
Rocky Enterprise Linux 9.2 Manual Pages on command 'flashrom.8'

$ man flashrom.8

FLASHROM(8) System Manager's Manual FLASHROM(8)

NAME

 flashrom - detect, read, write, verify and erase flash chips

SYNOPSIS

 flashrom [-h|-R|-L|-z|

 -p <programmername>[:<parameters>] [-c <chipname>]

 (--flash-name|--flash-size|

 [-E|-r <file>|-w <file>|-v <file>]

 [(-l <file>|--ifd| --fmap|--fmap-file <file>) [-i <im?

 age>]]

 [-n] [-N] [-f])]

 [-V[V[V]]] [-o <logfile>]

DESCRIPTION

 flashrom is a utility for detecting, reading, writing, verifying and

 erasing flash chips. It's often used to flash BIOS/EFI/core?

 boot/firmware images in-system using a supported mainboard. However, it

 also supports various external PCI/USB/parallel-port/serial-port based

 devices which can program flash chips, including some network cards Page 1/30

 (NICs), SATA/IDE controller cards, graphics cards, the Bus Pirate de?

 vice, various FTDI FT2232/FT4232H/FT232H based USB devices, and more.

 It supports a wide range of DIP32, PLCC32, DIP8, SO8/SOIC8, TSOP32,

 TSOP40, TSOP48, and BGA chips, which use various protocols such as LPC,

 FWH, parallel flash, or SPI.

OPTIONS

 IMPORTANT: Please note that the command line interface for flashrom

 will change before flashrom 1.0. Do not use flashrom in scripts or

 other automated tools without checking that your flashrom version won't

 interpret options in a different way.

 You can specify one of -h, -R, -L, -z, -E, -r, -w, -v or no operation.

 If no operation is specified, flashrom will only probe for flash chips.

 It is recommended that if you try flashrom the first time on a system,

 you run it in probe-only mode and check the output. Also you are ad?

 vised to make a backup of your current ROM contents with -r before you

 try to write a new image. All operations involving any chip access

 (probe/read/write/...) require the -p/--programmer option to be used

 (please see below).

 -r, --read <file>

 Read flash ROM contents and save them into the given <file>. If

 the file already exists, it will be overwritten.

 -w, --write <file>

 Write <file> into flash ROM. This will first automatically erase

 the chip, then write to it.

 In the process the chip is also read several times. First an in-

 memory backup is made for disaster recovery and to be able to

 skip regions that are already equal to the image file. This copy

 is updated along with the write operation. In case of erase er?

 rors it is even re-read completely. After writing has finished

 and if verification is enabled, the whole flash chip is read out

 and compared with the input image.

 -n, --noverify

 Skip the automatic verification of flash ROM contents after Page 2/30

 writing. Using this option is not recommended, you should only

 use it if you know what you are doing and if you feel that the

 time for verification takes too long.

 Typical usage is: flashrom -p prog -n -w <file>

 This option is only useful in combination with --write.

 -N, --noverify-all

 Skip not included regions during automatic verification after

 writing (cf. -l and -i). You should only use this option if

 you are sure that communication with the flash chip is reliable

 (e.g. when using the internal programmer). Even if flashrom is

 instructed not to touch parts of the flash chip, their contents

 could be damaged (e.g. due to misunderstood erase commands).

 This option is required to flash an Intel system with locked ME

 flash region using the internal programmer. It may be enabled by

 default in this case in the future.

 -v, --verify <file>

 Verify the flash ROM contents against the given <file>.

 -E, --erase

 Erase the flash ROM chip.

 -V, --verbose

 More verbose output. This option can be supplied multiple times

 (max. 3 times, i.e. -VVV) for even more debug output.

 -c, --chip <chipname>

 Probe only for the specified flash ROM chip. This option takes

 the chip name as printed by flashrom -L without the vendor name

 as parameter. Please note that the chip name is case sensitive.

 -f, --force

 Force one or more of the following actions:

 * Force chip read and pretend the chip is there.

 * Force chip access even if the chip is bigger than the maximum

 supported size for the flash bus.

 * Force erase even if erase is known bad.

 * Force write even if write is known bad. Page 3/30

 -l, --layout <file>

 Read ROM layout from <file>.

 flashrom supports ROM layouts. This allows you to flash certain

 parts of the flash chip only. A ROM layout file contains multi?

 ple lines with the following syntax:

 startaddr:endaddr imagename

 startaddr and endaddr are hexadecimal addresses within the ROM

 file and do not refer to any physical address. Please note that

 using a 0x prefix for those hexadecimal numbers is not neces?

 sary, but you can't specify decimal/octal numbers. imagename is

 an arbitrary name for the region/image from startaddr to en?

 daddr (both addresses included).

 Example:

 00000000:00008fff gfxrom

 00009000:0003ffff normal

 00040000:0007ffff fallback

 If you only want to update the image named normal in a ROM based

 on the layout above, run

 flashrom -p prog --layout rom.layout --image normal -w

 some.rom

 To update only the images named normal and fallback, run:

 flashrom -p prog -l rom.layout -i normal -i fallback -w

 some.rom

 Overlapping sections are not supported.

 --fmap Read layout from fmap in flash chip.

 flashrom supports the fmap binary format which is commonly used

 by coreboot for partitioning a flash chip. The on-chip fmap will

 be read and used to generate the layout.

 If you only want to update the COREBOOT region defined in the

 fmap, run

 flashrom -p prog --fmap --image COREBOOT -w some.rom

 --fmap-file <file>

 Read layout from a <file> containing binary fmap (e.g. coreboot Page 4/30

 roms).

 flashrom supports the fmap binary format which is commonly used

 by coreboot for partitioning a flash chip. The fmap in the spec?

 ified file will be read and used to generate the layout.

 If you only want to update the COREBOOT region defined in the

 binary fmap file, run

 flashrom -p prog --fmap-file some.rom --image COREBOOT -w

 some.rom

 --ifd Read ROM layout from Intel Firmware Descriptor.

 flashrom supports ROM layouts given by an Intel Firmware De?

 scriptor (IFD). The on-chip descriptor will be read and used to

 generate the layout. If you need to change the layout, you have

 to update the IFD only first.

 The following ROM images may be present in an IFD:

 fd the IFD itself

 bios the host firmware aka. BIOS

 me Intel Management Engine firmware

 gbe gigabit ethernet firmware

 pd platform specific data

 -i, --image <imagename>

 Only flash region/image <imagename> from flash layout.

 --flash-name

 Prints out the detected flash chips name.

 --flash-size

 Prints out the detected flash chips size.

 -L, --list-supported

 List the flash chips, chipsets, mainboards, and external pro?

 grammers (including PCI, USB, parallel port, and serial port

 based devices) supported by flashrom.

 There are many unlisted boards which will work out of the box,

 without special support in flashrom. Please let us know if you

 can verify that other boards work or do not work out of the box.

 IMPORTANT: For verification you have to test an ERASE and/or Page 5/30

 WRITE operation, so make sure you only do that if you have

 proper means to recover from failure!

 -z, --list-supported-wiki

 Same as --list-supported, but outputs the supported hardware in

 MediaWiki syntax, so that it can be easily pasted into the sup?

 ported hardware wiki page ?https://flashrom.org/Supported_hard?

 ware?. Please note that MediaWiki output is not compiled in by

 default.

 -p, --programmer <name>[:parameter[,parameter[,parameter]]]

 Specify the programmer device. This is mandatory for all opera?

 tions involving any chip access (probe/read/write/...). Cur?

 rently supported are:

 * internal (for in-system flashing in the mainboard)

 * dummy (virtual programmer for testing flashrom)

 * nic3com (for flash ROMs on 3COM network cards)

 * nicrealtek (for flash ROMs on Realtek and SMC 1211 network

 cards)

 * nicnatsemi (for flash ROMs on National Semiconductor DP838*

 network cards)

 * nicintel (for parallel flash ROMs on Intel 10/100Mbit network

 cards)

 * gfxnvidia (for flash ROMs on NVIDIA graphics cards)

 * drkaiser (for flash ROMs on Dr. Kaiser PC-Waechter PCI cards)

 * satasii (for flash ROMs on Silicon Image SATA/IDE controllers)

 * satamv (for flash ROMs on Marvell SATA controllers)

 * atahpt (for flash ROMs on Highpoint ATA/RAID controllers)

 * atavia (for flash ROMs on VIA VT6421A SATA controllers)

 * atapromise (for flash ROMs on Promise PDC2026x ATA/RAID con?

 trollers)

 * it8212 (for flash ROMs on ITE IT8212F ATA/RAID controller)

 * ft2232_spi (for SPI flash ROMs attached to an

 FT2232/FT4232H/FT232H family based USB SPI programmer).

 * serprog (for flash ROMs attached to a programmer speaking ser? Page 6/30

 prog, including some Arduino-based devices).

 * buspirate_spi (for SPI flash ROMs attached to a Bus Pirate)

 * dediprog (for SPI flash ROMs attached to a Dediprog SF100)

 * rayer_spi (for SPI flash ROMs attached to a parallel port by

 one of various cable types)

 * pony_spi (for SPI flash ROMs attached to a SI-Prog serial port

 bitbanging adapter)

 * nicintel_spi (for SPI flash ROMs on Intel Gigabit network

 cards)

 * ogp_spi (for SPI flash ROMs on Open Graphics Project graphics

 card)

 * linux_mtd (for SPI flash ROMs accessible via /dev/mtdX on

 Linux)

 * linux_spi (for SPI flash ROMs accessible via /dev/spidevX.Y on

 Linux)

 * usbblaster_spi (for SPI flash ROMs attached to an Altera USB-

 Blaster compatible cable)

 * nicintel_eeprom (for SPI EEPROMs on Intel Gigabit network

 cards)

 * mstarddc_spi (for SPI flash ROMs accessible through DDC in

 MSTAR-equipped displays)

 * pickit2_spi (for SPI flash ROMs accessible via Microchip

 PICkit2)

 * ch341a_spi (for SPI flash ROMs attached to WCH CH341A)

 * digilent_spi (for SPI flash ROMs attached to iCEblink40 devel?

 opment boards)

 * jlink_spi (for SPI flash ROMs attached to SEGGER J-Link and

 compatible devices)

 * ni845x_spi (for SPI flash ROMs attached to National Instru?

 ments USB-8451 or USB-8452)

 * stlinkv3_spi (for SPI flash ROMs attached to STMicroelectron?

 ics STLINK V3 devices)

 Some programmers have optional or mandatory parameters which are Page 7/30

 described in detail in the PROGRAMMER-SPECIFIC INFORMATION sec?

 tion. Support for some programmers can be disabled at compile

 time. flashrom -h lists all supported programmers.

 -h, --help

 Show a help text and exit.

 -o, --output <logfile>

 Save the full debug log to <logfile>. If the file already ex?

 ists, it will be overwritten. This is the recommended way to

 gather logs from flashrom because they will be verbose even if

 the on-screen messages are not verbose and don't require output

 redirection.

 -R, --version

 Show version information and exit.

PROGRAMMER-SPECIFIC INFORMATION

 Some programmer drivers accept further parameters to set programmer-

 specific parameters. These parameters are separated from the programmer

 name by a colon. While some programmers take arguments at fixed posi?

 tions, other programmers use a key/value interface in which the key and

 value is separated by an equal sign and different pairs are separated

 by a comma or a colon.

 internal programmer

 Board Enables

 Some mainboards require to run mainboard specific code to enable

 flash erase and write support (and probe support on old systems

 with parallel flash). The mainboard brand and model (if it re?

 quires specific code) is usually autodetected using one of the

 following mechanisms: If your system is running coreboot, the

 mainboard type is determined from the coreboot table. Other?

 wise, the mainboard is detected by examining the onboard PCI de?

 vices and possibly DMI info. If PCI and DMI do not contain in?

 formation to uniquely identify the mainboard (which is the ex?

 ception), or if you want to override the detected mainboard

 model, you can specify the mainboard using the Page 8/30

 flashrom -p internal:mainboard=<vendor>:<board> syntax.

 See the 'Known boards' or 'Known laptops' section in the output

 of 'flashrom -L' for a list of boards which require the specifi?

 cation of the board name, if no coreboot table is found.

 Some of these board-specific flash enabling functions (called

 board enables) in flashrom have not yet been tested. If your

 mainboard is detected needing an untested board enable function,

 a warning message is printed and the board enable is not exe?

 cuted, because a wrong board enable function might cause the

 system to behave erratically, as board enable functions touch

 the low-level internals of a mainboard. Not executing a board

 enable function (if one is needed) might cause detection or

 erasing failure. If your board protects only part of the flash

 (commonly the top end, called boot block), flashrom might en?

 counter an error only after erasing the unprotected part, so

 running without the board-enable function might be dangerous for

 erase and write (which includes erase).

 The suggested procedure for a mainboard with untested board spe?

 cific code is to first try to probe the ROM (just invoke

 flashrom and check that it detects your flash chip type) without

 running the board enable code (i.e. without any parameters). If

 it finds your chip, fine. Otherwise, retry probing your chip

 with the board-enable code running, using

 flashrom -p internal:boardenable=force

 If your chip is still not detected, the board enable code seems

 to be broken or the flash chip unsupported. Otherwise, make a

 backup of your current ROM contents (using -r) and store it to a

 medium outside of your computer, like a USB drive or a network

 share. If you needed to run the board enable code already for

 probing, use it for reading too. If reading succeeds and the

 contens of the read file look legit you can try to write the new

 image. You should enable the board enable code in any case now,

 as it has been written because it is known that writing/erasing Page 9/30

 without the board enable is going to fail. In any case (success

 or failure), please report to the flashrom mailing list, see be?

 low.

 Coreboot

 On systems running coreboot, flashrom checks whether the desired

 image matches your mainboard. This needs some special board ID

 to be present in the image. If flashrom detects that the image

 you want to write and the current board do not match, it will

 refuse to write the image unless you specify

 flashrom -p internal:boardmismatch=force

 ITE IT87 Super I/O

 If your mainboard is manufactured by GIGABYTE and supports Dual?

 BIOS it is very likely that it uses an ITE IT87 series Super I/O

 to switch between the two flash chips. Only one of them can be

 accessed at a time and you can manually select which one to use

 with the

 flashrom -p internal:dualbiosindex=chip

 syntax where chip is the index of the chip to use (0 = main, 1 =

 backup). You can check which one is currently selected by leav?

 ing out the chip parameter.

 If your mainboard uses an ITE IT87 series Super I/O for

 LPC<->SPI flash bus translation, flashrom should autodetect that

 configuration. If you want to set the I/O base port of the IT87

 series SPI controller manually instead of using the value pro?

 vided by the BIOS, use the

 flashrom -p internal:it87spiport=portnum

 syntax where portnum is the I/O port number (must be a multiple

 of 8). In the unlikely case flashrom doesn't detect an active

 IT87 LPC<->SPI bridge, please send a bug report so we can diag?

 nose the problem.

 AMD chipsets

 Beginning with the SB700 chipset there is an integrated micro?

 controller (IMC) based on the 8051 embedded in every AMD south? Page 10/30

 bridge. Its firmware resides in the same flash chip as the

 host's which makes writing to the flash risky if the IMC is ac?

 tive. Flashrom tries to temporarily disable the IMC but even

 then changing the contents of the flash can have unwanted ef?

 fects: when the IMC continues (at the latest after a reboot) it

 will continue executing code from the flash. If the code was re?

 moved or changed in an unfortunate way it is unpredictable what

 the IMC will do. Therefore, if flashrom detects an active IMC it

 will disable write support unless the user forces it with the

 flashrom -p internal:amd_imc_force=yes

 syntax. The user is responsible for supplying a suitable image

 or leaving out the IMC region with the help of a layout file.

 This limitation might be removed in the future when we under?

 stand the details better and have received enough feedback from

 users. Please report the outcome if you had to use this option

 to write a chip.

 An optional spispeed parameter specifies the frequency of the

 SPI bus where applicable (i.e. SB600 or later with an SPI flash

 chip directly attached to the chipset). Syntax is

 flashrom -p internal:spispeed=frequency

 where frequency can be '16.5 MHz', '22 MHz', '33 MHz', '66 MHz',

 '100 MHZ', or '800 kHz'. Support of individual frequencies de?

 pends on the generation of the chipset:

 * SB6xx, SB7xx, SP5xxx: from 16.5 MHz up to and including 33 MHz

 * SB8xx, SB9xx, Hudson: from 16.5 MHz up to and including 66 MHz

 * Yangtze (with SPI 100 engine as found in Kabini and Tamesh):

 all of them

 The default is to use 16.5 MHz and disable Fast Reads.

 Intel chipsets

 If you have an Intel chipset with an ICH8 or later southbridge

 with SPI flash attached, and if a valid descriptor was written

 to it (e.g. by the vendor), the chipset provides an alternative

 way to access the flash chip(s) named Hardware Sequencing. It Page 11/30

 is much simpler than the normal access method (called Software

 Sequencing), but does not allow the software to choose the SPI

 commands to be sent. You can use the

 flashrom -p internal:ich_spi_mode=value

 syntax where value can be auto, swseq or hwseq. By default (or

 when setting ich_spi_mode=auto) the module tries to use swseq

 and only activates hwseq if need be (e.g. if important opcodes

 are inaccessible due to lockdown; or if more than one flash chip

 is attached). The other options (swseq, hwseq) select the re?

 spective mode (if possible).

 ICH8 and later southbridges may also have locked address ranges

 of different kinds if a valid descriptor was written to it. The

 flash address space is then partitioned in multiple so called

 "Flash Regions" containing the host firmware, the ME firmware

 and so on respectively. The flash descriptor can also specify up

 to 5 so called "Protected Regions", which are freely chosen ad?

 dress ranges independent from the aforementioned "Flash Re?

 gions". All of them can be write and/or read protected individu?

 ally.

 If you have an Intel chipset with an ICH2 or later southbridge

 and if you want to set specific IDSEL values for a non-default

 flash chip or an embedded controller (EC), you can use the

 flashrom -p internal:fwh_idsel=value

 syntax where value is the 48-bit hexadecimal raw value to be

 written in the IDSEL registers of the Intel southbridge. The up?

 per 32 bits use one hex digit each per 512 kB range between

 0xffc00000 and 0xffffffff, and the lower 16 bits use one hex

 digit each per 1024 kB range between 0xff400000 and 0xff7fffff.

 The rightmost hex digit corresponds with the lowest address

 range. All address ranges have a corresponding sister range 4 MB

 below with identical IDSEL settings. The default value for ICH7

 is given in the example below.

 Example: flashrom -p internal:fwh_idsel=0x001122334567 Page 12/30

 Laptops

 Using flashrom on older laptops that don't boot from the SPI bus

 is dangerous and may easily make your hardware unusable (see

 also the BUGS section). The embedded controller (EC) in some ma?

 chines may interact badly with flashing. More information is in

 the wiki ?https://flashrom.org/Laptops?. Problems occur when

 the flash chip is shared between BIOS and EC firmware, and the

 latter does not expect flashrom to access the chip. While

 flashrom tries to change the contents of that memory the EC

 might need to fetch new instructions or data from it and could

 stop working correctly. Probing for and reading from the chip

 may also irritate your EC and cause fan failure, backlight fail?

 ure, sudden poweroff, and other nasty effects. flashrom will at?

 tempt to detect if it is running on such a laptop and limit

 probing to SPI buses. If you want to probe the LPC bus anyway at

 your own risk, use

 flashrom -p internal:laptop=force_I_want_a_brick

 We will not help you if you force flashing on a laptop because

 this is a really dumb idea.

 You have been warned.

 Currently we rely on the chassis type encoded in the DMI/SMBIOS

 data to detect laptops. Some vendors did not implement those

 bits correctly or set them to generic and/or dummy values.

 flashrom will then issue a warning and restrict buses like

 above. In this case you can use

 flashrom -p internal:laptop=this_is_not_a_laptop

 to tell flashrom (at your own risk) that it is not running on a

 laptop.

 dummy programmer

 The dummy programmer operates on a buffer in memory only. It

 provides a safe and fast way to test various aspects of flashrom

 and is mainly used in development and while debugging. It is

 able to emulate some chips to a certain degree (basic iden? Page 13/30

 tify/read/erase/write operations work).

 An optional parameter specifies the bus types it should support.

 For that you have to use the

 flashrom -p dummy:bus=[type[+type[+type]]]

 syntax where type can be parallel, lpc, fwh, spi in any order.

 If you specify bus without type, all buses will be disabled. If

 you do not specify bus, all buses will be enabled.

 Example: flashrom -p dummy:bus=lpc+fwh

 The dummy programmer supports flash chip emulation for automated

 self-tests without hardware access. If you want to emulate a

 flash chip, use the

 flashrom -p dummy:emulate=chip

 syntax where chip is one of the following chips (please specify

 only the chip name, not the vendor):

 * ST M25P10.RES SPI flash chip (128 kB, RES, page write)

 * SST SST25VF040.REMS SPI flash chip (512 kB, REMS, byte write)

 * SST SST25VF032B SPI flash chip (4096 kB, RDID, AAI write)

 * Macronix MX25L6436 SPI flash chip (8192 kB, RDID, SFDP)

 Example: flashrom -p dummy:emulate=SST25VF040.REMS

 Persistent images

 If you use flash chip emulation, flash image persistence is

 available as well by using the

 flashrom -p dummy:emulate=chip,image=image.rom

 syntax where image.rom is the file where the simulated chip con?

 tents are read on flashrom startup and where the chip contents

 on flashrom shutdown are written to.

 Example: flashrom -p dummy:emulate=M25P10.RES,image=dummy.bin

 SPI write chunk size

 If you use SPI flash chip emulation for a chip which supports

 SPI page write with the default opcode, you can set the maximum

 allowed write chunk size with the

 flashrom -p dummy:emulate=chip,spi_write_256_chunksize=size

 syntax where size is the number of bytes (min. 1, max. 256). Page 14/30

 Example:

 flashrom -p dummy:emulate=M25P10.RES,spi_write_256_chunksize=5

 SPI blacklist

 To simulate a programmer which refuses to send certain SPI com?

 mands to the flash chip, you can specify a blacklist of SPI com?

 mands with the

 flashrom -p dummy:spi_blacklist=commandlist

 syntax where commandlist is a list of two-digit hexadecimal rep?

 resentations of SPI commands. If commandlist is e.g. 0302,

 flashrom will behave as if the SPI controller refuses to run

 command 0x03 (READ) and command 0x02 (WRITE). commandlist may

 be up to 512 characters (256 commands) long. Implementation

 note: flashrom will detect an error during command execution.

 SPI ignorelist

 To simulate a flash chip which ignores (doesn't support) certain

 SPI commands, you can specify an ignorelist of SPI commands with

 the

 flashrom -p dummy:spi_ignorelist=commandlist

 syntax where commandlist is a list of two-digit hexadecimal rep?

 resentations of SPI commands. If commandlist is e.g. 0302, the

 emulated flash chip will ignore command 0x03 (READ) and command

 0x02 (WRITE). commandlist may be up to 512 characters (256 com?

 mands) long. Implementation note: flashrom won't detect an er?

 ror during command execution.

 SPI status register

 You can specify the initial content of the chip's status regis?

 ter with the

 flashrom -p dummy:spi_status=content

 syntax where content is an 8-bit hexadecimal value.

 nic3com, nicrealtek, nicnatsemi, nicintel, nicintel_eeprom, nicintel_spi,

 gfxnvidia, ogp_spi, drkaiser, satasii, satamv, atahpt, atavia , at?

 apromise and it8212 programmers

 These programmers have an option to specify the PCI address of Page 15/30

 the card your want to use, which must be specified if more than

 one card supported by the selected programmer is installed in

 your system. The syntax is

 flashrom -p xxxx:pci=bb:dd.f,

 where xxxx is the name of the programmer, bb is the PCI bus num?

 ber, dd is the PCI device number, and f is the PCI function num?

 ber of the desired device.

 Example: flashrom -p nic3com:pci=05:04.0

 atavia programmer

 Due to the mysterious address handling of the VIA VT6421A con?

 troller the user can specify an offset with the

 flashrom -p atavia:offset=addr

 syntax where addr will be interpreted as usual (leading 0x (0)

 for hexadecimal (octal) values, or else decimal). For more in?

 formation please see its wiki page

 ?https://flashrom.org/VT6421A?.

 atapromise programmer

 This programmer is currently limited to 32 kB, regardless of the

 actual size of the flash chip. This stems from the fact that, on

 the tested device (a Promise Ultra100), not all of the chip's

 address lines were actually connected. You may use this program?

 mer to flash firmware updates, since these are only 16 kB in

 size (padding to 32 kB is required).

 nicintel_eeprom programmer

 This is the first programmer module in flashrom that does not

 provide access to NOR flash chips but EEPROMs mounted on gigabit

 Ethernet cards based on Intel's 82580 NIC. Because EEPROMs nor?

 mally do not announce their size nor allow themselves to be

 identified, the controller relies on correct size values written

 to predefined addresses within the chip. Flashrom follows this

 scheme but assumes the minimum size of 16 kB (128 kb) if an un?

 programmed EEPROM/card is detected. Intel specifies following

 EEPROMs to be compatible: Atmel AT25128, AT25256, Micron (ST) Page 16/30

 M95128, M95256 and OnSemi (Catalyst) CAT25CS128.

 ft2232_spi programmer

 This module supports various programmers based on FTDI

 FT2232/FT4232H/FT232H chips including the DLP Design DLP-

 USB1232H, openbiosprog-spi, Amontec JTAGkey/JTAGkey-

 tiny/JTAGkey-2, Dangerous Prototypes Bus Blaster, Olimex ARM-

 USB-TINY/-H, Olimex ARM-USB-OCD/-H, OpenMoko Neo1973 Debug board

 (V2+), TIAO/DIYGADGET USB Multi-Protocol Adapter (TUMPA), TUMPA

 Lite, GOEPEL PicoTAP, Google Servo v1/v2 and Tin Can Tools Fly?

 swatter/Flyswatter 2.

 An optional parameter specifies the controller type, channel/in?

 terface/port and GPIO-based chip select it should support. For

 that you have to use the

 flashrom -p ft2232_spi:type=model,port=interface,csgpiol=gpio

 syntax where model can be 2232H, 4232H, 232H, jtagkey, bus?

 blaster, openmoko, arm-usb-tiny, arm-usb-tiny-h, arm-usb-ocd,

 arm-usb-ocd-h, tumpa, tumpalite, picotap, google-servo, google-

 servo-v2 or google-servo-v2-legacy interface can be A, B, C, or

 D and csgpiol can be a number between 0 and 3, denoting

 GPIOL0-GPIOL3 correspondingly. The default model is 4232H the

 default interface is A and GPIO is not used by default.

 If there is more than one ft2232_spi-compatible device con?

 nected, you can select which one should be used by specifying

 its serial number with the

 flashrom -p ft2232_spi:serial=number

 syntax where number is the serial number of the device (which

 can be found for example in the output of lsusb -v).

 All models supported by the ft2232_spi driver can configure the

 SPI clock rate by setting a divisor. The expressible divisors

 are all even numbers between 2 and 2^17 (=131072) resulting in

 SPI clock frequencies of 6 MHz down to about 92 Hz for 12 MHz

 inputs. The default divisor is set to 2, but you can use another

 one by specifying the optional divisor parameter with the Page 17/30

 flashrom -p ft2232_spi:divisor=div

 syntax.

 serprog programmer

 This module supports all programmers speaking the serprog proto?

 col. This includes some Arduino-based devices as well as various

 programmers by Urja Rannikko, Juhana Helovuo, Stefan Tauner, Chi

 Zhang and many others.

 A mandatory parameter specifies either a serial device (and baud

 rate) or an IP/port combination for communicating with the pro?

 grammer. The device/baud combination has to start with dev= and

 separate the optional baud rate with a colon. For example

 flashrom -p serprog:dev=/dev/ttyS0:115200

 If no baud rate is given the default values by the operating

 system/hardware will be used. For IP connections you have to

 use the

 flashrom -p serprog:ip=ipaddr:port

 syntax. In case the device supports it, you can set the SPI

 clock frequency with the optional spispeed parameter. The fre?

 quency is parsed as hertz, unless an M, or k suffix is given,

 then megahertz or kilohertz are used respectively. Example that

 sets the frequency to 2 MHz:

 flashrom -p serprog:dev=/dev/device:baud,spispeed=2M

 More information about serprog is available in serprog-proto?

 col.txt in the source distribution.

 buspirate_spi programmer

 A required dev parameter specifies the Bus Pirate device node

 and an optional spispeed parameter specifies the frequency of

 the SPI bus. The parameter delimiter is a comma. Syntax is

 flashrom -p buspirate_spi:dev=/dev/device,spispeed=frequency

 where frequency can be 30k, 125k, 250k, 1M, 2M, 2.6M, 4M or 8M

 (in Hz). The default is the maximum frequency of 8 MHz.

 The baud rate for communication between the host and the Bus Pi?

 rate can be specified with the optional serialspeed parameter. Page 18/30

 Syntax is

 flashrom -p buspirate_spi:serialspeed=baud

 where baud can be 115200, 230400, 250000 or 2000000 (2M). The

 default is 2M baud for Bus Pirate hardware version 3.0 and

 greater, and 115200 otherwise.

 An optional pullups parameter specifies the use of the Bus Pi?

 rate internal pull-up resistors. This may be needed if you are

 working with a flash ROM chip that you have physically removed

 from the board. Syntax is

 flashrom -p buspirate_spi:pullups=state

 where state can be on or off. More information about the Bus

 Pirate pull-up resistors and their purpose is available in a

 guide by dangerousprototypes ?http://dangerousproto?

 types.com/docs/Practical_guide_to_Bus_Pirate_pull-up_resistors?.

 Only the external supply voltage (Vpu) is supported as of this

 writing.

 pickit2_spi programmer

 An optional voltage parameter specifies the voltage the PICkit2

 should use. The default unit is Volt if no unit is specified.

 You can use mV, millivolt, V or Volt as unit specifier. Syntax

 is

 flashrom -p pickit2_spi:voltage=value

 where value can be 0V, 1.8V, 2.5V, 3.5V or the equivalent in mV.

 An optional spispeed parameter specifies the frequency of the

 SPI bus. Syntax is

 flashrom -p pickit2_spi:spispeed=frequency

 where frequency can be 250k, 333k, 500k or 1M (in Hz). The de?

 fault is a frequency of 1 MHz.

 dediprog programmer

 An optional voltage parameter specifies the voltage the Dediprog

 should use. The default unit is Volt if no unit is specified.

 You can use mV, milliVolt, V or Volt as unit specifier. Syntax

 is Page 19/30

 flashrom -p dediprog:voltage=value

 where value can be 0V, 1.8V, 2.5V, 3.5V or the equivalent in mV.

 An optional device parameter specifies which of multiple con?

 nected Dediprog devices should be used. Please be aware that

 the order depends on libusb's usb_get_busses() function and that

 the numbering starts at 0. Usage example to select the second

 device:

 flashrom -p dediprog:device=1

 An optional spispeed parameter specifies the frequency of the

 SPI bus. The firmware on the device needs to be 5.0.0 or newer.

 Syntax is

 flashrom -p dediprog:spispeed=frequency

 where frequency can be 375k, 750k, 1.5M, 2.18M, 3M, 8M, 12M or

 24M (in Hz). The default is a frequency of 12 MHz.

 An optional target parameter specifies which target chip should

 be used. Syntax is

 flashrom -p dediprog:target=value

 where value can be 1 or 2 to select target chip 1 or 2 respec?

 tively. The default is target chip 1.

 rayer_spi programmer

 The default I/O base address used for the parallel port is 0x378

 and you can use the optional iobase parameter to specify an al?

 ternate base I/O address with the

 flashrom -p rayer_spi:iobase=baseaddr

 syntax where baseaddr is base I/O port address of the parallel

 port, which must be a multiple of four. Make sure to not forget

 the "0x" prefix for hexadecimal port addresses.

 The default cable type is the RayeR cable. You can use the op?

 tional type parameter to specify the cable type with the

 flashrom -p rayer_spi:type=model

 syntax where model can be rayer for the RayeR cable, byte?

 blastermv for the Altera ByteBlasterMV, stk200 for the Atmel

 STK200/300, wiggler for the Macraigor Wiggler, xilinx for the Page 20/30

 Xilinx Parallel Cable III (DLC 5), or spi_tt for SPI Tiny Tools-

 compatible hardware.

 More information about the RayeR hardware is available at

 RayeR's website ?http://rayer.g6.cz/elektro/spipgm.htm?. The

 Altera ByteBlasterMV datasheet can be obtained from Altera

 ?http://www.altera.co.jp/literature/ds/dsbytemv.pdf?. For more

 information about the Macraigor Wiggler see their company

 homepage ?http://www.macraigor.com/wiggler.htm?. The schematic

 of the Xilinx DLC 5 was published in a Xilinx user guide

 ?http://www.xilinx.com/support/documentation/user_guides/xtp029.pdf?.

 pony_spi programmer

 The serial port (like /dev/ttyS0, /dev/ttyUSB0 on Linux or COM3

 on windows) is specified using the mandatory dev parameter. The

 adapter type is selectable between SI-Prog (used for SPI devices

 with PonyProg 2000) or a custom made serial bitbanging

 programmer named "serbang". The optional type parameter accepts

 the values "si_prog" (default) or "serbang".

 Information about the SI-Prog adapter can be found at its

 website ?http://www.lancos.com/siprogsch.html?.

 An example call to flashrom is

 flashrom -p pony_spi:dev=/dev/ttyS0,type=serbang

 Please note that while USB-to-serial adapters work under certain

 circumstances, this slows down operation considerably.

 ogp_spi programmer

 The flash ROM chip to access must be specified with the rom

 parameter.

 flashrom -p ogp_spi:rom=name

 Where name is either cprom or s3 for the configuration ROM and

 bprom or bios for the BIOS ROM. If more than one card supported

 by the ogp_spi programmer is installed in your system, you have

 to specify the PCI address of the card you want to use with the

 pci= parameter as explained in the nic3com et al. section above.

 linux_mtd programmer Page 21/30

 You may specify the MTD device to use with the

 flashrom -p linux_mtd:dev=/dev/mtdX

 syntax where /dev/mtdX is the Linux device node for your MTD

 device. If left unspecified the first MTD device found (e.g.

 /dev/mtd0) will be used by default.

 Please note that the linux_mtd driver only works on Linux.

 linux_spi programmer

 You have to specify the SPI controller to use with the

 flashrom -p linux_spi:dev=/dev/spidevX.Y

 syntax where /dev/spidevX.Y is the Linux device node for your

 SPI controller.

 In case the device supports it, you can set the SPI clock

 frequency with the optional spispeed parameter. The frequency is

 parsed as kilohertz. Example that sets the frequency to 8 MHz:

 flashrom -p linux_spi:dev=/dev/spidevX.Y,spispeed=8000

 Please note that the linux_spi driver only works on Linux.

 mstarddc_spi programmer

 The Display Data Channel (DDC) is an I2C bus present on VGA and

 DVI connectors, that allows exchanging information between a

 computer and attached displays. Its most common uses are getting

 display capabilities through EDID (at I2C address 0x50) and

 sending commands to the display using the DDC/CI protocol (at

 address 0x37). On displays driven by MSTAR SoCs, it is also

 possible to access the SoC firmware flash (connected to the Soc

 through another SPI bus) using an In-System Programming (ISP)

 port, usually at address 0x49. This flashrom module allows the

 latter via Linux's I2C driver.

 IMPORTANT: Before using this programmer, the display MUST be in

 standby mode, and only connected to the computer that will run

 flashrom using a VGA cable, to an inactive VGA output. It

 absolutely MUST NOT be used as a display during the procedure!

 You have to specify the DDC/I2C controller and I2C address to

 use with the Page 22/30

 flashrom -p mstarddc_spi:dev=/dev/i2c-X:YY

 syntax where /dev/i2c-X is the Linux device node for your I2C

 controller connected to the display's DDC channel, and YY is the

 (hexadecimal) address of the MSTAR ISP port (address 0x49 is

 usually used). Example that uses I2C controller /dev/i2c-1 and

 address 0x49:

 flashrom -p mstarddc_spi:dev=/dev/i2c-1:49

 It is also possible to inhibit the reset command that is

 normally sent to the display once the flashrom operation is

 completed using the optional noreset parameter. A value of 1

 prevents flashrom from sending the reset command. Example that

 does not reset the display at the end of the operation:

 flashrom -p mstarddc_spi:dev=/dev/i2c-1:49,noreset=1

 Please note that sending the reset command is also inhibited if

 an error occurred during the operation. To send the reset

 command afterwards, you can simply run flashrom once more, in

 chip probe mode (not specifying an operation), without the

 noreset parameter, once the flash read/write operation you

 intended to perform has completed successfully.

 Please also note that the mstarddc_spi driver only works on

 Linux.

 ch341a_spi programmer

 The WCH CH341A programmer does not support any parameters currently.

 SPI frequency is fixed at 2 MHz, and CS0 is used as per the device.

 ni845x_spi programmer

 An optional voltage parameter could be used to specify the IO

 voltage. This parameter is available for the NI USB-8452 device.

 The default unit is Volt if no unit is specified. You can use

 mV, milliVolt, V or Volt as unit specifier. Syntax is

 flashrom -p ni845x_spi:voltage=value

 where value can be 1.2V, 1.5V, 1.8V, 2.5V, 3.3V or the

 equivalent in mV.

 In the case if none of the programmer's supported IO voltage is Page 23/30

 within the supported voltage range of the detected flash chip

 the flashrom will abort the operation (to prevent damaging the

 flash chip). You can override this behaviour by passing "yes"

 to the ignore_io_voltage_limits parameter (for e.g. if you are

 using an external voltage translator circuit). Syntax is

 flashrom -p ni845x_spi:ignore_io_voltage_limits=yes

 You can use the serial parameter to explicitly specify which

 connected NI USB-845x device should be used. You should use

 your device's 7 digit hexadecimal serial number. Usage example

 to select the device with 1230A12 serial number:

 flashrom -p ni845x_spi:serial=1230A12

 An optional spispeed parameter specifies the frequency of the

 SPI bus. Syntax is

 flashrom -p ni845x_spi:spispeed=frequency

 where frequency should a number corresponding to the desired

 frequency in kHz. The maximum frequency is 12 MHz (12000 kHz)

 for the USB-8451 and 50 MHz (50000 kHz) for the USB-8452. The

 default is a frequency of 1 MHz (1000 kHz).

 An optional cs parameter specifies which target chip select line

 should be used. Syntax is

 flashrom -p ni845x_spi:csnumber=value

 where value should be between 0 and 7 By default the CS0 is

 used.

 digilent_spi programmer

 An optional spispeed parameter specifies the frequency of the

 SPI bus. Syntax is

 flashrom -p digilent_spi:spispeed=frequency

 where frequency can be 62.5k, 125k, 250k, 500k, 1M, 2M or 4M (in

 Hz). The default is a frequency of 4 MHz.

 jlink_spi programmer

 This module supports SEGGER J-Link and compatible devices.

 The MOSI signal of the flash chip must be attached to TDI pin of

 the programmer, MISO to TDO and SCK to TCK. The chip select Page 24/30

 (CS) signal of the flash chip can be attached to different pins

 of the programmer which can be selected with the

 flashrom -p jlink_spi:cs=pin

 syntax where pin can be either TRST or RESET. The default pin

 for chip select is RESET. Note that, when using RESET, it is

 normal that the indicator LED blinks orange or red.

 Additionally, the VTref pin of the programmer must be attached

 to the logic level of the flash chip. The programmer measures

 the voltage on this pin and generates the reference voltage for

 its input comparators and adapts its output voltages to it.

 Pinout for devices with 20-pin JTAG connector:

 +-------+

 | 1 2 | 1: VTref 2:

 | 3 4 | 3: TRST 4: GND

 | 5 6 | 5: TDI 6: GND

 +-+ 7 8 | 7: 8: GND

 | 9 10 | 9: TCK 10: GND

 | 11 12 | 11: 12: GND

 +-+ 13 14 | 13: TDO 14:

 | 15 16 | 15: RESET 16:

 | 17 18 | 17: 18:

 | 19 20 | 19: PWR_5V 20:

 +-------+

 If there is more than one compatible device connected, you can

 select which one should be used by specifying its serial number

 with the

 flashrom -p jlink_spi:serial=number

 syntax where number is the serial number of the device (which

 can be found for example in the output of lsusb -v).

 The SPI speed can be selected by using the

 flashrom -p jlink_spi:spispeed=frequency

 syntax where frequency is the SPI clock frequency in kHz. The

 maximum speed depends on the device in use. Page 25/30

 stlinkv3_spi programmer

 This module supports SPI flash programming through the

 STMicroelectronics STLINK V3 programmer/debugger's SPI bridge

 interface

 flashrom -p stlinkv3_spi

 If there is more than one compatible device connected, you can

 select which one should be used by specifying its serial number

 with the

 flashrom -p stlinkv3_spi:serial=number

 syntax where number is the serial number of the device (which

 can be found for example in the output of lsusb -v).

 The SPI speed can be selected by using the

 flashrom -p stlinkv3_spi:spispeed=frequency

 syntax where frequency is the SPI clock frequency in kHz. If

 the passed frequency is not supported by the adapter the nearest

 lower supported frequency will be used.

EXAMPLES

 To back up and update your BIOS, run

 flashrom -p internal -r backup.rom -o backuplog.txt

 flashrom -p internal -w newbios.rom -o writelog.txt

 Please make sure to copy backup.rom to some external media before you

 try to write. That makes offline recovery easier.

 If writing fails and flashrom complains about the chip being in an

 unknown state, you can try to restore the backup by running

 flashrom -p internal -w backup.rom -o restorelog.txt

 If you encounter any problems, please contact us and supply

 backuplog.txt, writelog.txt and restorelog.txt. See section BUGS for

 contact info.

EXIT STATUS

 flashrom exits with 0 on success, 1 on most failures but with 3 if a

 call to mmap() fails.

REQUIREMENTS

 flashrom needs different access permissions for different programmers. Page 26/30

 internal needs raw memory access, PCI configuration space access, raw

 I/O port access (x86) and MSR access (x86).

 atavia needs PCI configuration space access.

 nic3com, nicrealtek and nicnatsemi need PCI configuration space read

 access and raw I/O port access.

 atahpt needs PCI configuration space access and raw I/O port access.

 gfxnvidia, drkaiser and it8212 need PCI configuration space access and

 raw memory access.

 rayer_spi needs raw I/O port access.

 satasii, nicintel, nicintel_eeprom and nicintel_spi need PCI

 configuration space read access and raw memory access.

 satamv and atapromise need PCI configuration space read access, raw I/O

 port access and raw memory access.

 serprog needs TCP access to the network or userspace access to a serial

 port.

 buspirate_spi needs userspace access to a serial port.

 ft2232_spi, usbblaster_spi and pickit2_spi need access to the

 respective USB device via libusb API version 0.1.

 ch341a_spi and dediprog need access to the respective USB device via

 libusb API version 1.0.

 dummy needs no access permissions at all.

 internal, nic3com, nicrealtek, nicnatsemi, gfxnvidia, drkaiser,

 satasii, satamv, atahpt, atavia and atapromise have to be run as

 superuser/root, and need additional raw access permission.

 serprog, buspirate_spi, dediprog, usbblaster_spi, ft2232_spi,

 pickit2_spi, ch341a_spi and digilent_spi can be run as normal user on

 most operating systems if appropriate device permissions are set.

 ogp needs PCI configuration space read access and raw memory access.

 On OpenBSD, you can obtain raw access permission by setting

 securelevel=-1 in /etc/rc.securelevel and rebooting, or rebooting into

 single user mode.

BUGS

 Please report any bugs to the flashrom mailing list Page 27/30

 ?flashrom@flashrom.org?.

 We recommend to subscribe first at

 https://flashrom.org/mailman/listinfo/flashrom.

 Many of the developers communicate via the #flashrom IRC channel on

 chat.freenode.net. If you don't have an IRC client, you can use the

 freenode webchat ?http://webchat.freenode.net/?channels=flashrom?. You

 are welcome to join and ask questions, send us bug and success reports

 there too. Please provide a way to contact you later (e.g. a mail

 address) and be patient if there is no immediate reaction. Also, we

 provide a pastebin service ?https://paste.flashrom.org? that is very

 useful when you want to share logs etc. without spamming the channel.

 Laptops

 Using flashrom on older laptops is dangerous and may easily make your

 hardware unusable. flashrom will attempt to detect if it is running on

 a susceptible laptop and restrict flash-chip probing for safety

 reasons. Please see the detailed discussion of this topic and

 associated flashrom options in the Laptops paragraph in the internal

 programmer subsection of the PROGRAMMER-SPECIFIC INFORMATION section

 and the information in our wiki ?https://flashrom.org/Laptops?.

 One-time programmable (OTP) memory and unique IDs

 Some flash chips contain OTP memory often denoted as "security

 registers". They usually have a capacity in the range of some bytes to

 a few hundred bytes and can be used to give devices unique IDs etc.

 flashrom is not able to read or write these memories and may therefore

 not be able to duplicate a chip completely. For chip types known to

 include OTP memories a warning is printed when they are detected.

 Similar to OTP memories are unique, factory programmed, unforgeable

 IDs. They are not modifiable by the user at all.

LICENSE

 flashrom is covered by the GNU General Public License (GPL), version 2.

 Some files are additionally available under any later version of the

 GPL.

COPYRIGHT Page 28/30

 Please see the individual files.

AUTHORS

 Andrew Morgan

 Carl-Daniel Hailfinger

 Claus Gindhart

 David Borg

 David Hendricks

 Dominik Geyer

 Edward O'Callaghan

 Eric Biederman

 Giampiero Giancipoli

 Helge Wagner

 Idwer Vollering

 Joe Bao

 Joerg Fischer

 Joshua Roys

 Ky?sti M?lkki

 Luc Verhaegen

 Li-Ta Lo

 Mark Marshall

 Markus Boas

 Mattias Mattsson

 Michael Karcher

 Nikolay Petukhov

 Patrick Georgi

 Peter Lemenkov

 Peter Stuge

 Reinder E.N. de Haan

 Ronald G. Minnich

 Ronald Hoogenboom

 Sean Nelson

 Stefan Reinauer

 Stefan Tauner Page 29/30

 Stefan Wildemann

 Stephan Guilloux

 Steven James

 Urja Rannikko

 Uwe Hermann

 Wang Qingpei

 Yinghai Lu

 some others, please see the flashrom svn changelog for details.

 All still active authors can be reached via the mailing list

 ?flashrom@flashrom.org?.

 This manual page was written by Uwe Hermann ?uwe@hermann-uwe.de?, Carl-

 Daniel Hailfinger, Stefan Tauner and others. It is licensed under the

 terms of the GNU GPL (version 2 or later).

 FLASHROM(8)

Page 30/30

