
Rocky Enterprise Linux 9.2 Manual Pages on command 'ip-l2tp.8'

$ man ip-l2tp.8

IP-L2TP(8) Linux IP-L2TP(8)

NAME

 ip-l2tp - L2TPv3 static unmanaged tunnel configuration

SYNOPSIS

 ip [OPTIONS] l2tp { COMMAND | help }

 ip l2tp add tunnel

 remote ADDR local ADDR

 tunnel_id ID peer_tunnel_id ID

 [encap { ip | udp }]

 [udp_sport PORT] [udp_dport PORT]

 [udp_csum { on | off }]

 [udp6_csum_tx { on | off }]

 [udp6_csum_rx { on | off }]

 ip l2tp add session [name NAME]

 tunnel_id ID session_id ID peer_session_id ID

 [cookie HEXSTR] [peer_cookie HEXSTR]

 [l2spec_type { none | default }]

 [seq { none | send | recv | both }] Page 1/9

 ip l2tp del tunnel tunnel_id ID

 ip l2tp del session tunnel_id ID session_id ID

 ip l2tp show tunnel [tunnel_id ID]

 ip l2tp show session [tunnel_id ID.B] [session_id ID]

 NAME := STRING

 ADDR := { IP_ADDRESS | any }

 PORT := { NUMBER }

 ID := { NUMBER }

 HEXSTR := { 8 or 16 hex digits (4 / 8 bytes) }

DESCRIPTION

 The ip l2tp commands are used to establish static, or so-called unman?

 aged L2TPv3 ethernet tunnels. For unmanaged tunnels, there is no L2TP

 control protocol so no userspace daemon is required - tunnels are manu?

 ally created by issuing commands at a local system and at a remote

 peer.

 L2TPv3 is suitable for Layer-2 tunneling. Static tunnels are useful to

 establish network links across IP networks when the tunnels are fixed.

 L2TPv3 tunnels can carry data of more than one session. Each session is

 identified by a session_id and its parent tunnel's tunnel_id. A tunnel

 must be created before a session can be created in the tunnel.

 When creating an L2TP tunnel, the IP address of the remote peer is

 specified, which can be either an IPv4 or IPv6 address. The local IP

 address to be used to reach the peer must also be specified. This is

 the address on which the local system will listen for and accept re?

 ceived L2TP data packets from the peer.

 L2TPv3 defines two packet encapsulation formats: UDP or IP. UDP encap?

 sulation is most common. IP encapsulation uses a dedicated IP protocol

 value to carry L2TP data without the overhead of UDP. Use IP encapsula?

 tion only when there are no NAT devices or firewalls in the network

 path.

 When an L2TPv3 ethernet session is created, a virtual network interface

 is created for the session, which must then be configured and brought

 up, just like any other network interface. When data is passed through Page 2/9

 the interface, it is carried over the L2TP tunnel to the peer. By con?

 figuring the system's routing tables or adding the interface to a

 bridge, the L2TP interface is like a virtual wire (pseudowire) con?

 nected to the peer.

 Establishing an unmanaged L2TPv3 ethernet pseudowire involves manually

 creating L2TP contexts on the local system and at the peer. Parameters

 used at each site must correspond or no data will be passed. No consis?

 tency checks are possible since there is no control protocol used to

 establish unmanaged L2TP tunnels. Once the virtual network interface of

 a given L2TP session is configured and enabled, data can be transmit?

 ted, even if the peer isn't yet configured. If the peer isn't config?

 ured, the L2TP data packets will be discarded by the peer.

 To establish an unmanaged L2TP tunnel, use l2tp add tunnel and l2tp add

 session commands described in this document. Then configure and enable

 the tunnel's virtual network interface, as required.

 Note that unmanaged tunnels carry only ethernet frames. If you need to

 carry PPP traffic (L2TPv2) or your peer doesn't support unmanaged

 L2TPv3 tunnels, you will need an L2TP server which implements the L2TP

 control protocol. The L2TP control protocol allows dynamic L2TP tunnels

 and sessions to be established and provides for detecting and acting

 upon network failures.

 ip l2tp add tunnel - add a new tunnel

 tunnel_id ID

 set the tunnel id, which is a 32-bit integer value. Uniquely

 identifies the tunnel. The value used must match the peer_tun?

 nel_id value being used at the peer.

 peer_tunnel_id ID

 set the peer tunnel id, which is a 32-bit integer value assigned

 to the tunnel by the peer. The value used must match the tun?

 nel_id value being used at the peer.

 remote ADDR

 set the IP address of the remote peer. May be specified as an

 IPv4 address or an IPv6 address. Page 3/9

 local ADDR

 set the IP address of the local interface to be used for the

 tunnel. This address must be the address of a local interface.

 May be specified as an IPv4 address or an IPv6 address.

 encap ENCAP

 set the encapsulation type of the tunnel.

 Valid values for encapsulation are: udp, ip.

 udp_sport PORT

 set the UDP source port to be used for the tunnel. Must be

 present when udp encapsulation is selected. Ignored when ip en?

 capsulation is selected.

 udp_dport PORT

 set the UDP destination port to be used for the tunnel. Must be

 present when udp encapsulation is selected. Ignored when ip en?

 capsulation is selected.

 udp_csum STATE

 (IPv4 only) control if IPv4 UDP checksums should be calculated

 and checked for the encapsulating UDP packets, when UDP encapsu?

 lating is selected. Default is off.

 Valid values are: on, off.

 udp6_csum_tx STATE

 (IPv6 only) control if IPv6 UDP checksums should be calculated

 for encapsulating UDP packets, when UDP encapsulating is se?

 lected. Default is on.

 Valid values are: on, off.

 udp6_csum_rx STATE

 (IPv6 only) control if IPv6 UDP checksums should be checked for

 the encapsulating UDP packets, when UDP encapsulating is se?

 lected. Default is on.

 Valid values are: on, off.

 ip l2tp del tunnel - destroy a tunnel

 tunnel_id ID

 set the tunnel id of the tunnel to be deleted. All sessions Page 4/9

 within the tunnel must be deleted first.

 ip l2tp show tunnel - show information about tunnels

 tunnel_id ID

 set the tunnel id of the tunnel to be shown. If not specified,

 information about all tunnels is printed.

 ip l2tp add session - add a new session to a tunnel

 name NAME

 sets the session network interface name. Default is l2tpethN.

 tunnel_id ID

 set the tunnel id, which is a 32-bit integer value. Uniquely

 identifies the tunnel into which the session will be created.

 The tunnel must already exist.

 session_id ID

 set the session id, which is a 32-bit integer value. Uniquely

 identifies the session being created. The value used must match

 the peer_session_id value being used at the peer.

 peer_session_id ID

 set the peer session id, which is a 32-bit integer value as?

 signed to the session by the peer. The value used must match the

 session_id value being used at the peer.

 cookie HEXSTR

 sets an optional cookie value to be assigned to the session.

 This is a 4 or 8 byte value, specified as 8 or 16 hex digits,

 e.g. 014d3636deadbeef. The value must match the peer_cookie

 value set at the peer. The cookie value is carried in L2TP data

 packets and is checked for expected value at the peer. Default

 is to use no cookie.

 peer_cookie HEXSTR

 sets an optional peer cookie value to be assigned to the ses?

 sion. This is a 4 or 8 byte value, specified as 8 or 16 hex dig?

 its, e.g. 014d3636deadbeef. The value must match the cookie

 value set at the peer. It tells the local system what cookie

 value to expect to find in received L2TP packets. Default is to Page 5/9

 use no cookie.

 l2spec_type L2SPECTYPE

 set the layer2specific header type of the session.

 Valid values are: none, default.

 seq SEQ

 controls sequence numbering to prevent or detect out of order

 packets. send puts a sequence number in the default layer2spe?

 cific header of each outgoing packet. recv reorder packets if

 they are received out of order. Default is none.

 Valid values are: none, send, recv, both.

 ip l2tp del session - destroy a session

 tunnel_id ID

 set the tunnel id in which the session to be deleted is located.

 session_id ID

 set the session id of the session to be deleted.

 ip l2tp show session - show information about sessions

 tunnel_id ID

 set the tunnel id of the session(s) to be shown. If not speci?

 fied, information about sessions in all tunnels is printed.

 session_id ID

 set the session id of the session to be shown. If not specified,

 information about all sessions is printed.

EXAMPLES

 Setup L2TP tunnels and sessions

 site-A:# ip l2tp add tunnel tunnel_id 3000 peer_tunnel_id 4000 \

 encap udp local 1.2.3.4 remote 5.6.7.8 \

 udp_sport 5000 udp_dport 6000

 site-A:# ip l2tp add session tunnel_id 3000 session_id 1000 \

 peer_session_id 2000

 site-B:# ip l2tp add tunnel tunnel_id 4000 peer_tunnel_id 3000 \

 encap udp local 5.6.7.8 remote 1.2.3.4 \

 udp_sport 6000 udp_dport 5000

 site-B:# ip l2tp add session tunnel_id 4000 session_id 2000 \ Page 6/9

 peer_session_id 1000

 site-A:# ip link set l2tpeth0 up mtu 1488

 site-B:# ip link set l2tpeth0 up mtu 1488

 Notice that the IP addresses, UDP ports and tunnel / session ids are

 matched and reversed at each site.

 Configure as IP interfaces

 The two interfaces can be configured with IP addresses if only IP data

 is to be carried. This is perhaps the simplest configuration.

 site-A:# ip addr add 10.42.1.1 peer 10.42.1.2 dev l2tpeth0

 site-B:# ip addr add 10.42.1.2 peer 10.42.1.1 dev l2tpeth0

 site-A:# ping 10.42.1.2

 Now the link should be usable. Add static routes as needed to have data

 sent over the new link.

 Configure as bridged interfaces

 To carry non-IP data, the L2TP network interface is added to a bridge

 instead of being assigned its own IP address, using standard Linux

 utilities. Since raw ethernet frames are then carried inside the tun?

 nel, the MTU of the L2TP interfaces must be set to allow space for

 those headers.

 site-A:# ip link set l2tpeth0 up mtu 1446

 site-A:# ip link add br0 type bridge

 site-A:# ip link set l2tpeth0 master br0

 site-A:# ip link set eth0 master br0

 site-A:# ip link set br0 up

 If you are using VLANs, setup a bridge per VLAN and bridge each VLAN

 over a separate L2TP session. For example, to bridge VLAN ID 5 on eth1

 over an L2TP pseudowire:

 site-A:# ip link set l2tpeth0 up mtu 1446

 site-A:# ip link add brvlan5 type bridge

 site-A:# ip link set l2tpeth0.5 master brvlan5

 site-A:# ip link set eth1.5 master brvlan5

 site-A:# ip link set brvlan5 up

 Adding the L2TP interface to a bridge causes the bridge to forward Page 7/9

 traffic over the L2TP pseudowire just like it forwards over any other

 interface. The bridge learns MAC addresses of hosts attached to each

 interface and intelligently forwards frames from one bridge port to an?

 other. IP addresses are not assigned to the l2tpethN interfaces. If the

 bridge is correctly configured at both sides of the L2TP pseudowire, it

 should be possible to reach hosts in the peer's bridged network.

 When raw ethernet frames are bridged across an L2TP tunnel, large

 frames may be fragmented and forwarded as individual IP fragments to

 the recipient, depending on the MTU of the physical interface used by

 the tunnel. When the ethernet frames carry protocols which are reassem?

 bled by the recipient, like IP, this isn't a problem. However, such

 fragmentation can cause problems for protocols like PPPoE where the re?

 cipient expects to receive ethernet frames exactly as transmitted. In

 such cases, it is important that frames leaving the tunnel are reassem?

 bled back into a single frame before being forwarded on. To do so, en?

 able netfilter connection tracking (conntrack) or manually load the

 Linux netfilter defrag modules at each tunnel endpoint.

 site-A:# modprobe nf_defrag_ipv4

 site-B:# modprobe nf_defrag_ipv4

 If L2TP is being used over IPv6, use the IPv6 defrag module.

INTEROPERABILITY

 Unmanaged (static) L2TPv3 tunnels are supported by some network equip?

 ment equipment vendors such as Cisco.

 In Linux, L2TP Hello messages are not supported in unmanaged tunnels.

 Hello messages are used by L2TP clients and servers to detect link

 failures in order to automate tearing down and reestablishing dynamic

 tunnels. If a non-Linux peer supports Hello messages in unmanaged tun?

 nels, it must be turned off to interoperate with Linux.

 Linux defaults to use the Default Layer2SpecificHeader type as defined

 in the L2TPv3 protocol specification, RFC3931. This setting must be

 consistent with that configured at the peer. Some vendor implementa?

 tions (e.g. Cisco) default to use a Layer2SpecificHeader type of None.

SEE ALSO Page 8/9

 ip(8)

AUTHOR

 James Chapman <jchapman@katalix.com>

iproute2 19 Apr 2012 IP-L2TP(8)

Page 9/9

