main-Class attribute value in

 the manifest is set to Main:

 jar cfe Main.jar Main Main.class

 The Java Runtime Environment (JRE) can directly call this

 application by running the following command:

 java -jar Main.jar

 If the entry point class name is in a package, then it could use

 either the dot (.) or slash (/) as the delimiter. For example,

 if Main.class is in a package called mydir, then the entry point

 can be specified in one of the following ways:

 jar -cfe Main.jar mydir/Main mydir/Main.class

 jar -cfe Main.jar mydir.Main mydir/Main.class

 Note

 Specifying both m and e options together when a particular

 manifest also contains the Main-Class attribute results in an

 ambiguous Main-Class specification. The ambiguity leads to an

 error and the jar command creation or update operation is

 terminated.

 f Sets the file specified by the jarfile operand to be the name of

 the JAR file that is created (c), updated (u), extracted (x)

 from, or viewed (t). Omitting the f option and the jarfile

 operand instructs the jar command to accept the JAR file name

 from stdin (for x and t) or send the JAR file to stdout (for c

 and u).

 m Includes names and values of attributes from the file specified

 by the manifest operand in the manifest file of the jar command

 (located in the archive at META-INF/MANIFEST.MF). The jar

 command adds the attribute?s name and value to the JAR file

 unless an entry already exists with the same name, in which case

 the jar command updates the value of the attribute. The m option

 can be used when creating (c) or updating (u) the JAR file.

 You can add special-purpose name-value attribute pairs to the Page 3/9

 manifest that are not contained in the default manifest file.

 For example, you can add attributes that specify vendor

 information, release information, package sealing, or to make

 JAR-bundled applications executable. For examples of using the m

 option, see Packaging Programs at

 http://docs.oracle.com/javase/tutorial/deployment/jar/index.html

 M Does not create a manifest file entry (for c and u), or delete a

 manifest file entry when one exists (for u). The M option can be

 used when creating (c) or updating (u) the JAR file.

 n When creating (c) a JAR file, this option normalizes the archive

 so that the content is not affected by the packing and unpacking

 operations of the pack200(1) command. Without this

 normalization, the signature of a signed JAR can become invalid.

 v Generates verbose output to standard output. See Examples.

 0 (Zero) Creates (c) or updates (u) the JAR file without using ZIP

 compression.

 -C dir

 When creating (c) or updating (u) a JAR file, this option

 temporarily changes the directory while processing files

 specified by the file operands. Its operation is intended to be

 similar to the -C option of the UNIX tar utility.For example,

 the following command changes to the classes directory and adds

 the Bar.class file from that directory to my.jar:

 jar uf my.jar -C classes Bar.class

 The following command changes to the classes directory and adds

 to my.jar all files within the classes directory (without

 creating a classes directory in the JAR file), then changes back

 to the original directory before changing to the bin directory

 to add Xyz.class to my.jar.

 jar uf my.jar -C classes . -C bin Xyz.class

 If classes contained files bar1 and bar2, then the JAR file will

 contain the following after running the previous command:

 % jar tf my.jar Page 4/9

 META-INF/

 META-INF/MANIFEST.MF

 bar1

 bar2

 Xyz.class

 -Joption

 Sets the specified JVM option to be used when the JRE runs the

 JAR file. JVM options are described on the reference page for

 the java(1) command. For example, -J-Xms48m sets the startup

 memory to 48 MB.

OPERANDS

 The following operands are recognized by the jar command.

 file When creating (c) or updating (u) a JAR file, the file operand

 defines the path and name of the file or directory that should

 be added to the archive. When extracting (x) or listing the

 contents (t) of a JAR file, the file operand defines the path

 and name of the file to be extrated or listed. At least one

 valid file or directory must be specified. Separate multiple

 file operands with spaces. If the entrypoint, jarfile, or

 manifest operands are used, the file operands must be specified

 after them.

 entrypoint

 When creating (c) or updating (u) a JAR file, the entrypoint

 operand defines the name of the class that should be the entry

 point for a standalone Java application bundled into an

 executable JAR file. The entrypoint operand must be specified if

 the e option is present.

 jarfile

 Defines the name of the file to be created (c), updated (u),

 extracted (x), or viewed (t). The jarfile operand must be

 specified if the f option is present. Omitting the f option and

 the jarfile operand instructs the jar command to accept the JAR

 file name from stdin (for x and t) or send the JAR file to Page 5/9

 stdout (for c and u).

 When indexing (i) a JAR file, specify the jarfile operand

 without the f option.

 manifest

 When creating (c) or updating (u) a JAR file, the manifest

 operand defines the preexisting manifest files with names and

 values of attributes to be included in MANIFEST.MF in the JAR

 file. The manifest operand must be specified if the f option is

 present.

 @arg-file

 To shorten or simplify the jar command, you can specify

 arguments in a separate text file and pass it to the jar command

 with the at sign (@) as a prefix. When the jar command

 encounters an argument beginning with the at sign, it expands

 the contents of that file into the argument list.

 An argument file can include options and arguments of the jar

 command (except the -J options, because they are passed to the

 launcher, which does not support argument files). The arguments

 within a file can be separated by spaces or newline characters.

 File names within an argument file are relative to the current

 directory from which you run the jar command, not relative to

 the location of the argument file. Wild cards, such as the

 asterisk (*), that might otherwise be expanded by the operating

 system shell, are not expanded.

 The following example, shows how to create a classes.list file

 with names of files from the current directory output by the

 find command:

 find . -name '*.class' -print > classes.list

 You can then execute the jar command and pass the classes.list

 file to it using the @arg-file syntax:

 jar cf my.jar @classes.list

 An argument file can be specified with a path, but any file

 names inside the argument file that have relative paths are Page 6/9

 relative to the current working directory of the jar command,

 not to the path passed in, for example:

 jar @dir/classes.list

NOTES

 The e, f, and m options must appear in the same order on the command

 line as the entrypoint, jarfile, and manifest operands, for example:

 jar cmef myManifestFile MyMainClass myFile.jar *.class

EXAMPLES

 Example 1 Adding All Files From the Current Directory With Verbose

 Output

 % ls

 1.au Animator.class monkey.jpg

 2.au Wave.class spacemusic.au

 3.au at_work.gif

 % jar cvf bundle.jar *

 added manifest

 adding: 1.au(in = 2324) (out= 67)(deflated 97%)

 adding: 2.au(in = 6970) (out= 90)(deflated 98%)

 adding: 3.au(in = 11616) (out= 108)(deflated 99%)

 adding: Animator.class(in = 2266) (out= 66)(deflated 97%)

 adding: Wave.class(in = 3778) (out= 81)(deflated 97%)

 adding: at_work.gif(in = 6621) (out= 89)(deflated 98%)

 adding: monkey.jpg(in = 7667) (out= 91)(deflated 98%)

 adding: spacemusic.au(in = 3079) (out= 73)(deflated 97%)

 Example 2 Adding Files From Subdirectories

 % ls -F

 audio/ classes/ images/

 % jar cvf bundle.jar audio classes images

 added manifest

 adding: audio/(in = 0) (out= 0)(stored 0%)

 adding: audio/1.au(in = 2324) (out= 67)(deflated 97%)

 adding: audio/2.au(in = 6970) (out= 90)(deflated 98%)

 adding: audio/3.au(in = 11616) (out= 108)(deflated 99%) Page 7/9

 adding: audio/spacemusic.au(in = 3079) (out= 73)(deflated 97%)

 adding: classes/(in = 0) (out= 0)(stored 0%)

 adding: classes/Animator.class(in = 2266) (out= 66)(deflated 97%)

 adding: classes/Wave.class(in = 3778) (out= 81)(deflated 97%)

 adding: images/(in = 0) (out= 0)(stored 0%)

 adding: images/monkey.jpg(in = 7667) (out= 91)(deflated 98%)

 adding: images/at_work.gif(in = 6621) (out= 89)(deflated 98%)

 % ls -F

 audio/ bundle.jar classes/ images/

 Example 3 Listing the Contents of JAR

 % jar tf bundle.jar

 META-INF/

 META-INF/MANIFEST.MF

 audio/1.au

 audio/2.au

 audio/3.au

 audio/spacemusic.au

 classes/Animator.class

 classes/Wave.class

 images/monkey.jpg

 images/at_work.gif

 Example 4 Adding an Index

 Use the i option when you split the interdependent classes for a stock

 trade application into three JAR files: main.jar, buy.jar, and

 sell.jar. If you specify the Class-Path attribute in the main.jar

 manifest, then you can use the i option to speed up the class loading

 time for your application:

 Class-Path: buy.jar sell.jar

 jar i main.jar

 An INDEX.LIST file is inserted to the META-INF directory. This enables

 the application class loader to download the specified JAR files when

 it is searching for classes or resources.

 The application class loader uses the information stored in this file Page 8/9

 for efficient class loading. To copy directories, first compress files

 in dir1 to stdout, then pipeline and extract from stdin to dir2

 (omitting the -f option from both jar commands):

 (cd dir1; jar c .) | (cd dir2; jar x)

SEE ALSO

 ? pack200(1).

 ? The JAR section of The Java Tutorials at

 http://docs.oracle.com/javase/tutorial/deployment/jar/index.html

JDK 8 21 November 2013 jar(1)

Page 9/9

