
Rocky Enterprise Linux 9.2 Manual Pages on command 'fmemopen.3'

$ man fmemopen.3

FMEMOPEN(3) Linux Programmer's Manual FMEMOPEN(3)

NAME

 fmemopen - open memory as stream

SYNOPSIS

 #include <stdio.h>

 FILE *fmemopen(void *buf, size_t size, const char *mode);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fmemopen():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _GNU_SOURCE

DESCRIPTION

 The fmemopen() function opens a stream that permits the access speci?

 fied by mode. The stream allows I/O to be performed on the string or

 memory buffer pointed to by buf.

 The mode argument specifies the semantics of I/O on the stream, and is

 one of the following: Page 1/6

 r The stream is opened for reading.

 w The stream is opened for writing.

 a Append; open the stream for writing, with the initial buffer po?

 sition set to the first null byte.

 r+ Open the stream for reading and writing.

 w+ Open the stream for reading and writing. The buffer contents

 are truncated (i.e., '\0' is placed in the first byte of the

 buffer).

 a+ Append; open the stream for reading and writing, with the ini?

 tial buffer position set to the first null byte.

 The stream maintains the notion of a current position, the location

 where the next I/O operation will be performed. The current position

 is implicitly updated by I/O operations. It can be explicitly updated

 using fseek(3), and determined using ftell(3). In all modes other than

 append, the initial position is set to the start of the buffer. In ap?

 pend mode, if no null byte is found within the buffer, then the initial

 position is size+1.

 If buf is specified as NULL, then fmemopen() allocates a buffer of size

 bytes. This is useful for an application that wants to write data to a

 temporary buffer and then read it back again. The initial position is

 set to the start of the buffer. The buffer is automatically freed when

 the stream is closed. Note that the caller has no way to obtain a

 pointer to the temporary buffer allocated by this call (but see

 open_memstream(3)).

 If buf is not NULL, then it should point to a buffer of at least len

 bytes allocated by the caller.

 When a stream that has been opened for writing is flushed (fflush(3))

 or closed (fclose(3)), a null byte is written at the end of the buffer

 if there is space. The caller should ensure that an extra byte is

 available in the buffer (and that size counts that byte) to allow for

 this.

 In a stream opened for reading, null bytes ('\0') in the buffer do not

 cause read operations to return an end-of-file indication. A read from Page 2/6

 the buffer will indicate end-of-file only when the current buffer posi?

 tion advances size bytes past the start of the buffer.

 Write operations take place either at the current position (for modes

 other than append), or at the current size of the stream (for append

 modes).

 Attempts to write more than size bytes to the buffer result in an er?

 ror. By default, such errors will be visible (by the absence of data)

 only when the stdio buffer is flushed. Disabling buffering with the

 following call may be useful to detect errors at the time of an output

 operation:

 setbuf(stream, NULL);

RETURN VALUE

 Upon successful completion, fmemopen() returns a FILE pointer. Other?

 wise, NULL is returned and errno is set to indicate the error.

VERSIONS

 fmemopen() was already available in glibc 1.0.x.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?fmemopen(), ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2008. This function is not specified in POSIX.1-2001, and is

 not widely available on other systems.

 POSIX.1-2008 specifies that 'b' in mode shall be ignored. However,

 Technical Corrigendum 1 adjusts the standard to allow implementation-

 specific treatment for this case, thus permitting the glibc treatment

 of 'b'.

NOTES

 There is no file descriptor associated with the file stream returned by Page 3/6

 this function (i.e., fileno(3) will return an error if called on the

 returned stream).

 With version 2.22, binary mode (see below) was removed, many longstand?

 ing bugs in the implementation of fmemopen() were fixed, and a new ver?

 sioned symbol was created for this interface.

 Binary mode

 From version 2.9 to 2.21, the glibc implementation of fmemopen() sup?

 ported a "binary" mode, enabled by specifying the letter 'b' as the

 second character in mode. In this mode, writes don't implicitly add a

 terminating null byte, and fseek(3) SEEK_END is relative to the end of

 the buffer (i.e., the value specified by the size argument), rather

 than the current string length.

 An API bug afflicted the implementation of binary mode: to specify bi?

 nary mode, the 'b' must be the second character in mode. Thus, for ex?

 ample, "wb+" has the desired effect, but "w+b" does not. This is in?

 consistent with the treatment of mode by fopen(3).

 Binary mode was removed in glibc 2.22; a 'b' specified in mode has no

 effect.

BUGS

 In versions of glibc before 2.22, if size is specified as zero, fmemo?

 pen() fails with the error EINVAL. It would be more consistent if this

 case successfully created a stream that then returned end-of-file on

 the first attempt at reading; since version 2.22, the glibc implementa?

 tion provides that behavior.

 In versions of glibc before 2.22, specifying append mode ("a" or "a+")

 for fmemopen() sets the initial buffer position to the first null byte,

 but (if the current position is reset to a location other than the end

 of the stream) does not force subsequent writes to append at the end of

 the stream. This bug is fixed in glibc 2.22.

 In versions of glibc before 2.22, if the mode argument to fmemopen()

 specifies append ("a" or "a+"), and the size argument does not cover a

 null byte in buf, then, according to POSIX.1-2008, the initial buffer

 position should be set to the next byte after the end of the buffer. Page 4/6

 However, in this case the glibc fmemopen() sets the buffer position to

 -1. This bug is fixed in glibc 2.22.

 In versions of glibc before 2.22, when a call to fseek(3) with a whence

 value of SEEK_END was performed on a stream created by fmemopen(), the

 offset was subtracted from the end-of-stream position, instead of being

 added. This bug is fixed in glibc 2.22.

 The glibc 2.9 addition of "binary" mode for fmemopen() silently changed

 the ABI: previously, fmemopen() ignored 'b' in mode.

EXAMPLES

 The program below uses fmemopen() to open an input buffer, and

 open_memstream(3) to open a dynamically sized output buffer. The pro?

 gram scans its input string (taken from the program's first command-

 line argument) reading integers, and writes the squares of these inte?

 gers to the output buffer. An example of the output produced by this

 program is the following:

 $./a.out '1 23 43'

 size=11; ptr=1 529 1849

 Program source

 #define _GNU_SOURCE

 #include <string.h>

 #include <stdio.h>

 #include <stdlib.h>

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 int

 main(int argc, char *argv[])

 {

 FILE *out, *in;

 int v, s;

 size_t size;

 char *ptr;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s '<num>...'\n", argv[0]); Page 5/6

 exit(EXIT_FAILURE);

 }

 in = fmemopen(argv[1], strlen(argv[1]), "r");

 if (in == NULL)

 handle_error("fmemopen");

 out = open_memstream(&ptr, &size);

 if (out == NULL)

 handle_error("open_memstream");

 for (;;) {

 s = fscanf(in, "%d", &v);

 if (s <= 0)

 break;

 s = fprintf(out, "%d ", v * v);

 if (s == -1)

 handle_error("fprintf");

 }

 fclose(in);

 fclose(out);

 printf("size=%zu; ptr=%s\n", size, ptr);

 free(ptr);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 fopen(3), fopencookie(3), open_memstream(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-04-11 FMEMOPEN(3)

Page 6/6

