
Rocky Enterprise Linux 9.2 Manual Pages on command 'getcontext.3'

$ man getcontext.3

GETCONTEXT(3) Linux Programmer's Manual GETCONTEXT(3)

NAME

 getcontext, setcontext - get or set the user context

SYNOPSIS

 #include <ucontext.h>

 int getcontext(ucontext_t *ucp);

 int setcontext(const ucontext_t *ucp);

DESCRIPTION

 In a System V-like environment, one has the two types mcontext_t and

 ucontext_t defined in <ucontext.h> and the four functions getcontext(),

 setcontext(), makecontext(3), and swapcontext(3) that allow user-level

 context switching between multiple threads of control within a process.

 The mcontext_t type is machine-dependent and opaque. The ucontext_t

 type is a structure that has at least the following fields:

 typedef struct ucontext_t {

 struct ucontext_t *uc_link;

 sigset_t uc_sigmask;

 stack_t uc_stack; Page 1/4

 mcontext_t uc_mcontext;

 ...

 } ucontext_t;

 with sigset_t and stack_t defined in <signal.h>. Here uc_link points

 to the context that will be resumed when the current context terminates

 (in case the current context was created using makecontext(3)), uc_sig?

 mask is the set of signals blocked in this context (see sigproc?

 mask(2)), uc_stack is the stack used by this context (see sigalt?

 stack(2)), and uc_mcontext is the machine-specific representation of

 the saved context, that includes the calling thread's machine regis?

 ters.

 The function getcontext() initializes the structure pointed to by ucp

 to the currently active context.

 The function setcontext() restores the user context pointed to by ucp.

 A successful call does not return. The context should have been ob?

 tained by a call of getcontext(), or makecontext(3), or received as the

 third argument to a signal handler (see the discussion of the SA_SIG?

 INFO flag in sigaction(2)).

 If the context was obtained by a call of getcontext(), program execu?

 tion continues as if this call just returned.

 If the context was obtained by a call of makecontext(3), program execu?

 tion continues by a call to the function func specified as the second

 argument of that call to makecontext(3). When the function func re?

 turns, we continue with the uc_link member of the structure ucp speci?

 fied as the first argument of that call to makecontext(3). When this

 member is NULL, the thread exits.

 If the context was obtained by a call to a signal handler, then old

 standard text says that "program execution continues with the program

 instruction following the instruction interrupted by the signal". How?

 ever, this sentence was removed in SUSv2, and the present verdict is

 "the result is unspecified".

RETURN VALUE

 When successful, getcontext() returns 0 and setcontext() does not re? Page 2/4

 turn. On error, both return -1 and set errno appropriately.

ERRORS

 None defined.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getcontext(), setcontext() ? Thread safety ? MT-Safe race:ucp ?

 ??

CONFORMING TO

 SUSv2, POSIX.1-2001. POSIX.1-2008 removes the specification of getcon?

 text(), citing portability issues, and recommending that applications

 be rewritten to use POSIX threads instead.

NOTES

 The earliest incarnation of this mechanism was the setjmp(3)/longjmp(3)

 mechanism. Since that does not define the handling of the signal con?

 text, the next stage was the sigsetjmp(3)/siglongjmp(3) pair. The

 present mechanism gives much more control. On the other hand, there is

 no easy way to detect whether a return from getcontext() is from the

 first call, or via a setcontext() call. The user has to invent their

 own bookkeeping device, and a register variable won't do since regis?

 ters are restored.

 When a signal occurs, the current user context is saved and a new con?

 text is created by the kernel for the signal handler. Do not leave the

 handler using longjmp(3): it is undefined what would happen with con?

 texts. Use siglongjmp(3) or setcontext() instead.

SEE ALSO

 sigaction(2), sigaltstack(2), sigprocmask(2), longjmp(3), makecon?

 text(3), sigsetjmp(3), signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 3/4

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 GETCONTEXT(3)

Page 4/4

