
Rocky Enterprise Linux 9.2 Manual Pages on command 'glob.3'

$ man glob.3

GLOB(3) Linux Programmer's Manual GLOB(3)

NAME

 glob, globfree - find pathnames matching a pattern, free memory from

 glob()

SYNOPSIS

 #include <glob.h>

 int glob(const char *pattern, int flags,

 int (*errfunc) (const char *epath, int eerrno),

 glob_t *pglob);

 void globfree(glob_t *pglob);

DESCRIPTION

 The glob() function searches for all the pathnames matching pattern ac?

 cording to the rules used by the shell (see glob(7)). No tilde expan?

 sion or parameter substitution is done; if you want these, use word?

 exp(3).

 The globfree() function frees the dynamically allocated storage from an

 earlier call to glob().

 The results of a glob() call are stored in the structure pointed to by Page 1/6

 pglob. This structure is of type glob_t (declared in <glob.h>) and in?

 cludes the following elements defined by POSIX.2 (more may be present

 as an extension):

 typedef struct {

 size_t gl_pathc; /* Count of paths matched so far */

 char **gl_pathv; /* List of matched pathnames. */

 size_t gl_offs; /* Slots to reserve in gl_pathv. */

 } glob_t;

 Results are stored in dynamically allocated storage.

 The argument flags is made up of the bitwise OR of zero or more the

 following symbolic constants, which modify the behavior of glob():

 GLOB_ERR

 Return upon a read error (because a directory does not have read

 permission, for example). By default, glob() attempts carry on

 despite errors, reading all of the directories that it can.

 GLOB_MARK

 Append a slash to each path which corresponds to a directory.

 GLOB_NOSORT

 Don't sort the returned pathnames. The only reason to do this

 is to save processing time. By default, the returned pathnames

 are sorted.

 GLOB_DOOFFS

 Reserve pglob->gl_offs slots at the beginning of the list of

 strings in pglob->pathv. The reserved slots contain null point?

 ers.

 GLOB_NOCHECK

 If no pattern matches, return the original pattern. By default,

 glob() returns GLOB_NOMATCH if there are no matches.

 GLOB_APPEND

 Append the results of this call to the vector of results re?

 turned by a previous call to glob(). Do not set this flag on

 the first invocation of glob().

 GLOB_NOESCAPE Page 2/6

 Don't allow backslash ('\') to be used as an escape character.

 Normally, a backslash can be used to quote the following charac?

 ter, providing a mechanism to turn off the special meaning

 metacharacters.

 flags may also include any of the following, which are GNU extensions

 and not defined by POSIX.2:

 GLOB_PERIOD

 Allow a leading period to be matched by metacharacters. By de?

 fault, metacharacters can't match a leading period.

 GLOB_ALTDIRFUNC

 Use alternative functions pglob->gl_closedir, pglob->gl_readdir,

 pglob->gl_opendir, pglob->gl_lstat, and pglob->gl_stat for

 filesystem access instead of the normal library functions.

 GLOB_BRACE

 Expand csh(1) style brace expressions of the form {a,b}. Brace

 expressions can be nested. Thus, for example, specifying the

 pattern "{foo/{,cat,dog},bar}" would return the same results as

 four separate glob() calls using the strings: "foo/", "foo/cat",

 "foo/dog", and "bar".

 GLOB_NOMAGIC

 If the pattern contains no metacharacters, then it should be re?

 turned as the sole matching word, even if there is no file with

 that name.

 GLOB_TILDE

 Carry out tilde expansion. If a tilde ('~') is the only charac?

 ter in the pattern, or an initial tilde is followed immediately

 by a slash ('/'), then the home directory of the caller is sub?

 stituted for the tilde. If an initial tilde is followed by a

 username (e.g., "~andrea/bin"), then the tilde and username are

 substituted by the home directory of that user. If the username

 is invalid, or the home directory cannot be determined, then no

 substitution is performed.

 GLOB_TILDE_CHECK Page 3/6

 This provides behavior similar to that of GLOB_TILDE. The dif?

 ference is that if the username is invalid, or the home direc?

 tory cannot be determined, then instead of using the pattern it?

 self as the name, glob() returns GLOB_NOMATCH to indicate an er?

 ror.

 GLOB_ONLYDIR

 This is a hint to glob() that the caller is interested only in

 directories that match the pattern. If the implementation can

 easily determine file-type information, then nondirectory files

 are not returned to the caller. However, the caller must still

 check that returned files are directories. (The purpose of this

 flag is merely to optimize performance when the caller is inter?

 ested only in directories.)

 If errfunc is not NULL, it will be called in case of an error with the

 arguments epath, a pointer to the path which failed, and eerrno, the

 value of errno as returned from one of the calls to opendir(3), read?

 dir(3), or stat(2). If errfunc returns nonzero, or if GLOB_ERR is set,

 glob() will terminate after the call to errfunc.

 Upon successful return, pglob->gl_pathc contains the number of matched

 pathnames and pglob->gl_pathv contains a pointer to the list of point?

 ers to matched pathnames. The list of pointers is terminated by a null

 pointer.

 It is possible to call glob() several times. In that case, the

 GLOB_APPEND flag has to be set in flags on the second and later invoca?

 tions.

 As a GNU extension, pglob->gl_flags is set to the flags specified, ored

 with GLOB_MAGCHAR if any metacharacters were found.

RETURN VALUE

 On successful completion, glob() returns zero. Other possible returns

 are:

 GLOB_NOSPACE

 for running out of memory,

 GLOB_ABORTED Page 4/6

 for a read error, and

 GLOB_NOMATCH

 for no found matches.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?glob() ? Thread safety ? MT-Unsafe race:utent env ?

 ? ? ? sig:ALRM timer locale ?

 ??

 ?globfree() ? Thread safety ? MT-Safe ?

 ??

 In the above table, utent in race:utent signifies that if any of the

 functions setutent(3), getutent(3), or endutent(3) are used in parallel

 in different threads of a program, then data races could occur. glob()

 calls those functions, so we use race:utent to remind users.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, POSIX.2.

NOTES

 The structure elements gl_pathc and gl_offs are declared as size_t in

 glibc 2.1, as they should be according to POSIX.2, but are declared as

 int in glibc 2.0.

BUGS

 The glob() function may fail due to failure of underlying function

 calls, such as malloc(3) or opendir(3). These will store their error

 code in errno.

EXAMPLES

 One example of use is the following code, which simulates typing

 ls -l *.c ../*.c

 in the shell:

 glob_t globbuf; Page 5/6

 globbuf.gl_offs = 2;

 glob("*.c", GLOB_DOOFFS, NULL, &globbuf);

 glob("../*.c", GLOB_DOOFFS | GLOB_APPEND, NULL, &globbuf);

 globbuf.gl_pathv[0] = "ls";

 globbuf.gl_pathv[1] = "-l";

 execvp("ls", &globbuf.gl_pathv[0]);

SEE ALSO

 ls(1), sh(1), stat(2), exec(3), fnmatch(3), malloc(3), opendir(3),

 readdir(3), wordexp(3), glob(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-06-09 GLOB(3)

Page 6/6

