
Rocky Enterprise Linux 9.2 Manual Pages on command 'ioctl_tty.2'

$ man ioctl_tty.2

IOCTL_TTY(2) Linux Programmer's Manual IOCTL_TTY(2)

NAME

 ioctl_tty - ioctls for terminals and serial lines

SYNOPSIS

 #include <termios.h>

 int ioctl(int fd, int cmd, ...);

DESCRIPTION

 The ioctl(2) call for terminals and serial ports accepts many possible

 command arguments. Most require a third argument, of varying type,

 here called argp or arg.

 Use of ioctl makes for nonportable programs. Use the POSIX interface

 described in termios(3) whenever possible.

 Get and set terminal attributes

 TCGETS struct termios *argp

 Equivalent to tcgetattr(fd, argp).

 Get the current serial port settings.

 TCSETS const struct termios *argp

 Equivalent to tcsetattr(fd, TCSANOW, argp). Page 1/10

 Set the current serial port settings.

 TCSETSW const struct termios *argp

 Equivalent to tcsetattr(fd, TCSADRAIN, argp).

 Allow the output buffer to drain, and set the current serial

 port settings.

 TCSETSF const struct termios *argp

 Equivalent to tcsetattr(fd, TCSAFLUSH, argp).

 Allow the output buffer to drain, discard pending input, and set

 the current serial port settings.

 The following four ioctls are just like TCGETS, TCSETS, TCSETSW, TC?

 SETSF, except that they take a struct termio * instead of a struct

 termios *.

 TCGETA struct termio *argp

 TCSETA const struct termio *argp

 TCSETAW const struct termio *argp

 TCSETAF const struct termio *argp

 Locking the termios structure

 The termios structure of a terminal can be locked. The lock is itself

 a termios structure, with nonzero bits or fields indicating a locked

 value.

 TIOCGLCKTRMIOS struct termios *argp

 Gets the locking status of the termios structure of the termi?

 nal.

 TIOCSLCKTRMIOS const struct termios *argp

 Sets the locking status of the termios structure of the termi?

 nal. Only a process with the CAP_SYS_ADMIN capability can do

 this.

 Get and set window size

 Window sizes are kept in the kernel, but not used by the kernel (except

 in the case of virtual consoles, where the kernel will update the win?

 dow size when the size of the virtual console changes, for example, by

 loading a new font).

 The following constants and structure are defined in <sys/ioctl.h>. Page 2/10

 TIOCGWINSZ struct winsize *argp

 Get window size.

 TIOCSWINSZ const struct winsize *argp

 Set window size.

 The struct used by these ioctls is defined as

 struct winsize {

 unsigned short ws_row;

 unsigned short ws_col;

 unsigned short ws_xpixel; /* unused */

 unsigned short ws_ypixel; /* unused */

 };

 When the window size changes, a SIGWINCH signal is sent to the fore?

 ground process group.

 Sending a break

 TCSBRK int arg

 Equivalent to tcsendbreak(fd, arg).

 If the terminal is using asynchronous serial data transmission,

 and arg is zero, then send a break (a stream of zero bits) for

 between 0.25 and 0.5 seconds. If the terminal is not using

 asynchronous serial data transmission, then either a break is

 sent, or the function returns without doing anything. When arg

 is nonzero, nobody knows what will happen.

 (SVr4, UnixWare, Solaris, Linux treat tcsendbreak(fd,arg) with

 nonzero arg like tcdrain(fd). SunOS treats arg as a multiplier,

 and sends a stream of bits arg times as long as done for zero

 arg. DG/UX and AIX treat arg (when nonzero) as a time interval

 measured in milliseconds. HP-UX ignores arg.)

 TCSBRKP int arg

 So-called "POSIX version" of TCSBRK. It treats nonzero arg as a

 time interval measured in deciseconds, and does nothing when the

 driver does not support breaks.

 TIOCSBRK void

 Turn break on, that is, start sending zero bits. Page 3/10

 TIOCCBRK void

 Turn break off, that is, stop sending zero bits.

 Software flow control

 TCXONC int arg

 Equivalent to tcflow(fd, arg).

 See tcflow(3) for the argument values TCOOFF, TCOON, TCIOFF,

 TCION.

 Buffer count and flushing

 FIONREAD int *argp

 Get the number of bytes in the input buffer.

 TIOCINQ int *argp

 Same as FIONREAD.

 TIOCOUTQ int *argp

 Get the number of bytes in the output buffer.

 TCFLSH int arg

 Equivalent to tcflush(fd, arg).

 See tcflush(3) for the argument values TCIFLUSH, TCOFLUSH,

 TCIOFLUSH.

 Faking input

 TIOCSTI const char *argp

 Insert the given byte in the input queue.

 Redirecting console output

 TIOCCONS void

 Redirect output that would have gone to /dev/console or

 /dev/tty0 to the given terminal. If that was a pseudoterminal

 master, send it to the slave. In Linux before version 2.6.10,

 anybody can do this as long as the output was not redirected

 yet; since version 2.6.10, only a process with the CAP_SYS_ADMIN

 capability may do this. If output was redirected already, then

 EBUSY is returned, but redirection can be stopped by using this

 ioctl with fd pointing at /dev/console or /dev/tty0.

 Controlling terminal

 TIOCSCTTY int arg Page 4/10

 Make the given terminal the controlling terminal of the calling

 process. The calling process must be a session leader and not

 have a controlling terminal already. For this case, arg should

 be specified as zero.

 If this terminal is already the controlling terminal of a dif?

 ferent session group, then the ioctl fails with EPERM, unless

 the caller has the CAP_SYS_ADMIN capability and arg equals 1, in

 which case the terminal is stolen, and all processes that had it

 as controlling terminal lose it.

 TIOCNOTTY void

 If the given terminal was the controlling terminal of the call?

 ing process, give up this controlling terminal. If the process

 was session leader, then send SIGHUP and SIGCONT to the fore?

 ground process group and all processes in the current session

 lose their controlling terminal.

 Process group and session ID

 TIOCGPGRP pid_t *argp

 When successful, equivalent to *argp = tcgetpgrp(fd).

 Get the process group ID of the foreground process group on this

 terminal.

 TIOCSPGRP const pid_t *argp

 Equivalent to tcsetpgrp(fd, *argp).

 Set the foreground process group ID of this terminal.

 TIOCGSID pid_t *argp

 Get the session ID of the given terminal. This fails with the

 error ENOTTY if the terminal is not a master pseudoterminal and

 not our controlling terminal. Strange.

 Exclusive mode

 TIOCEXCL void

 Put the terminal into exclusive mode. No further open(2) opera?

 tions on the terminal are permitted. (They fail with EBUSY, ex?

 cept for a process with the CAP_SYS_ADMIN capability.)

 TIOCGEXCL int *argp Page 5/10

 (since Linux 3.8) If the terminal is currently in exclusive

 mode, place a nonzero value in the location pointed to by argp;

 otherwise, place zero in *argp.

 TIOCNXCL void

 Disable exclusive mode.

 Line discipline

 TIOCGETD int *argp

 Get the line discipline of the terminal.

 TIOCSETD const int *argp

 Set the line discipline of the terminal.

 Pseudoterminal ioctls

 TIOCPKT const int *argp

 Enable (when *argp is nonzero) or disable packet mode. Can be

 applied to the master side of a pseudoterminal only (and will

 return ENOTTY otherwise). In packet mode, each subsequent

 read(2) will return a packet that either contains a single non?

 zero control byte, or has a single byte containing zero ('\0')

 followed by data written on the slave side of the pseudotermi?

 nal. If the first byte is not TIOCPKT_DATA (0), it is an OR of

 one or more of the following bits:

 TIOCPKT_FLUSHREAD The read queue for the terminal is flushed.

 TIOCPKT_FLUSHWRITE The write queue for the terminal is flushed.

 TIOCPKT_STOP Output to the terminal is stopped.

 TIOCPKT_START Output to the terminal is restarted.

 TIOCPKT_DOSTOP The start and stop characters are ^S/^Q.

 TIOCPKT_NOSTOP The start and stop characters are not ^S/^Q.

 While packet mode is in use, the presence of control status in?

 formation to be read from the master side may be detected by a

 select(2) for exceptional conditions or a poll(2) for the POLL?

 PRI event.

 This mode is used by rlogin(1) and rlogind(8) to implement a re?

 mote-echoed, locally ^S/^Q flow-controlled remote login.

 TIOCGPKT const int *argp Page 6/10

 (since Linux 3.8) Return the current packet mode setting in the

 integer pointed to by argp.

 TIOCSPTLCK int *argp

 Set (if *argp is nonzero) or remove (if *argp is zero) the lock

 on the pseudoterminal slave device. (See also unlockpt(3).)

 TIOCGPTLCK int *argp

 (since Linux 3.8) Place the current lock state of the pseudoter?

 minal slave device in the location pointed to by argp.

 TIOCGPTPEER int flags

 (since Linux 4.13) Given a file descriptor in fd that refers to

 a pseudoterminal master, open (with the given open(2)-style

 flags) and return a new file descriptor that refers to the peer

 pseudoterminal slave device. This operation can be performed

 regardless of whether the pathname of the slave device is acces?

 sible through the calling process's mount namespace.

 Security-conscious programs interacting with namespaces may wish

 to use this operation rather than open(2) with the pathname re?

 turned by ptsname(3), and similar library functions that have

 insecure APIs. (For example, confusion can occur in some cases

 using ptsname(3) with a pathname where a devpts filesystem has

 been mounted in a different mount namespace.)

 The BSD ioctls TIOCSTOP, TIOCSTART, TIOCUCNTL, TIOCREMOTE have not been

 implemented under Linux.

 Modem control

 TIOCMGET int *argp

 Get the status of modem bits.

 TIOCMSET const int *argp

 Set the status of modem bits.

 TIOCMBIC const int *argp

 Clear the indicated modem bits.

 TIOCMBIS const int *argp

 Set the indicated modem bits.

 The following bits are used by the above ioctls: Page 7/10

 TIOCM_LE DSR (data set ready/line enable)

 TIOCM_DTR DTR (data terminal ready)

 TIOCM_RTS RTS (request to send)

 TIOCM_ST Secondary TXD (transmit)

 TIOCM_SR Secondary RXD (receive)

 TIOCM_CTS CTS (clear to send)

 TIOCM_CAR DCD (data carrier detect)

 TIOCM_CD see TIOCM_CAR

 TIOCM_RNG RNG (ring)

 TIOCM_RI see TIOCM_RNG

 TIOCM_DSR DSR (data set ready)

 TIOCMIWAIT int arg

 Wait for any of the 4 modem bits (DCD, RI, DSR, CTS) to change.

 The bits of interest are specified as a bit mask in arg, by OR?

 ing together any of the bit values, TIOCM_RNG, TIOCM_DSR, TI?

 OCM_CD, and TIOCM_CTS. The caller should use TIOCGICOUNT to see

 which bit has changed.

 TIOCGICOUNT struct se?

 rial_icounter_struct *argp

 Get counts of input serial line interrupts (DCD, RI, DSR, CTS).

 The counts are written to the serial_icounter_struct structure

 pointed to by argp.

 Note: both 1->0 and 0->1 transitions are counted, except for RI,

 where only 0->1 transitions are counted.

 Marking a line as local

 TIOCGSOFTCAR int *argp

 ("Get software carrier flag") Get the status of the CLOCAL flag

 in the c_cflag field of the termios structure.

 TIOCSSOFTCAR const int *argp

 ("Set software carrier flag") Set the CLOCAL flag in the termios

 structure when *argp is nonzero, and clear it otherwise.

 If the CLOCAL flag for a line is off, the hardware carrier detect (DCD)

 signal is significant, and an open(2) of the corresponding terminal Page 8/10

 will block until DCD is asserted, unless the O_NONBLOCK flag is given.

 If CLOCAL is set, the line behaves as if DCD is always asserted. The

 software carrier flag is usually turned on for local devices, and is

 off for lines with modems.

 Linux-specific

 For the TIOCLINUX ioctl, see ioctl_console(2).

 Kernel debugging

 #include <linux/tty.h>

 TIOCTTYGSTRUCT struct tty_struct *argp

 Get the tty_struct corresponding to fd. This command was re?

 moved in Linux 2.5.67.

RETURN VALUE

 The ioctl(2) system call returns 0 on success. On error, it returns -1

 and sets errno appropriately.

ERRORS

 EINVAL Invalid command parameter.

 ENOIOCTLCMD

 Unknown command.

 ENOTTY Inappropriate fd.

 EPERM Insufficient permission.

EXAMPLES

 Check the condition of DTR on the serial port.

 #include <termios.h>

 #include <fcntl.h>

 #include <sys/ioctl.h>

 int

 main(void)

 {

 int fd, serial;

 fd = open("/dev/ttyS0", O_RDONLY);

 ioctl(fd, TIOCMGET, &serial);

 if (serial & TIOCM_DTR)

 puts("TIOCM_DTR is set"); Page 9/10

 else

 puts("TIOCM_DTR is not set");

 close(fd);

 }

SEE ALSO

 ldattach(1), ioctl(2), ioctl_console(2), termios(3), pty(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 IOCTL_TTY(2)

Page 10/10

