
Rocky Enterprise Linux 9.2 Manual Pages on command 'gai_error.3'

$ man gai_error.3

GETADDRINFO_A(3) Linux Programmer's Manual GETADDRINFO_A(3)

NAME

 getaddrinfo_a, gai_suspend, gai_error, gai_cancel - asynchronous net?

 work address and service translation

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <netdb.h>

 int getaddrinfo_a(int mode, struct gaicb *list[],

 int nitems, struct sigevent *sevp);

 int gai_suspend(const struct gaicb * const list[], int nitems,

 const struct timespec *timeout);

 int gai_error(struct gaicb *req);

 int gai_cancel(struct gaicb *req);

 Link with -lanl.

DESCRIPTION

 The getaddrinfo_a() function performs the same task as getaddrinfo(3),

 but allows multiple name look-ups to be performed asynchronously, with

 optional notification on completion of look-up operations. Page 1/12

 The mode argument has one of the following values:

 GAI_WAIT

 Perform the look-ups synchronously. The call blocks until the

 look-ups have completed.

 GAI_NOWAIT

 Perform the look-ups asynchronously. The call returns immedi?

 ately, and the requests are resolved in the background. See the

 discussion of the sevp argument below.

 The array list specifies the look-up requests to process. The nitems

 argument specifies the number of elements in list. The requested look-

 up operations are started in parallel. NULL elements in list are ig?

 nored. Each request is described by a gaicb structure, defined as fol?

 lows:

 struct gaicb {

 const char *ar_name;

 const char *ar_service;

 const struct addrinfo *ar_request;

 struct addrinfo *ar_result;

 };

 The elements of this structure correspond to the arguments of getad?

 drinfo(3). Thus, ar_name corresponds to the node argument and ar_ser?

 vice to the service argument, identifying an Internet host and a ser?

 vice. The ar_request element corresponds to the hints argument, speci?

 fying the criteria for selecting the returned socket address struc?

 tures. Finally, ar_result corresponds to the res argument; you do not

 need to initialize this element, it will be automatically set when the

 request is resolved. The addrinfo structure referenced by the last two

 elements is described in getaddrinfo(3).

 When mode is specified as GAI_NOWAIT, notifications about resolved re?

 quests can be obtained by employing the sigevent structure pointed to

 by the sevp argument. For the definition and general details of this

 structure, see sigevent(7). The sevp->sigev_notify field can have the

 following values: Page 2/12

 SIGEV_NONE

 Don't provide any notification.

 SIGEV_SIGNAL

 When a look-up completes, generate the signal sigev_signo for

 the process. See sigevent(7) for general details. The si_code

 field of the siginfo_t structure will be set to SI_ASYNCNL.

 SIGEV_THREAD

 When a look-up completes, invoke sigev_notify_function as if it

 were the start function of a new thread. See sigevent(7) for

 details.

 For SIGEV_SIGNAL and SIGEV_THREAD, it may be useful to point

 sevp->sigev_value.sival_ptr to list.

 The gai_suspend() function suspends execution of the calling thread,

 waiting for the completion of one or more requests in the array list.

 The nitems argument specifies the size of the array list. The call

 blocks until one of the following occurs:

 * One or more of the operations in list completes.

 * The call is interrupted by a signal that is caught.

 * The time interval specified in timeout elapses. This argument spec?

 ifies a timeout in seconds plus nanoseconds (see nanosleep(2) for

 details of the timespec structure). If timeout is NULL, then the

 call blocks indefinitely (until one of the events above occurs).

 No explicit indication of which request was completed is given; you

 must determine which request(s) have completed by iterating with

 gai_error() over the list of requests.

 The gai_error() function returns the status of the request req: either

 EAI_INPROGRESS if the request was not completed yet, 0 if it was han?

 dled successfully, or an error code if the request could not be re?

 solved.

 The gai_cancel() function cancels the request req. If the request has

 been canceled successfully, the error status of the request will be set

 to EAI_CANCELED and normal asynchronous notification will be performed.

 The request cannot be canceled if it is currently being processed; in Page 3/12

 that case, it will be handled as if gai_cancel() has never been called.

 If req is NULL, an attempt is made to cancel all outstanding requests

 that the process has made.

RETURN VALUE

 The getaddrinfo_a() function returns 0 if all of the requests have been

 enqueued successfully, or one of the following nonzero error codes:

 EAI_AGAIN

 The resources necessary to enqueue the look-up requests were not

 available. The application may check the error status of each

 request to determine which ones failed.

 EAI_MEMORY

 Out of memory.

 EAI_SYSTEM

 mode is invalid.

 The gai_suspend() function returns 0 if at least one of the listed re?

 quests has been completed. Otherwise, it returns one of the following

 nonzero error codes:

 EAI_AGAIN

 The given timeout expired before any of the requests could be

 completed.

 EAI_ALLDONE

 There were no actual requests given to the function.

 EAI_INTR

 A signal has interrupted the function. Note that this interrup?

 tion might have been caused by signal notification of some com?

 pleted look-up request.

 The gai_error() function can return EAI_INPROGRESS for an unfinished

 look-up request, 0 for a successfully completed look-up (as described

 above), one of the error codes that could be returned by getad?

 drinfo(3), or the error code EAI_CANCELED if the request has been can?

 celed explicitly before it could be finished.

 The gai_cancel() function can return one of these values:

 EAI_CANCELED Page 4/12

 The request has been canceled successfully.

 EAI_NOTCANCELED

 The request has not been canceled.

 EAI_ALLDONE

 The request has already completed.

 The gai_strerror(3) function translates these error codes to a human

 readable string, suitable for error reporting.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getaddrinfo_a(), gai_suspend(), ? Thread safety ? MT-Safe ?

 ?gai_error(), gai_cancel() ? ? ?

 ??

CONFORMING TO

 These functions are GNU extensions; they first appeared in glibc in

 version 2.2.3.

NOTES

 The interface of getaddrinfo_a() was modeled after the lio_listio(3)

 interface.

EXAMPLES

 Two examples are provided: a simple example that resolves several re?

 quests in parallel synchronously, and a complex example showing some of

 the asynchronous capabilities.

 Synchronous example

 The program below simply resolves several hostnames in parallel, giving

 a speed-up compared to resolving the hostnames sequentially using

 getaddrinfo(3). The program might be used like this:

 $./a.out ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz

 ftp.us.kernel.org: 128.30.2.36

 enoent.linuxfoundation.org: Name or service not known Page 5/12

 gnu.cz: 87.236.197.13

 Here is the program source code

 #define _GNU_SOURCE

 #include <netdb.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 int

 main(int argc, char *argv[])

 {

 int ret;

 struct gaicb *reqs[argc - 1];

 char host[NI_MAXHOST];

 struct addrinfo *res;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s HOST...\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 for (int i = 0; i < argc - 1; i++) {

 reqs[i] = malloc(sizeof(*reqs[0]));

 if (reqs[i] == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 memset(reqs[i], 0, sizeof(*reqs[0]));

 reqs[i]->ar_name = argv[i + 1];

 }

 ret = getaddrinfo_a(GAI_WAIT, reqs, argc - 1, NULL);

 if (ret != 0) {

 fprintf(stderr, "getaddrinfo_a() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 } Page 6/12

 for (int i = 0; i < argc - 1; i++) {

 printf("%s: ", reqs[i]->ar_name);

 ret = gai_error(reqs[i]);

 if (ret == 0) {

 res = reqs[i]->ar_result;

 ret = getnameinfo(res->ai_addr, res->ai_addrlen,

 host, sizeof(host),

 NULL, 0, NI_NUMERICHOST);

 if (ret != 0) {

 fprintf(stderr, "getnameinfo() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 puts(host);

 } else {

 puts(gai_strerror(ret));

 }

 }

 exit(EXIT_SUCCESS);

 }

 Asynchronous example

 This example shows a simple interactive getaddrinfo_a() front-end. The

 notification facility is not demonstrated.

 An example session might look like this:

 $./a.out

 > a ftp.us.kernel.org enoent.linuxfoundation.org gnu.cz

 > c 2

 [2] gnu.cz: Request not canceled

 > w 0 1

 [00] ftp.us.kernel.org: Finished

 > l

 [00] ftp.us.kernel.org: 216.165.129.139

 [01] enoent.linuxfoundation.org: Processing request in progress Page 7/12

 [02] gnu.cz: 87.236.197.13

 > l

 [00] ftp.us.kernel.org: 216.165.129.139

 [01] enoent.linuxfoundation.org: Name or service not known

 [02] gnu.cz: 87.236.197.13

 The program source is as follows:

 #define _GNU_SOURCE

 #include <netdb.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 static struct gaicb **reqs = NULL;

 static int nreqs = 0;

 static char *

 getcmd(void)

 {

 static char buf[256];

 fputs("> ", stdout); fflush(stdout);

 if (fgets(buf, sizeof(buf), stdin) == NULL)

 return NULL;

 if (buf[strlen(buf) - 1] == '\n')

 buf[strlen(buf) - 1] = 0;

 return buf;

 }

 /* Add requests for specified hostnames */

 static void

 add_requests(void)

 {

 int nreqs_base = nreqs;

 char *host;

 int ret;

 while ((host = strtok(NULL, " "))) {

 nreqs++; Page 8/12

 reqs = realloc(reqs, sizeof(reqs[0]) * nreqs);

 reqs[nreqs - 1] = calloc(1, sizeof(*reqs[0]));

 reqs[nreqs - 1]->ar_name = strdup(host);

 }

 /* Queue nreqs_base..nreqs requests. */

 ret = getaddrinfo_a(GAI_NOWAIT, &reqs[nreqs_base],

 nreqs - nreqs_base, NULL);

 if (ret) {

 fprintf(stderr, "getaddrinfo_a() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 }

 /* Wait until at least one of specified requests completes */

 static void

 wait_requests(void)

 {

 char *id;

 int ret, n;

 struct gaicb const **wait_reqs = calloc(nreqs, sizeof(*wait_reqs));

 /* NULL elements are ignored by gai_suspend(). */

 while ((id = strtok(NULL, " ")) != NULL) {

 n = atoi(id);

 if (n >= nreqs) {

 printf("Bad request number: %s\n", id);

 return;

 }

 wait_reqs[n] = reqs[n];

 }

 ret = gai_suspend(wait_reqs, nreqs, NULL);

 if (ret) {

 printf("gai_suspend(): %s\n", gai_strerror(ret));

 return; Page 9/12

 }

 for (int i = 0; i < nreqs; i++) {

 if (wait_reqs[i] == NULL)

 continue;

 ret = gai_error(reqs[i]);

 if (ret == EAI_INPROGRESS)

 continue;

 printf("[%02d] %s: %s\n", i, reqs[i]->ar_name,

 ret == 0 ? "Finished" : gai_strerror(ret));

 }

 }

 /* Cancel specified requests */

 static void

 cancel_requests(void)

 {

 char *id;

 int ret, n;

 while ((id = strtok(NULL, " ")) != NULL) {

 n = atoi(id);

 if (n >= nreqs) {

 printf("Bad request number: %s\n", id);

 return;

 }

 ret = gai_cancel(reqs[n]);

 printf("[%s] %s: %s\n", id, reqs[atoi(id)]->ar_name,

 gai_strerror(ret));

 }

 }

 /* List all requests */

 static void

 list_requests(void)

 {

 int ret; Page 10/12

 char host[NI_MAXHOST];

 struct addrinfo *res;

 for (int i = 0; i < nreqs; i++) {

 printf("[%02d] %s: ", i, reqs[i]->ar_name);

 ret = gai_error(reqs[i]);

 if (!ret) {

 res = reqs[i]->ar_result;

 ret = getnameinfo(res->ai_addr, res->ai_addrlen,

 host, sizeof(host),

 NULL, 0, NI_NUMERICHOST);

 if (ret) {

 fprintf(stderr, "getnameinfo() failed: %s\n",

 gai_strerror(ret));

 exit(EXIT_FAILURE);

 }

 puts(host);

 } else {

 puts(gai_strerror(ret));

 }

 }

 }

 int

 main(int argc, char *argv[])

 {

 char *cmdline;

 char *cmd;

 while ((cmdline = getcmd()) != NULL) {

 cmd = strtok(cmdline, " ");

 if (cmd == NULL) {

 list_requests();

 } else {

 switch (cmd[0]) {

 case 'a': Page 11/12

 add_requests();

 break;

 case 'w':

 wait_requests();

 break;

 case 'c':

 cancel_requests();

 break;

 case 'l':

 list_requests();

 break;

 default:

 fprintf(stderr, "Bad command: %c\n", cmd[0]);

 break;

 }

 }

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getaddrinfo(3), inet(3), lio_listio(3), hostname(7), ip(7), sigevent(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 GETADDRINFO_A(3)

Page 12/12

