
Rocky Enterprise Linux 9.2 Manual Pages on command 'getitimer.2'

$ man getitimer.2

GETITIMER(2) Linux Programmer's Manual GETITIMER(2)

NAME

 getitimer, setitimer - get or set value of an interval timer

SYNOPSIS

 #include <sys/time.h>

 int getitimer(int which, struct itimerval *curr_value);

 int setitimer(int which, const struct itimerval *new_value,

 struct itimerval *old_value);

DESCRIPTION

 These system calls provide access to interval timers, that is, timers

 that initially expire at some point in the future, and (optionally) at

 regular intervals after that. When a timer expires, a signal is gener?

 ated for the calling process, and the timer is reset to the specified

 interval (if the interval is nonzero).

 Three types of timers?specified via the which argument?are provided,

 each of which counts against a different clock and generates a differ?

 ent signal on timer expiration:

 ITIMER_REAL Page 1/5

 This timer counts down in real (i.e., wall clock) time. At each

 expiration, a SIGALRM signal is generated.

 ITIMER_VIRTUAL

 This timer counts down against the user-mode CPU time consumed

 by the process. (The measurement includes CPU time consumed by

 all threads in the process.) At each expiration, a SIGVTALRM

 signal is generated.

 ITIMER_PROF

 This timer counts down against the total (i.e., both user and

 system) CPU time consumed by the process. (The measurement in?

 cludes CPU time consumed by all threads in the process.) At

 each expiration, a SIGPROF signal is generated.

 In conjunction with ITIMER_VIRTUAL, this timer can be used to

 profile user and system CPU time consumed by the process.

 A process has only one of each of the three types of timers.

 Timer values are defined by the following structures:

 struct itimerval {

 struct timeval it_interval; /* Interval for periodic timer */

 struct timeval it_value; /* Time until next expiration */

 };

 struct timeval {

 time_t tv_sec; /* seconds */

 suseconds_t tv_usec; /* microseconds */

 };

 getitimer()

 The function getitimer() places the current value of the timer speci?

 fied by which in the buffer pointed to by curr_value.

 The it_value substructure is populated with the amount of time remain?

 ing until the next expiration of the specified timer. This value

 changes as the timer counts down, and will be reset to it_interval when

 the timer expires. If both fields of it_value are zero, then this

 timer is currently disarmed (inactive).

 The it_interval substructure is populated with the timer interval. If Page 2/5

 both fields of it_interval are zero, then this is a single-shot timer

 (i.e., it expires just once).

 setitimer()

 The function setitimer() arms or disarms the timer specified by which,

 by setting the timer to the value specified by new_value. If old_value

 is non-NULL, the buffer it points to is used to return the previous

 value of the timer (i.e., the same information that is returned by

 getitimer()).

 If either field in new_value.it_value is nonzero, then the timer is

 armed to initially expire at the specified time. If both fields in

 new_value.it_value are zero, then the timer is disarmed.

 The new_value.it_interval field specifies the new interval for the

 timer; if both of its subfields are zero, the timer is single-shot.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 EFAULT new_value, old_value, or curr_value is not valid a pointer.

 EINVAL which is not one of ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF;

 or (since Linux 2.6.22) one of the tv_usec fields in the struc?

 ture pointed to by new_value contains a value outside the range

 0 to 999999.

CONFORMING TO

 POSIX.1-2001, SVr4, 4.4BSD (this call first appeared in 4.2BSD).

 POSIX.1-2008 marks getitimer() and setitimer() obsolete, recommending

 the use of the POSIX timers API (timer_gettime(2), timer_settime(2),

 etc.) instead.

NOTES

 Timers will never expire before the requested time, but may expire some

 (short) time afterward, which depends on the system timer resolution

 and on the system load; see time(7). (But see BUGS below.) If the

 timer expires while the process is active (always true for ITIMER_VIR?

 TUAL), the signal will be delivered immediately when generated. Page 3/5

 A child created via fork(2) does not inherit its parent's interval

 timers. Interval timers are preserved across an execve(2).

 POSIX.1 leaves the interaction between setitimer() and the three inter?

 faces alarm(2), sleep(3), and usleep(3) unspecified.

 The standards are silent on the meaning of the call:

 setitimer(which, NULL, &old_value);

 Many systems (Solaris, the BSDs, and perhaps others) treat this as

 equivalent to:

 getitimer(which, &old_value);

 In Linux, this is treated as being equivalent to a call in which the

 new_value fields are zero; that is, the timer is disabled. Don't use

 this Linux misfeature: it is nonportable and unnecessary.

BUGS

 The generation and delivery of a signal are distinct, and only one in?

 stance of each of the signals listed above may be pending for a

 process. Under very heavy loading, an ITIMER_REAL timer may expire be?

 fore the signal from a previous expiration has been delivered. The

 second signal in such an event will be lost.

 On Linux kernels before 2.6.16, timer values are represented in

 jiffies. If a request is made set a timer with a value whose jiffies

 representation exceeds MAX_SEC_IN_JIFFIES (defined in in?

 clude/linux/jiffies.h), then the timer is silently truncated to this

 ceiling value. On Linux/i386 (where, since Linux 2.6.13, the default

 jiffy is 0.004 seconds), this means that the ceiling value for a timer

 is approximately 99.42 days. Since Linux 2.6.16, the kernel uses a

 different internal representation for times, and this ceiling is re?

 moved.

 On certain systems (including i386), Linux kernels before version

 2.6.12 have a bug which will produce premature timer expirations of up

 to one jiffy under some circumstances. This bug is fixed in kernel

 2.6.12.

 POSIX.1-2001 says that setitimer() should fail if a tv_usec value is

 specified that is outside of the range 0 to 999999. However, in ker? Page 4/5

 nels up to and including 2.6.21, Linux does not give an error, but in?

 stead silently adjusts the corresponding seconds value for the timer.

 From kernel 2.6.22 onward, this nonconformance has been repaired: an

 improper tv_usec value results in an EINVAL error.

SEE ALSO

 gettimeofday(2), sigaction(2), signal(2), timer_create(2), timerfd_cre?

 ate(2), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 GETITIMER(2)

Page 5/5

