
Rocky Enterprise Linux 9.2 Manual Pages on command 'hwclock.8'

$ man hwclock.8

HWCLOCK(8) System Administration HWCLOCK(8)

NAME

 hwclock - time clocks utility

SYNOPSIS

 hwclock [function] [option...]

DESCRIPTION

 hwclock is an administration tool for the time clocks. It can: display

 the Hardware Clock time; set the Hardware Clock to a specified time;

 set the Hardware Clock from the System Clock; set the System Clock from

 the Hardware Clock; compensate for Hardware Clock drift; correct the

 System Clock timescale; set the kernel?s timezone, NTP timescale, and

 epoch (Alpha only); and predict future Hardware Clock values based on

 its drift rate.

 Since v2.26 important changes were made to the --hctosys function and

 the --directisa option, and a new option --update-drift was added. See

 their respective descriptions below.

FUNCTIONS

 The following functions are mutually exclusive, only one can be given Page 1/20

 at a time. If none is given, the default is --show.

 -a, --adjust

 Add or subtract time from the Hardware Clock to account for

 systematic drift since the last time the clock was set or adjusted.

 See the discussion below, under The Adjust Function.

 --getepoch; --setepoch

 These functions are for Alpha machines only, and are only available

 through the Linux kernel RTC driver.

 They are used to read and set the kernel?s Hardware Clock epoch

 value. Epoch is the number of years into AD to which a zero year

 value in the Hardware Clock refers. For example, if the machine?s

 BIOS sets the year counter in the Hardware Clock to contain the

 number of full years since 1952, then the kernel?s Hardware Clock

 epoch value must be 1952.

 The --setepoch function requires using the --epoch option to

 specify the year. For example:

 hwclock --setepoch --epoch=1952

 The RTC driver attempts to guess the correct epoch value, so

 setting it may not be required.

 This epoch value is used whenever hwclock reads or sets the

 Hardware Clock on an Alpha machine. For ISA machines the kernel

 uses the fixed Hardware Clock epoch of 1900.

 --predict

 Predict what the Hardware Clock will read in the future based upon

 the time given by the --date option and the information in

 /etc/adjtime. This is useful, for example, to account for drift

 when setting a Hardware Clock wakeup (aka alarm). See rtcwake(8).

 Do not use this function if the Hardware Clock is being modified by

 anything other than the current operating system?s hwclock command,

 such as '11 minute mode' or from dual-booting another OS.

 -r, --show; --get

 Read the Hardware Clock and print its time to standard output in

 the ISO 8601 format. The time shown is always in local time, even Page 2/20

 if you keep your Hardware Clock in UTC. See the --localtime option.

 Showing the Hardware Clock time is the default when no function is

 specified.

 The --get function also applies drift correction to the time read,

 based upon the information in /etc/adjtime. Do not use this

 function if the Hardware Clock is being modified by anything other

 than the current operating system?s hwclock command, such as '11

 minute mode' or from dual-booting another OS.

 -s, --hctosys

 Set the System Clock from the Hardware Clock. The time read from

 the Hardware Clock is compensated to account for systematic drift

 before using it to set the System Clock. See the discussion below,

 under The Adjust Function.

 The System Clock must be kept in the UTC timescale for date-time

 applications to work correctly in conjunction with the timezone

 configured for the system. If the Hardware Clock is kept in local

 time then the time read from it must be shifted to the UTC

 timescale before using it to set the System Clock. The --hctosys

 function does this based upon the information in the /etc/adjtime

 file or the command line arguments --localtime and --utc. Note: no

 daylight saving adjustment is made. See the discussion below, under

 LOCAL vs UTC.

 The kernel also keeps a timezone value, the --hctosys function sets

 it to the timezone configured for the system. The system timezone

 is configured by the TZ environment variable or the /etc/localtime

 file, as tzset(3) would interpret them. The obsolete tz_dsttime

 field of the kernel?s timezone value is set to zero. (For details

 on what this field used to mean, see settimeofday(2).)

 When used in a startup script, making the --hctosys function the

 first caller of settimeofday(2) from boot, it will set the NTP '11

 minute mode' timescale via the persistent_clock_is_local kernel

 variable. If the Hardware Clock?s timescale configuration is

 changed then a reboot is required to inform the kernel. See the Page 3/20

 discussion below, under Automatic Hardware Clock Synchronization by

 the Kernel.

 This is a good function to use in one of the system startup scripts

 before the file systems are mounted read/write.

 This function should never be used on a running system. Jumping

 system time will cause problems, such as corrupted filesystem

 timestamps. Also, if something has changed the Hardware Clock, like

 NTP?s '11 minute mode', then --hctosys will set the time

 incorrectly by including drift compensation.

 Drift compensation can be inhibited by setting the drift factor in

 /etc/adjtime to zero. This setting will be persistent as long as

 the --update-drift option is not used with --systohc at shutdown

 (or anywhere else). Another way to inhibit this is by using the

 --noadjfile option when calling the --hctosys function. A third

 method is to delete the /etc/adjtime file. Hwclock will then

 default to using the UTC timescale for the Hardware Clock. If the

 Hardware Clock is ticking local time it will need to be defined in

 the file. This can be done by calling hwclock --localtime --adjust;

 when the file is not present this command will not actually adjust

 the Clock, but it will create the file with local time configured,

 and a drift factor of zero.

 A condition under which inhibiting hwclock's drift correction may

 be desired is when dual-booting multiple operating systems. If

 while this instance of Linux is stopped, another OS changes the

 Hardware Clock?s value, then when this instance is started again

 the drift correction applied will be incorrect.

 For hwclock's drift correction to work properly it is imperative

 that nothing changes the Hardware Clock while its Linux instance is

 not running.

 --set

 Set the Hardware Clock to the time given by the --date option, and

 update the timestamps in /etc/adjtime. With the --update-drift

 option also (re)calculate the drift factor. Try it without the Page 4/20

 option if --set fails. See --update-drift below.

 --systz

 This is an alternate to the --hctosys function that does not read

 the Hardware Clock nor set the System Clock; consequently there is

 not any drift correction. It is intended to be used in a startup

 script on systems with kernels above version 2.6 where you know the

 System Clock has been set from the Hardware Clock by the kernel

 during boot.

 It does the following things that are detailed above in the

 --hctosys function:

 ? Corrects the System Clock timescale to UTC as needed. Only

 instead of accomplishing this by setting the System Clock,

 hwclock simply informs the kernel and it handles the change.

 ? Sets the kernel?s NTP '11 minute mode' timescale.

 ? Sets the kernel?s timezone.

 The first two are only available on the first call of settimeofday(2)

 after boot. Consequently this option only makes sense when used in a

 startup script. If the Hardware Clocks timescale configuration is

 changed then a reboot would be required to inform the kernel.

 -w, --systohc

 Set the Hardware Clock from the System Clock, and update the

 timestamps in /etc/adjtime. With the --update-drift option also

 (re)calculate the drift factor. Try it without the option if

 --systohc fails. See --update-drift below.

 -V, --version

 Display version information and exit.

 -h, --help

 Display help text and exit.

OPTIONS

 --adjfile=filename

 Override the default /etc/adjtime file path.

 --date=date_string

 This option must be used with the --set or --predict functions, Page 5/20

 otherwise it is ignored.

 hwclock --set --date='16:45'

 hwclock --predict --date='2525-08-14 07:11:05'

 The argument must be in local time, even if you keep your Hardware

 Clock in UTC. See the --localtime option. Therefore, the argument

 should not include any timezone information. It also should not be

 a relative time like "+5 minutes", because hwclock's precision

 depends upon correlation between the argument?s value and when the

 enter key is pressed. Fractional seconds are silently dropped. This

 option is capable of understanding many time and date formats, but

 the previous parameters should be observed.

 --delay=seconds

 This option can be used to overwrite the internally used delay when

 setting the clock time. The default is 0.5 (500ms) for rtc_cmos,

 for another RTC types the delay is 0. If RTC type is impossible to

 determine (from sysfs) then it defaults also to 0.5 to be

 backwardly compatible.

 The 500ms default is based on commonly used MC146818A-compatible

 (x86) hardware clock. This Hardware Clock can only be set to any

 integer time plus one half second. The integer time is required

 because there is no interface to set or get a fractional second.

 The additional half second delay is because the Hardware Clock

 updates to the following second precisely 500 ms after setting the

 new time. Unfortunately, this behavior is hardware specific and in

 same cases another delay is required.

 -D, --debug

 Use --verbose. The --debug option has been deprecated and may be

 repurposed or removed in a future release.

 --directisa

 This option is meaningful for ISA compatible machines in the x86

 and x86_64 family. For other machines, it has no effect. This

 option tells hwclock to use explicit I/O instructions to access the

 Hardware Clock. Without this option, hwclock will use the rtc Page 6/20

 device file, which it assumes to be driven by the Linux RTC device

 driver. As of v2.26 it will no longer automatically use directisa

 when the rtc driver is unavailable; this was causing an unsafe

 condition that could allow two processes to access the Hardware

 Clock at the same time. Direct hardware access from userspace

 should only be used for testing, troubleshooting, and as a last

 resort when all other methods fail. See the --rtc option.

 --epoch=year

 This option is required when using the --setepoch function. The

 minimum year value is 1900. The maximum is system dependent

 (ULONG_MAX - 1).

 -f, --rtc=filename

 Override hwclock's default rtc device file name. Otherwise it will

 use the first one found in this order: /dev/rtc0, /dev/rtc,

 /dev/misc/rtc. For IA-64: /dev/efirtc /dev/misc/efirtc

 -l, --localtime; -u, --utc

 Indicate which timescale the Hardware Clock is set to.

 The Hardware Clock may be configured to use either the UTC or the

 local timescale, but nothing in the clock itself says which

 alternative is being used. The --localtime or --utc options give

 this information to the hwclock command. If you specify the wrong

 one (or specify neither and take a wrong default), both setting and

 reading the Hardware Clock will be incorrect.

 If you specify neither --utc nor --localtime then the one last

 given with a set function (--set, --systohc, or --adjust), as

 recorded in /etc/adjtime, will be used. If the adjtime file doesn?t

 exist, the default is UTC.

 Note: daylight saving time changes may be inconsistent when the

 Hardware Clock is kept in local time. See the discussion below,

 under LOCAL vs UTC.

 --noadjfile

 Disable the facilities provided by /etc/adjtime. hwclock will not

 read nor write to that file with this option. Either --utc or Page 7/20

 --localtime must be specified when using this option.

 --test

 Do not actually change anything on the system, that is, the Clocks

 or /etc/adjtime (--verbose is implicit with this option).

 --update-drift

 Update the Hardware Clock?s drift factor in /etc/adjtime. It can

 only be used with --set or --systohc.

 A minimum four hour period between settings is required. This is to

 avoid invalid calculations. The longer the period, the more precise

 the resulting drift factor will be.

 This option was added in v2.26, because it is typical for systems

 to call hwclock --systohc at shutdown; with the old behavior this

 would automatically (re)calculate the drift factor which caused

 several problems:

 ? When using NTP with an '11 minute mode' kernel the drift factor

 would be clobbered to near zero.

 ? It would not allow the use of 'cold' drift correction. With

 most configurations using 'cold' drift will yield favorable

 results. Cold, means when the machine is turned off which can

 have a significant impact on the drift factor.

 ? (Re)calculating drift factor on every shutdown delivers

 suboptimal results. For example, if ephemeral conditions cause

 the machine to be abnormally hot the drift factor calculation

 would be out of range.

 ? Significantly increased system shutdown times (as of v2.31 when

 not using --update-drift the RTC is not read).

 Having hwclock calculate the drift factor is a good starting point, but

 for optimal results it will likely need to be adjusted by directly

 editing the /etc/adjtime file. For most configurations once a machine?s

 optimal drift factor is crafted it should not need to be changed.

 Therefore, the old behavior to automatically (re)calculate drift was

 changed and now requires this option to be used. See the discussion

 below, under The Adjust Function. Page 8/20

 This option requires reading the Hardware Clock before setting it. If

 it cannot be read, then this option will cause the set functions to

 fail. This can happen, for example, if the Hardware Clock is corrupted

 by a power failure. In that case, the clock must first be set without

 this option. Despite it not working, the resulting drift correction

 factor would be invalid anyway.

 -v, --verbose

 Display more details about what hwclock is doing internally.

NOTES

 Clocks in a Linux System

 There are two types of date-time clocks:

 The Hardware Clock: This clock is an independent hardware device, with

 its own power domain (battery, capacitor, etc), that operates when the

 machine is powered off, or even unplugged.

 On an ISA compatible system, this clock is specified as part of the ISA

 standard. A control program can read or set this clock only to a whole

 second, but it can also detect the edges of the 1 second clock ticks,

 so the clock actually has virtually infinite precision.

 This clock is commonly called the hardware clock, the real time clock,

 the RTC, the BIOS clock, and the CMOS clock. Hardware Clock, in its

 capitalized form, was coined for use by hwclock. The Linux kernel also

 refers to it as the persistent clock.

 Some non-ISA systems have a few real time clocks with only one of them

 having its own power domain. A very low power external I2C or SPI clock

 chip might be used with a backup battery as the hardware clock to

 initialize a more functional integrated real-time clock which is used

 for most other purposes.

 The System Clock: This clock is part of the Linux kernel and is driven

 by a timer interrupt. (On an ISA machine, the timer interrupt is part

 of the ISA standard.) It has meaning only while Linux is running on the

 machine. The System Time is the number of seconds since 00:00:00

 January 1, 1970 UTC (or more succinctly, the number of seconds since

 1969 UTC). The System Time is not an integer, though. It has virtually Page 9/20

 infinite precision.

 The System Time is the time that matters. The Hardware Clock?s basic

 purpose is to keep time when Linux is not running so that the System

 Clock can be initialized from it at boot. Note that in DOS, for which

 ISA was designed, the Hardware Clock is the only real time clock.

 It is important that the System Time not have any discontinuities such

 as would happen if you used the date(1) program to set it while the

 system is running. You can, however, do whatever you want to the

 Hardware Clock while the system is running, and the next time Linux

 starts up, it will do so with the adjusted time from the Hardware

 Clock. Note: currently this is not possible on most systems because

 hwclock --systohc is called at shutdown.

 The Linux kernel?s timezone is set by hwclock. But don?t be misled ?

 almost nobody cares what timezone the kernel thinks it is in. Instead,

 programs that care about the timezone (perhaps because they want to

 display a local time for you) almost always use a more traditional

 method of determining the timezone: They use the TZ environment

 variable or the /etc/localtime file, as explained in the man page for

 tzset(3). However, some programs and fringe parts of the Linux kernel

 such as filesystems use the kernel?s timezone value. An example is the

 vfat filesystem. If the kernel timezone value is wrong, the vfat

 filesystem will report and set the wrong timestamps on files. Another

 example is the kernel?s NTP '11 minute mode'. If the kernel?s timezone

 value and/or the persistent_clock_is_local variable are wrong, then the

 Hardware Clock will be set incorrectly by '11 minute mode'. See the

 discussion below, under Automatic Hardware Clock Synchronization by the

 Kernel.

 hwclock sets the kernel?s timezone to the value indicated by TZ or

 /etc/localtime with the --hctosys or --systz functions.

 The kernel?s timezone value actually consists of two parts: 1) a field

 tz_minuteswest indicating how many minutes local time (not adjusted for

 DST) lags behind UTC, and 2) a field tz_dsttime indicating the type of

 Daylight Savings Time (DST) convention that is in effect in the Page 10/20

 locality at the present time. This second field is not used under Linux

 and is always zero. See also settimeofday(2).

 Hardware Clock Access Methods

 hwclock uses many different ways to get and set Hardware Clock values.

 The most normal way is to do I/O to the rtc device special file, which

 is presumed to be driven by the rtc device driver. Also, Linux systems

 using the rtc framework with udev, are capable of supporting multiple

 Hardware Clocks. This may bring about the need to override the default

 rtc device by specifying one with the --rtc option.

 However, this method is not always available as older systems do not

 have an rtc driver. On these systems, the method of accessing the

 Hardware Clock depends on the system hardware.

 On an ISA compatible system, hwclock can directly access the "CMOS

 memory" registers that constitute the clock, by doing I/O to Ports 0x70

 and 0x71. It does this with actual I/O instructions and consequently

 can only do it if running with superuser effective userid. This method

 may be used by specifying the --directisa option.

 This is a really poor method of accessing the clock, for all the

 reasons that userspace programs are generally not supposed to do direct

 I/O and disable interrupts. hwclock provides it for testing,

 troubleshooting, and because it may be the only method available on ISA

 systems which do not have a working rtc device driver.

 The Adjust Function

 The Hardware Clock is usually not very accurate. However, much of its

 inaccuracy is completely predictable - it gains or loses the same

 amount of time every day. This is called systematic drift. hwclock's

 --adjust function lets you apply systematic drift corrections to the

 Hardware Clock.

 It works like this: hwclock keeps a file, /etc/adjtime, that keeps some

 historical information. This is called the adjtime file.

 Suppose you start with no adjtime file. You issue a hwclock --set

 command to set the Hardware Clock to the true current time. hwclock

 creates the adjtime file and records in it the current time as the last Page 11/20

 time the clock was calibrated. Five days later, the clock has gained 10

 seconds, so you issue a hwclock --set --update-drift command to set it

 back 10 seconds. hwclock updates the adjtime file to show the current

 time as the last time the clock was calibrated, and records 2 seconds

 per day as the systematic drift rate. 24 hours go by, and then you

 issue a hwclock --adjust command. hwclock consults the adjtime file and

 sees that the clock gains 2 seconds per day when left alone and that it

 has been left alone for exactly one day. So it subtracts 2 seconds from

 the Hardware Clock. It then records the current time as the last time

 the clock was adjusted. Another 24 hours go by and you issue another

 hwclock --adjust. hwclock does the same thing: subtracts 2 seconds and

 updates the adjtime file with the current time as the last time the

 clock was adjusted.

 When you use the --update-drift option with --set or --systohc, the

 systematic drift rate is (re)calculated by comparing the fully drift

 corrected current Hardware Clock time with the new set time, from that

 it derives the 24 hour drift rate based on the last calibrated

 timestamp from the adjtime file. This updated drift factor is then

 saved in /etc/adjtime.

 A small amount of error creeps in when the Hardware Clock is set, so

 --adjust refrains from making any adjustment that is less than 1

 second. Later on, when you request an adjustment again, the accumulated

 drift will be more than 1 second and --adjust will make the adjustment

 including any fractional amount.

 hwclock --hctosys also uses the adjtime file data to compensate the

 value read from the Hardware Clock before using it to set the System

 Clock. It does not share the 1 second limitation of --adjust, and will

 correct sub-second drift values immediately. It does not change the

 Hardware Clock time nor the adjtime file. This may eliminate the need

 to use --adjust, unless something else on the system needs the Hardware

 Clock to be compensated.

 The Adjtime File

 While named for its historical purpose of controlling adjustments only, Page 12/20

 it actually contains other information used by hwclock from one

 invocation to the next.

 The format of the adjtime file is, in ASCII:

 Line 1: Three numbers, separated by blanks: 1) the systematic drift

 rate in seconds per day, floating point decimal; 2) the resulting

 number of seconds since 1969 UTC of most recent adjustment or

 calibration, decimal integer; 3) zero (for compatibility with clock(8))

 as a floating point decimal.

 Line 2: One number: the resulting number of seconds since 1969 UTC of

 most recent calibration. Zero if there has been no calibration yet or

 it is known that any previous calibration is moot (for example, because

 the Hardware Clock has been found, since that calibration, not to

 contain a valid time). This is a decimal integer.

 Line 3: "UTC" or "LOCAL". Tells whether the Hardware Clock is set to

 Coordinated Universal Time or local time. You can always override this

 value with options on the hwclock command line.

 You can use an adjtime file that was previously used with the clock(8)

 program with hwclock.

 Automatic Hardware Clock Synchronization by the Kernel

 You should be aware of another way that the Hardware Clock is kept

 synchronized in some systems. The Linux kernel has a mode wherein it

 copies the System Time to the Hardware Clock every 11 minutes. This

 mode is a compile time option, so not all kernels will have this

 capability. This is a good mode to use when you are using something

 sophisticated like NTP to keep your System Clock synchronized. (NTP is

 a way to keep your System Time synchronized either to a time server

 somewhere on the network or to a radio clock hooked up to your system.

 See RFC 1305.)

 If the kernel is compiled with the '11 minute mode' option it will be

 active when the kernel?s clock discipline is in a synchronized state.

 When in this state, bit 6 (the bit that is set in the mask 0x0040) of

 the kernel?s time_status variable is unset. This value is output as the

 'status' line of the adjtimex --print or ntptime commands. Page 13/20

 It takes an outside influence, like the NTP daemon to put the kernel?s

 clock discipline into a synchronized state, and therefore turn on '11

 minute mode'. It can be turned off by running anything that sets the

 System Clock the old fashioned way, including hwclock --hctosys.

 However, if the NTP daemon is still running, it will turn '11 minute

 mode' back on again the next time it synchronizes the System Clock.

 If your system runs with '11 minute mode' on, it may need to use either

 --hctosys or --systz in a startup script, especially if the Hardware

 Clock is configured to use the local timescale. Unless the kernel is

 informed of what timescale the Hardware Clock is using, it may clobber

 it with the wrong one. The kernel uses UTC by default.

 The first userspace command to set the System Clock informs the kernel

 what timescale the Hardware Clock is using. This happens via the

 persistent_clock_is_local kernel variable. If --hctosys or --systz is

 the first, it will set this variable according to the adjtime file or

 the appropriate command-line argument. Note that when using this

 capability and the Hardware Clock timescale configuration is changed,

 then a reboot is required to notify the kernel.

 hwclock --adjust should not be used with NTP '11 minute mode'.

 ISA Hardware Clock Century value

 There is some sort of standard that defines CMOS memory Byte 50 on an

 ISA machine as an indicator of what century it is. hwclock does not use

 or set that byte because there are some machines that don?t define the

 byte that way, and it really isn?t necessary anyway, since the

 year-of-century does a good job of implying which century it is.

 If you have a bona fide use for a CMOS century byte, contact the

 hwclock maintainer; an option may be appropriate.

 Note that this section is only relevant when you are using the "direct

 ISA" method of accessing the Hardware Clock. ACPI provides a standard

 way to access century values, when they are supported by the hardware.

DATE-TIME CONFIGURATION

 Keeping Time without External Synchronization

 This discussion is based on the following conditions: Page 14/20

 ? Nothing is running that alters the date-time clocks, such as NTP

 daemon or a cron job."

 ? The system timezone is configured for the correct local time. See

 below, under POSIX vs 'RIGHT'.

 ? Early during startup the following are called, in this order:

 adjtimex --tick value --frequency value hwclock --hctosys

 ? During shutdown the following is called: hwclock --systohc

 ? Systems without adjtimex may use ntptime.

 Whether maintaining precision time with NTP daemon or not, it makes

 sense to configure the system to keep reasonably good date-time on its

 own.

 The first step in making that happen is having a clear understanding of

 the big picture. There are two completely separate hardware devices

 running at their own speed and drifting away from the 'correct' time at

 their own rates. The methods and software for drift correction are

 different for each of them. However, most systems are configured to

 exchange values between these two clocks at startup and shutdown. Now

 the individual device?s time keeping errors are transferred back and

 forth between each other. Attempt to configure drift correction for

 only one of them, and the other?s drift will be overlaid upon it.

 This problem can be avoided when configuring drift correction for the

 System Clock by simply not shutting down the machine. This, plus the

 fact that all of hwclock's precision (including calculating drift

 factors) depends upon the System Clock?s rate being correct, means that

 configuration of the System Clock should be done first.

 The System Clock drift is corrected with the adjtimex(8) command?s

 --tick and --frequency options. These two work together: tick is the

 coarse adjustment and frequency is the fine adjustment. (For systems

 that do not have an adjtimex package, ntptime -f ppm may be used

 instead.)

 Some Linux distributions attempt to automatically calculate the System

 Clock drift with adjtimex's compare operation. Trying to correct one

 drifting clock by using another drifting clock as a reference is akin Page 15/20

 to a dog trying to catch its own tail. Success may happen eventually,

 but great effort and frustration will likely precede it. This

 automation may yield an improvement over no configuration, but

 expecting optimum results would be in error. A better choice for manual

 configuration would be adjtimex's --log options.

 It may be more effective to simply track the System Clock drift with

 sntp, or date -Ins and a precision timepiece, and then calculate the

 correction manually.

 After setting the tick and frequency values, continue to test and

 refine the adjustments until the System Clock keeps good time. See

 adjtimex(2) for more information and the example demonstrating manual

 drift calculations.

 Once the System Clock is ticking smoothly, move on to the Hardware

 Clock.

 As a rule, cold drift will work best for most use cases. This should be

 true even for 24/7 machines whose normal downtime consists of a reboot.

 In that case the drift factor value makes little difference. But on the

 rare occasion that the machine is shut down for an extended period,

 then cold drift should yield better results.

 Steps to calculate cold drift:

 1

 Ensure that NTP daemon will not be launched at startup.

 2

 The System Clock time must be correct at shutdown!

 3

 Shut down the system.

 4

 Let an extended period pass without changing the Hardware Clock.

 5

 Start the system.

 6

 Immediately use hwclock to set the correct time, adding the

 --update-drift option. Page 16/20

 Note: if step 6 uses --systohc, then the System Clock must be set

 correctly (step 6a) just before doing so.

 Having hwclock calculate the drift factor is a good starting point, but

 for optimal results it will likely need to be adjusted by directly

 editing the /etc/adjtime file. Continue to test and refine the drift

 factor until the Hardware Clock is corrected properly at startup. To

 check this, first make sure that the System Time is correct before

 shutdown and then use sntp, or date -Ins and a precision timepiece,

 immediately after startup.

 LOCAL vs UTC

 Keeping the Hardware Clock in a local timescale causes inconsistent

 daylight saving time results:

 ? If Linux is running during a daylight saving time change, the time

 written to the Hardware Clock will be adjusted for the change.

 ? If Linux is NOT running during a daylight saving time change, the

 time read from the Hardware Clock will NOT be adjusted for the

 change.

 The Hardware Clock on an ISA compatible system keeps only a date and

 time, it has no concept of timezone nor daylight saving. Therefore,

 when hwclock is told that it is in local time, it assumes it is in the

 'correct' local time and makes no adjustments to the time read from it.

 Linux handles daylight saving time changes transparently only when the

 Hardware Clock is kept in the UTC timescale. Doing so is made easy for

 system administrators as hwclock uses local time for its output and as

 the argument to the --date option.

 POSIX systems, like Linux, are designed to have the System Clock

 operate in the UTC timescale. The Hardware Clock?s purpose is to

 initialize the System Clock, so also keeping it in UTC makes sense.

 Linux does, however, attempt to accommodate the Hardware Clock being in

 the local timescale. This is primarily for dual-booting with older

 versions of MS Windows. From Windows 7 on, the RealTimeIsUniversal

 registry key is supposed to be working properly so that its Hardware

 Clock can be kept in UTC. Page 17/20

 POSIX vs 'RIGHT'

 A discussion on date-time configuration would be incomplete without

 addressing timezones, this is mostly well covered by tzset(3). One area

 that seems to have no documentation is the 'right' directory of the

 Time Zone Database, sometimes called tz or zoneinfo.

 There are two separate databases in the zoneinfo system, posix and

 'right'. 'Right' (now named zoneinfo-leaps) includes leap seconds and

 posix does not. To use the 'right' database the System Clock must be

 set to (UTC + leap seconds), which is equivalent to (TAI - 10). This

 allows calculating the exact number of seconds between two dates that

 cross a leap second epoch. The System Clock is then converted to the

 correct civil time, including UTC, by using the 'right' timezone files

 which subtract the leap seconds. Note: this configuration is considered

 experimental and is known to have issues.

 To configure a system to use a particular database all of the files

 located in its directory must be copied to the root of

 /usr/share/zoneinfo. Files are never used directly from the posix or

 'right' subdirectories, e.g., TZ='right/Europe/Dublin'. This habit was

 becoming so common that the upstream zoneinfo project restructured the

 system?s file tree by moving the posix and 'right' subdirectories out

 of the zoneinfo directory and into sibling directories:

 /usr/share/zoneinfo, /usr/share/zoneinfo-posix,

 /usr/share/zoneinfo-leaps

 Unfortunately, some Linux distributions are changing it back to the old

 tree structure in their packages. So the problem of system

 administrators reaching into the 'right' subdirectory persists. This

 causes the system timezone to be configured to include leap seconds

 while the zoneinfo database is still configured to exclude them. Then

 when an application such as a World Clock needs the South_Pole timezone

 file; or an email MTA, or hwclock needs the UTC timezone file; they

 fetch it from the root of /usr/share/zoneinfo , because that is what

 they are supposed to do. Those files exclude leap seconds, but the

 System Clock now includes them, causing an incorrect time conversion. Page 18/20

 Attempting to mix and match files from these separate databases will

 not work, because they each require the System Clock to use a different

 timescale. The zoneinfo database must be configured to use either posix

 or 'right', as described above, or by assigning a database path to the

 TZDIR environment variable.

EXIT STATUS

 One of the following exit values will be returned:

 EXIT_SUCCESS ('0' on POSIX systems)

 Successful program execution.

 EXIT_FAILURE ('1' on POSIX systems)

 The operation failed or the command syntax was not valid.

ENVIRONMENT

 TZ

 If this variable is set its value takes precedence over the system

 configured timezone.

 TZDIR

 If this variable is set its value takes precedence over the system

 configured timezone database directory path.

FILES

 /etc/adjtime

 The configuration and state file for hwclock.

 /etc/localtime

 The system timezone file.

 /usr/share/zoneinfo/

 The system timezone database directory.

 Device files hwclock may try for Hardware Clock access: /dev/rtc0

 /dev/rtc /dev/misc/rtc /dev/efirtc /dev/misc/efirtc

SEE ALSO

 date(1), adjtimex(8), gettimeofday(2), settimeofday(2), crontab(1p),

 tzset(3)

AUTHORS

 Written by Bryan Henderson <bryanh@giraffe-data.com>, September 1996,

 based on work done on the clock(8) program by Charles Hedrick, Rob Page 19/20

 Hooft, and Harald Koenig. See the source code for complete history and

 credits.

REPORTING BUGS

 For bug reports, use the issue tracker at

 https://github.com/karelzak/util-linux/issues.

AVAILABILITY

 The hwclock command is part of the util-linux package which can be

 downloaded from Linux Kernel Archive

 <https://www.kernel.org/pub/linux/utils/util-linux/>.

util-linux 2.37.4 2022-02-14 HWCLOCK(8)

Page 20/20

