
Rocky Enterprise Linux 9.2 Manual Pages on command 'fork.2'

$ man fork.2

FORK(2) Linux Programmer's Manual FORK(2)

NAME

 fork - create a child process

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 pid_t fork(void);

DESCRIPTION

 fork() creates a new process by duplicating the calling process. The

 new process is referred to as the child process. The calling process

 is referred to as the parent process.

 The child process and the parent process run in separate memory spaces.

 At the time of fork() both memory spaces have the same content. Memory

 writes, file mappings (mmap(2)), and unmappings (munmap(2)) performed

 by one of the processes do not affect the other.

 The child process is an exact duplicate of the parent process except

 for the following points:

 * The child has its own unique process ID, and this PID does not match Page 1/5

 the ID of any existing process group (setpgid(2)) or session.

 * The child's parent process ID is the same as the parent's process

 ID.

 * The child does not inherit its parent's memory locks (mlock(2),

 mlockall(2)).

 * Process resource utilizations (getrusage(2)) and CPU time counters

 (times(2)) are reset to zero in the child.

 * The child's set of pending signals is initially empty (sigpend?

 ing(2)).

 * The child does not inherit semaphore adjustments from its parent

 (semop(2)).

 * The child does not inherit process-associated record locks from its

 parent (fcntl(2)). (On the other hand, it does inherit fcntl(2)

 open file description locks and flock(2) locks from its parent.)

 * The child does not inherit timers from its parent (setitimer(2),

 alarm(2), timer_create(2)).

 * The child does not inherit outstanding asynchronous I/O operations

 from its parent (aio_read(3), aio_write(3)), nor does it inherit any

 asynchronous I/O contexts from its parent (see io_setup(2)).

 The process attributes in the preceding list are all specified in

 POSIX.1. The parent and child also differ with respect to the follow?

 ing Linux-specific process attributes:

 * The child does not inherit directory change notifications (dnotify)

 from its parent (see the description of F_NOTIFY in fcntl(2)).

 * The prctl(2) PR_SET_PDEATHSIG setting is reset so that the child

 does not receive a signal when its parent terminates.

 * The default timer slack value is set to the parent's current timer

 slack value. See the description of PR_SET_TIMERSLACK in prctl(2).

 * Memory mappings that have been marked with the madvise(2) MADV_DONT?

 FORK flag are not inherited across a fork().

 * Memory in address ranges that have been marked with the madvise(2)

 MADV_WIPEONFORK flag is zeroed in the child after a fork(). (The

 MADV_WIPEONFORK setting remains in place for those address ranges in Page 2/5

 the child.)

 * The termination signal of the child is always SIGCHLD (see

 clone(2)).

 * The port access permission bits set by ioperm(2) are not inherited

 by the child; the child must turn on any bits that it requires using

 ioperm(2).

 Note the following further points:

 * The child process is created with a single thread?the one that

 called fork(). The entire virtual address space of the parent is

 replicated in the child, including the states of mutexes, condition

 variables, and other pthreads objects; the use of pthread_atfork(3)

 may be helpful for dealing with problems that this can cause.

 * After a fork() in a multithreaded program, the child can safely call

 only async-signal-safe functions (see signal-safety(7)) until such

 time as it calls execve(2).

 * The child inherits copies of the parent's set of open file descrip?

 tors. Each file descriptor in the child refers to the same open

 file description (see open(2)) as the corresponding file descriptor

 in the parent. This means that the two file descriptors share open

 file status flags, file offset, and signal-driven I/O attributes

 (see the description of F_SETOWN and F_SETSIG in fcntl(2)).

 * The child inherits copies of the parent's set of open message queue

 descriptors (see mq_overview(7)). Each file descriptor in the child

 refers to the same open message queue description as the correspond?

 ing file descriptor in the parent. This means that the two file de?

 scriptors share the same flags (mq_flags).

 * The child inherits copies of the parent's set of open directory

 streams (see opendir(3)). POSIX.1 says that the corresponding di?

 rectory streams in the parent and child may share the directory

 stream positioning; on Linux/glibc they do not.

RETURN VALUE

 On success, the PID of the child process is returned in the parent, and

 0 is returned in the child. On failure, -1 is returned in the parent, Page 3/5

 no child process is created, and errno is set appropriately.

ERRORS

 EAGAIN A system-imposed limit on the number of threads was encountered.

 There are a number of limits that may trigger this error:

 * the RLIMIT_NPROC soft resource limit (set via setrlimit(2)),

 which limits the number of processes and threads for a real

 user ID, was reached;

 * the kernel's system-wide limit on the number of processes and

 threads, /proc/sys/kernel/threads-max, was reached (see

 proc(5));

 * the maximum number of PIDs, /proc/sys/kernel/pid_max, was

 reached (see proc(5)); or

 * the PID limit (pids.max) imposed by the cgroup "process num?

 ber" (PIDs) controller was reached.

 EAGAIN The caller is operating under the SCHED_DEADLINE scheduling pol?

 icy and does not have the reset-on-fork flag set. See sched(7).

 ENOMEM fork() failed to allocate the necessary kernel structures be?

 cause memory is tight.

 ENOMEM An attempt was made to create a child process in a PID namespace

 whose "init" process has terminated. See pid_namespaces(7).

 ENOSYS fork() is not supported on this platform (for example, hardware

 without a Memory-Management Unit).

 ERESTARTNOINTR (since Linux 2.6.17)

 System call was interrupted by a signal and will be restarted.

 (This can be seen only during a trace.)

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

NOTES

 Under Linux, fork() is implemented using copy-on-write pages, so the

 only penalty that it incurs is the time and memory required to dupli?

 cate the parent's page tables, and to create a unique task structure

 for the child.

 C library/kernel differences Page 4/5

 Since version 2.3.3, rather than invoking the kernel's fork() system

 call, the glibc fork() wrapper that is provided as part of the NPTL

 threading implementation invokes clone(2) with flags that provide the

 same effect as the traditional system call. (A call to fork() is

 equivalent to a call to clone(2) specifying flags as just SIGCHLD.)

 The glibc wrapper invokes any fork handlers that have been established

 using pthread_atfork(3).

EXAMPLES

 See pipe(2) and wait(2).

SEE ALSO

 clone(2), execve(2), exit(2), setrlimit(2), unshare(2), vfork(2),

 wait(2), daemon(3), pthread_atfork(3), capabilities(7), credentials(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 FORK(2)

Page 5/5

