
Rocky Enterprise Linux 9.2 Manual Pages on command 'getopt_long_only.3'

$ man getopt_long_only.3

GETOPT(3) Linux Programmer's Manual GETOPT(3)

NAME

 getopt, getopt_long, getopt_long_only, optarg, optind, opterr, optopt -

 Parse command-line options

SYNOPSIS

 #include <unistd.h>

 int getopt(int argc, char * const argv[],

 const char *optstring);

 extern char *optarg;

 extern int optind, opterr, optopt;

 #include <getopt.h>

 int getopt_long(int argc, char * const argv[],

 const char *optstring,

 const struct option *longopts, int *longindex);

 int getopt_long_only(int argc, char * const argv[],

 const char *optstring,

 const struct option *longopts, int *longindex);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)): Page 1/10

 getopt(): _POSIX_C_SOURCE >= 2 || _XOPEN_SOURCE

 getopt_long(), getopt_long_only(): _GNU_SOURCE

DESCRIPTION

 The getopt() function parses the command-line arguments. Its arguments

 argc and argv are the argument count and array as passed to the main()

 function on program invocation. An element of argv that starts with

 '-' (and is not exactly "-" or "--") is an option element. The charac?

 ters of this element (aside from the initial '-') are option charac?

 ters. If getopt() is called repeatedly, it returns successively each

 of the option characters from each of the option elements.

 The variable optind is the index of the next element to be processed in

 argv. The system initializes this value to 1. The caller can reset it

 to 1 to restart scanning of the same argv, or when scanning a new argu?

 ment vector.

 If getopt() finds another option character, it returns that character,

 updating the external variable optind and a static variable nextchar so

 that the next call to getopt() can resume the scan with the following

 option character or argv-element.

 If there are no more option characters, getopt() returns -1. Then

 optind is the index in argv of the first argv-element that is not an

 option.

 optstring is a string containing the legitimate option characters. If

 such a character is followed by a colon, the option requires an argu?

 ment, so getopt() places a pointer to the following text in the same

 argv-element, or the text of the following argv-element, in optarg.

 Two colons mean an option takes an optional arg; if there is text in

 the current argv-element (i.e., in the same word as the option name it?

 self, for example, "-oarg"), then it is returned in optarg, otherwise

 optarg is set to zero. This is a GNU extension. If optstring contains

 W followed by a semicolon, then -W foo is treated as the long option

 --foo. (The -W option is reserved by POSIX.2 for implementation exten?

 sions.) This behavior is a GNU extension, not available with libraries

 before glibc 2. Page 2/10

 By default, getopt() permutes the contents of argv as it scans, so that

 eventually all the nonoptions are at the end. Two other scanning modes

 are also implemented. If the first character of optstring is '+' or

 the environment variable POSIXLY_CORRECT is set, then option processing

 stops as soon as a nonoption argument is encountered. If the first

 character of optstring is '-', then each nonoption argv-element is han?

 dled as if it were the argument of an option with character code 1.

 (This is used by programs that were written to expect options and other

 argv-elements in any order and that care about the ordering of the

 two.) The special argument "--" forces an end of option-scanning re?

 gardless of the scanning mode.

 While processing the option list, getopt() can detect two kinds of er?

 rors: (1) an option character that was not specified in optstring and

 (2) a missing option argument (i.e., an option at the end of the com?

 mand line without an expected argument). Such errors are handled and

 reported as follows:

 * By default, getopt() prints an error message on standard error,

 places the erroneous option character in optopt, and returns '?' as

 the function result.

 * If the caller has set the global variable opterr to zero, then

 getopt() does not print an error message. The caller can determine

 that there was an error by testing whether the function return value

 is '?'. (By default, opterr has a nonzero value.)

 * If the first character (following any optional '+' or '-' described

 above) of optstring is a colon (':'), then getopt() likewise does

 not print an error message. In addition, it returns ':' instead of

 '?' to indicate a missing option argument. This allows the caller

 to distinguish the two different types of errors.

 getopt_long() and getopt_long_only()

 The getopt_long() function works like getopt() except that it also ac?

 cepts long options, started with two dashes. (If the program accepts

 only long options, then optstring should be specified as an empty

 string (""), not NULL.) Long option names may be abbreviated if the Page 3/10

 abbreviation is unique or is an exact match for some defined option. A

 long option may take a parameter, of the form --arg=param or --arg

 param.

 longopts is a pointer to the first element of an array of struct option

 declared in <getopt.h> as

 struct option {

 const char *name;

 int has_arg;

 int *flag;

 int val;

 };

 The meanings of the different fields are:

 name is the name of the long option.

 has_arg

 is: no_argument (or 0) if the option does not take an argument;

 required_argument (or 1) if the option requires an argument; or

 optional_argument (or 2) if the option takes an optional argu?

 ment.

 flag specifies how results are returned for a long option. If flag

 is NULL, then getopt_long() returns val. (For example, the

 calling program may set val to the equivalent short option char?

 acter.) Otherwise, getopt_long() returns 0, and flag points to

 a variable which is set to val if the option is found, but left

 unchanged if the option is not found.

 val is the value to return, or to load into the variable pointed to

 by flag.

 The last element of the array has to be filled with zeros.

 If longindex is not NULL, it points to a variable which is set to the

 index of the long option relative to longopts.

 getopt_long_only() is like getopt_long(), but '-' as well as "--" can

 indicate a long option. If an option that starts with '-' (not "--")

 doesn't match a long option, but does match a short option, it is

 parsed as a short option instead. Page 4/10

RETURN VALUE

 If an option was successfully found, then getopt() returns the option

 character. If all command-line options have been parsed, then getopt()

 returns -1. If getopt() encounters an option character that was not in

 optstring, then '?' is returned. If getopt() encounters an option with

 a missing argument, then the return value depends on the first charac?

 ter in optstring: if it is ':', then ':' is returned; otherwise '?' is

 returned.

 getopt_long() and getopt_long_only() also return the option character

 when a short option is recognized. For a long option, they return val

 if flag is NULL, and 0 otherwise. Error and -1 returns are the same as

 for getopt(), plus '?' for an ambiguous match or an extraneous parame?

 ter.

ENVIRONMENT

 POSIXLY_CORRECT

 If this is set, then option processing stops as soon as a nonop?

 tion argument is encountered.

 _<PID>_GNU_nonoption_argv_flags_

 This variable was used by bash(1) 2.0 to communicate to glibc

 which arguments are the results of wildcard expansion and so

 should not be considered as options. This behavior was removed

 in bash(1) version 2.01, but the support remains in glibc.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?getopt(), getopt_long(), ? Thread safety ? MT-Unsafe race:getopt env ?

 ?getopt_long_only() ? ? ?

 ???

CONFORMING TO

 getopt(): Page 5/10

 POSIX.1-2001, POSIX.1-2008, and POSIX.2, provided the environ?

 ment variable POSIXLY_CORRECT is set. Otherwise, the elements

 of argv aren't really const, because these functions permute

 them. Nevertheless, const is used in the prototype to be com?

 patible with other systems.

 The use of '+' and '-' in optstring is a GNU extension.

 On some older implementations, getopt() was declared in

 <stdio.h>. SUSv1 permitted the declaration to appear in either

 <unistd.h> or <stdio.h>. POSIX.1-1996 marked the use of

 <stdio.h> for this purpose as LEGACY. POSIX.1-2001 does not re?

 quire the declaration to appear in <stdio.h>.

 getopt_long() and getopt_long_only():

 These functions are GNU extensions.

NOTES

 A program that scans multiple argument vectors, or rescans the same

 vector more than once, and wants to make use of GNU extensions such as

 '+' and '-' at the start of optstring, or changes the value of

 POSIXLY_CORRECT between scans, must reinitialize getopt() by resetting

 optind to 0, rather than the traditional value of 1. (Resetting to 0

 forces the invocation of an internal initialization routine that

 rechecks POSIXLY_CORRECT and checks for GNU extensions in optstring.)

EXAMPLES

 getopt()

 The following trivial example program uses getopt() to handle two pro?

 gram options: -n, with no associated value; and -t val, which expects

 an associated value.

 #include <unistd.h>

 #include <stdlib.h>

 #include <stdio.h>

 int

 main(int argc, char *argv[])

 {

 int flags, opt; Page 6/10

 int nsecs, tfnd;

 nsecs = 0;

 tfnd = 0;

 flags = 0;

 while ((opt = getopt(argc, argv, "nt:")) != -1) {

 switch (opt) {

 case 'n':

 flags = 1;

 break;

 case 't':

 nsecs = atoi(optarg);

 tfnd = 1;

 break;

 default: /* '?' */

 fprintf(stderr, "Usage: %s [-t nsecs] [-n] name\n",

 argv[0]);

 exit(EXIT_FAILURE);

 }

 }

 printf("flags=%d; tfnd=%d; nsecs=%d; optind=%d\n",

 flags, tfnd, nsecs, optind);

 if (optind >= argc) {

 fprintf(stderr, "Expected argument after options\n");

 exit(EXIT_FAILURE);

 }

 printf("name argument = %s\n", argv[optind]);

 /* Other code omitted */

 exit(EXIT_SUCCESS);

 }

 getopt_long()

 The following example program illustrates the use of getopt_long() with

 most of its features.

 #include <stdio.h> /* for printf */ Page 7/10

 #include <stdlib.h> /* for exit */

 #include <getopt.h>

 int

 main(int argc, char **argv)

 {

 int c;

 int digit_optind = 0;

 while (1) {

 int this_option_optind = optind ? optind : 1;

 int option_index = 0;

 static struct option long_options[] = {

 {"add", required_argument, 0, 0 },

 {"append", no_argument, 0, 0 },

 {"delete", required_argument, 0, 0 },

 {"verbose", no_argument, 0, 0 },

 {"create", required_argument, 0, 'c'},

 {"file", required_argument, 0, 0 },

 {0, 0, 0, 0 }

 };

 c = getopt_long(argc, argv, "abc:d:012",

 long_options, &option_index);

 if (c == -1)

 break;

 switch (c) {

 case 0:

 printf("option %s", long_options[option_index].name);

 if (optarg)

 printf(" with arg %s", optarg);

 printf("\n");

 break;

 case '0':

 case '1':

 case '2': Page 8/10

 if (digit_optind != 0 && digit_optind != this_option_optind)

 printf("digits occur in two different argv-elements.\n");

 digit_optind = this_option_optind;

 printf("option %c\n", c);

 break;

 case 'a':

 printf("option a\n");

 break;

 case 'b':

 printf("option b\n");

 break;

 case 'c':

 printf("option c with value '%s'\n", optarg);

 break;

 case 'd':

 printf("option d with value '%s'\n", optarg);

 break;

 case '?':

 break;

 default:

 printf("?? getopt returned character code 0%o ??\n", c);

 }

 }

 if (optind < argc) {

 printf("non-option ARGV-elements: ");

 while (optind < argc)

 printf("%s ", argv[optind++]);

 printf("\n");

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getopt(1), getsubopt(3) Page 9/10

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-06-09 GETOPT(3)

Page 10/10

