
Rocky Enterprise Linux 9.2 Manual Pages on command 'init_module.2'

$ man init_module.2

INIT_MODULE(2) Linux Programmer's Manual INIT_MODULE(2)

NAME

 init_module, finit_module - load a kernel module

SYNOPSIS

 int init_module(void *module_image, unsigned long len,

 const char *param_values);

 int finit_module(int fd, const char *param_values,

 int flags);

 Note: glibc provides no header file declaration of init_module() and no

 wrapper function for finit_module(); see NOTES.

DESCRIPTION

 init_module() loads an ELF image into kernel space, performs any neces?

 sary symbol relocations, initializes module parameters to values pro?

 vided by the caller, and then runs the module's init function. This

 system call requires privilege.

 The module_image argument points to a buffer containing the binary im?

 age to be loaded; len specifies the size of that buffer. The module

 image should be a valid ELF image, built for the running kernel. Page 1/6

 The param_values argument is a string containing space-delimited speci?

 fications of the values for module parameters (defined inside the mod?

 ule using module_param() and module_param_array()). The kernel parses

 this string and initializes the specified parameters. Each of the pa?

 rameter specifications has the form:

 name[=value[,value...]]

 The parameter name is one of those defined within the module using mod?

 ule_param() (see the Linux kernel source file include/linux/mod?

 uleparam.h). The parameter value is optional in the case of bool and

 invbool parameters. Values for array parameters are specified as a

 comma-separated list.

 finit_module()

 The finit_module() system call is like init_module(), but reads the

 module to be loaded from the file descriptor fd. It is useful when the

 authenticity of a kernel module can be determined from its location in

 the filesystem; in cases where that is possible, the overhead of using

 cryptographically signed modules to determine the authenticity of a

 module can be avoided. The param_values argument is as for init_mod?

 ule().

 The flags argument modifies the operation of finit_module(). It is a

 bit mask value created by ORing together zero or more of the following

 flags:

 MODULE_INIT_IGNORE_MODVERSIONS

 Ignore symbol version hashes.

 MODULE_INIT_IGNORE_VERMAGIC

 Ignore kernel version magic.

 There are some safety checks built into a module to ensure that it

 matches the kernel against which it is loaded. These checks are

 recorded when the module is built and verified when the module is

 loaded. First, the module records a "vermagic" string containing the

 kernel version number and prominent features (such as the CPU type).

 Second, if the module was built with the CONFIG_MODVERSIONS configura?

 tion option enabled, a version hash is recorded for each symbol the Page 2/6

 module uses. This hash is based on the types of the arguments and re?

 turn value for the function named by the symbol. In this case, the

 kernel version number within the "vermagic" string is ignored, as the

 symbol version hashes are assumed to be sufficiently reliable.

 Using the MODULE_INIT_IGNORE_VERMAGIC flag indicates that the "ver?

 magic" string is to be ignored, and the MODULE_INIT_IGNORE_MODVERSIONS

 flag indicates that the symbol version hashes are to be ignored. If

 the kernel is built to permit forced loading (i.e., configured with

 CONFIG_MODULE_FORCE_LOAD), then loading continues, otherwise it fails

 with the error ENOEXEC as expected for malformed modules.

RETURN VALUE

 On success, these system calls return 0. On error, -1 is returned and

 errno is set appropriately.

ERRORS

 EBADMSG (since Linux 3.7)

 Module signature is misformatted.

 EBUSY Timeout while trying to resolve a symbol reference by this mod?

 ule.

 EFAULT An address argument referred to a location that is outside the

 process's accessible address space.

 ENOKEY (since Linux 3.7)

 Module signature is invalid or the kernel does not have a key

 for this module. This error is returned only if the kernel was

 configured with CONFIG_MODULE_SIG_FORCE; if the kernel was not

 configured with this option, then an invalid or unsigned module

 simply taints the kernel.

 ENOMEM Out of memory.

 EPERM The caller was not privileged (did not have the CAP_SYS_MODULE

 capability), or module loading is disabled (see /proc/sys/ker?

 nel/modules_disabled in proc(5)).

 The following errors may additionally occur for init_module():

 EEXIST A module with this name is already loaded.

 EINVAL param_values is invalid, or some part of the ELF image in mod? Page 3/6

 ule_image contains inconsistencies.

 ENOEXEC

 The binary image supplied in module_image is not an ELF image,

 or is an ELF image that is invalid or for a different architec?

 ture.

 The following errors may additionally occur for finit_module():

 EBADF The file referred to by fd is not opened for reading.

 EFBIG The file referred to by fd is too large.

 EINVAL flags is invalid.

 ENOEXEC

 fd does not refer to an open file.

 In addition to the above errors, if the module's init function is exe?

 cuted and returns an error, then init_module() or finit_module() fails

 and errno is set to the value returned by the init function.

VERSIONS

 finit_module() is available since Linux 3.8.

CONFORMING TO

 init_module() and finit_module() are Linux-specific.

NOTES

 The init_module() system call is not supported by glibc. No declara?

 tion is provided in glibc headers, but, through a quirk of history,

 glibc versions before 2.23 did export an ABI for this system call.

 Therefore, in order to employ this system call, it is (before glibc

 2.23) sufficient to manually declare the interface in your code; alter?

 natively, you can invoke the system call using syscall(2).

 Glibc does not provide a wrapper for finit_module(); call it using

 syscall(2).

 Information about currently loaded modules can be found in /proc/mod?

 ules and in the file trees under the per-module subdirectories under

 /sys/module.

 See the Linux kernel source file include/linux/module.h for some useful

 background information.

 Linux 2.4 and earlier Page 4/6

 In Linux 2.4 and earlier, the init_module() system call was rather dif?

 ferent:

 #include <linux/module.h>

 int init_module(const char *name, struct module *image);

 (User-space applications can detect which version of init_module() is

 available by calling query_module(); the latter call fails with the er?

 ror ENOSYS on Linux 2.6 and later.)

 The older version of the system call loads the relocated module image

 pointed to by image into kernel space and runs the module's init func?

 tion. The caller is responsible for providing the relocated image

 (since Linux 2.6, the init_module() system call does the relocation).

 The module image begins with a module structure and is followed by code

 and data as appropriate. Since Linux 2.2, the module structure is de?

 fined as follows:

 struct module {

 unsigned long size_of_struct;

 struct module *next;

 const char *name;

 unsigned long size;

 long usecount;

 unsigned long flags;

 unsigned int nsyms;

 unsigned int ndeps;

 struct module_symbol *syms;

 struct module_ref *deps;

 struct module_ref *refs;

 int (*init)(void);

 void (*cleanup)(void);

 const struct exception_table_entry *ex_table_start;

 const struct exception_table_entry *ex_table_end;

 #ifdef __alpha__

 unsigned long gp;

 #endif Page 5/6

 };

 All of the pointer fields, with the exception of next and refs, are ex?

 pected to point within the module body and be initialized as appropri?

 ate for kernel space, that is, relocated with the rest of the module.

SEE ALSO

 create_module(2), delete_module(2), query_module(2), lsmod(8), mod?

 probe(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 INIT_MODULE(2)

Page 6/6

