
Rocky Enterprise Linux 9.2 Manual Pages on command 'find.1'

$ man find.1

FIND(1) General Commands Manual FIND(1)

NAME

 find - search for files in a directory hierarchy

SYNOPSIS

 find [-H] [-L] [-P] [-D debugopts] [-Olevel] [starting-point...] [ex?

 pression]

DESCRIPTION

 This manual page documents the GNU version of find. GNU find searches

 the directory tree rooted at each given starting-point by evaluating

 the given expression from left to right, according to the rules of

 precedence (see section OPERATORS), until the outcome is known (the

 left hand side is false for and operations, true for or), at which

 point find moves on to the next file name. If no starting-point is

 specified, `.' is assumed.

 If you are using find in an environment where security is important

 (for example if you are using it to search directories that are

 writable by other users), you should read the `Security Considerations'

 chapter of the findutils documentation, which is called Finding Files Page 1/42

 and comes with findutils. That document also includes a lot more de?

 tail and discussion than this manual page, so you may find it a more

 useful source of information.

OPTIONS

 The -H, -L and -P options control the treatment of symbolic links.

 Command-line arguments following these are taken to be names of files

 or directories to be examined, up to the first argument that begins

 with `-', or the argument `(' or `!'. That argument and any following

 arguments are taken to be the expression describing what is to be

 searched for. If no paths are given, the current directory is used.

 If no expression is given, the expression -print is used (but you

 should probably consider using -print0 instead, anyway).

 This manual page talks about `options' within the expression list.

 These options control the behaviour of find but are specified immedi?

 ately after the last path name. The five `real' options -H, -L, -P, -D

 and -O must appear before the first path name, if at all. A double

 dash -- could theoretically be used to signal that any remaining argu?

 ments are not options, but this does not really work due to the way

 find determines the end of the following path arguments: it does that

 by reading until an expression argument comes (which also starts with a

 `-'). Now, if a path argument would start with a `-', then find would

 treat it as expression argument instead. Thus, to ensure that all

 start points are taken as such, and especially to prevent that wildcard

 patterns expanded by the calling shell are not mistakenly treated as

 expression arguments, it is generally safer to prefix wildcards or du?

 bious path names with either `./' or to use absolute path names start?

 ing with '/'.

 -P Never follow symbolic links. This is the default behaviour.

 When find examines or prints information about files, and the

 file is a symbolic link, the information used shall be taken

 from the properties of the symbolic link itself.

 -L Follow symbolic links. When find examines or prints information

 about files, the information used shall be taken from the prop? Page 2/42

 erties of the file to which the link points, not from the link

 itself (unless it is a broken symbolic link or find is unable to

 examine the file to which the link points). Use of this option

 implies -noleaf. If you later use the -P option, -noleaf will

 still be in effect. If -L is in effect and find discovers a

 symbolic link to a subdirectory during its search, the subdirec?

 tory pointed to by the symbolic link will be searched.

 When the -L option is in effect, the -type predicate will always

 match against the type of the file that a symbolic link points

 to rather than the link itself (unless the symbolic link is bro?

 ken). Actions that can cause symbolic links to become broken

 while find is executing (for example -delete) can give rise to

 confusing behaviour. Using -L causes the -lname and -ilname

 predicates always to return false.

 -H Do not follow symbolic links, except while processing the com?

 mand line arguments. When find examines or prints information

 about files, the information used shall be taken from the prop?

 erties of the symbolic link itself. The only exception to this

 behaviour is when a file specified on the command line is a sym?

 bolic link, and the link can be resolved. For that situation,

 the information used is taken from whatever the link points to

 (that is, the link is followed). The information about the link

 itself is used as a fallback if the file pointed to by the sym?

 bolic link cannot be examined. If -H is in effect and one of

 the paths specified on the command line is a symbolic link to a

 directory, the contents of that directory will be examined

 (though of course -maxdepth 0 would prevent this).

 If more than one of -H, -L and -P is specified, each overrides the oth?

 ers; the last one appearing on the command line takes effect. Since it

 is the default, the -P option should be considered to be in effect un?

 less either -H or -L is specified.

 GNU find frequently stats files during the processing of the command

 line itself, before any searching has begun. These options also affect Page 3/42

 how those arguments are processed. Specifically, there are a number of

 tests that compare files listed on the command line against a file we

 are currently considering. In each case, the file specified on the

 command line will have been examined and some of its properties will

 have been saved. If the named file is in fact a symbolic link, and the

 -P option is in effect (or if neither -H nor -L were specified), the

 information used for the comparison will be taken from the properties

 of the symbolic link. Otherwise, it will be taken from the properties

 of the file the link points to. If find cannot follow the link (for

 example because it has insufficient privileges or the link points to a

 nonexistent file) the properties of the link itself will be used.

 When the -H or -L options are in effect, any symbolic links listed as

 the argument of -newer will be dereferenced, and the timestamp will be

 taken from the file to which the symbolic link points. The same con?

 sideration applies to -newerXY, -anewer and -cnewer.

 The -follow option has a similar effect to -L, though it takes effect

 at the point where it appears (that is, if -L is not used but -follow

 is, any symbolic links appearing after -follow on the command line will

 be dereferenced, and those before it will not).

 -D debugopts

 Print diagnostic information; this can be helpful to diagnose

 problems with why find is not doing what you want. The list of

 debug options should be comma separated. Compatibility of the

 debug options is not guaranteed between releases of findutils.

 For a complete list of valid debug options, see the output of

 find -D help. Valid debug options include

 exec Show diagnostic information relating to -exec, -execdir,

 -ok and -okdir

 opt Prints diagnostic information relating to the optimisa?

 tion of the expression tree; see the -O option.

 rates Prints a summary indicating how often each predicate suc?

 ceeded or failed.

 search Navigate the directory tree verbosely. Page 4/42

 stat Print messages as files are examined with the stat and

 lstat system calls. The find program tries to minimise

 such calls.

 tree Show the expression tree in its original and optimised

 form.

 all Enable all of the other debug options (but help).

 help Explain the debugging options.

 -Olevel

 Enables query optimisation. The find program reorders tests to

 speed up execution while preserving the overall effect; that is,

 predicates with side effects are not reordered relative to each

 other. The optimisations performed at each optimisation level

 are as follows.

 0 Equivalent to optimisation level 1.

 1 This is the default optimisation level and corresponds to

 the traditional behaviour. Expressions are reordered so

 that tests based only on the names of files (for example

 -name and -regex) are performed first.

 2 Any -type or -xtype tests are performed after any tests

 based only on the names of files, but before any tests

 that require information from the inode. On many modern

 versions of Unix, file types are returned by readdir()

 and so these predicates are faster to evaluate than pred?

 icates which need to stat the file first. If you use the

 -fstype FOO predicate and specify a filesystem type FOO

 which is not known (that is, present in `/etc/mtab') at

 the time find starts, that predicate is equivalent to

 -false.

 3 At this optimisation level, the full cost-based query op?

 timiser is enabled. The order of tests is modified so

 that cheap (i.e. fast) tests are performed first and more

 expensive ones are performed later, if necessary. Within

 each cost band, predicates are evaluated earlier or later Page 5/42

 according to whether they are likely to succeed or not.

 For -o, predicates which are likely to succeed are evalu?

 ated earlier, and for -a, predicates which are likely to

 fail are evaluated earlier.

 The cost-based optimiser has a fixed idea of how likely any

 given test is to succeed. In some cases the probability takes

 account of the specific nature of the test (for example, -type f

 is assumed to be more likely to succeed than -type c). The

 cost-based optimiser is currently being evaluated. If it does

 not actually improve the performance of find, it will be removed

 again. Conversely, optimisations that prove to be reliable, ro?

 bust and effective may be enabled at lower optimisation levels

 over time. However, the default behaviour (i.e. optimisation

 level 1) will not be changed in the 4.3.x release series. The

 findutils test suite runs all the tests on find at each optimi?

 sation level and ensures that the result is the same.

EXPRESSION

 The part of the command line after the list of starting points is the

 expression. This is a kind of query specification describing how we

 match files and what we do with the files that were matched. An ex?

 pression is composed of a sequence of things:

 Tests Tests return a true or false value, usually on the basis of some

 property of a file we are considering. The -empty test for ex?

 ample is true only when the current file is empty.

 Actions

 Actions have side effects (such as printing something on the

 standard output) and return either true or false, usually based

 on whether or not they are successful. The -print action for

 example prints the name of the current file on the standard out?

 put.

 Global options

 Global options affect the operation of tests and actions speci?

 fied on any part of the command line. Global options always re? Page 6/42

 turn true. The -depth option for example makes find traverse

 the file system in a depth-first order.

 Positional options

 Positional options affect only tests or actions which follow

 them. Positional options always return true. The -regextype

 option for example is positional, specifying the regular expres?

 sion dialect for regular expressions occurring later on the com?

 mand line.

 Operators

 Operators join together the other items within the expression.

 They include for example -o (meaning logical OR) and -a (meaning

 logical AND). Where an operator is missing, -a is assumed.

 The -print action is performed on all files for which the whole expres?

 sion is true, unless it contains an action other than -prune or -quit.

 Actions which inhibit the default -print are -delete, -exec, -execdir,

 -ok, -okdir, -fls, -fprint, -fprintf, -ls, -print and -printf.

 The -delete action also acts like an option (since it implies -depth).

 POSITIONAL OPTIONS

 Positional options always return true. They affect only tests occur?

 ring later on the command line.

 -daystart

 Measure times (for -amin, -atime, -cmin, -ctime, -mmin, and

 -mtime) from the beginning of today rather than from 24 hours

 ago. This option only affects tests which appear later on the

 command line.

 -follow

 Deprecated; use the -L option instead. Dereference symbolic

 links. Implies -noleaf. The -follow option affects only those

 tests which appear after it on the command line. Unless the -H

 or -L option has been specified, the position of the -follow op?

 tion changes the behaviour of the -newer predicate; any files

 listed as the argument of -newer will be dereferenced if they

 are symbolic links. The same consideration applies to -newerXY, Page 7/42

 -anewer and -cnewer. Similarly, the -type predicate will always

 match against the type of the file that a symbolic link points

 to rather than the link itself. Using -follow causes the -lname

 and -ilname predicates always to return false.

 -regextype type

 Changes the regular expression syntax understood by -regex and

 -iregex tests which occur later on the command line. To see

 which regular expression types are known, use -regextype help.

 The Texinfo documentation (see SEE ALSO) explains the meaning of

 and differences between the various types of regular expression.

 -warn, -nowarn

 Turn warning messages on or off. These warnings apply only to

 the command line usage, not to any conditions that find might

 encounter when it searches directories. The default behaviour

 corresponds to -warn if standard input is a tty, and to -nowarn

 otherwise. If a warning message relating to command-line usage

 is produced, the exit status of find is not affected. If the

 POSIXLY_CORRECT environment variable is set, and -warn is also

 used, it is not specified which, if any, warnings will be ac?

 tive.

 GLOBAL OPTIONS

 Global options always return true. Global options take effect even for

 tests which occur earlier on the command line. To prevent confusion,

 global options should specified on the command-line after the list of

 start points, just before the first test, positional option or action.

 If you specify a global option in some other place, find will issue a

 warning message explaining that this can be confusing.

 The global options occur after the list of start points, and so are not

 the same kind of option as -L, for example.

 -d A synonym for -depth, for compatibility with FreeBSD, NetBSD,

 MacOS X and OpenBSD.

 -depth Process each directory's contents before the directory itself.

 The -delete action also implies -depth. Page 8/42

 -help, --help

 Print a summary of the command-line usage of find and exit.

 -ignore_readdir_race

 Normally, find will emit an error message when it fails to stat

 a file. If you give this option and a file is deleted between

 the time find reads the name of the file from the directory and

 the time it tries to stat the file, no error message will be is?

 sued. This also applies to files or directories whose names are

 given on the command line. This option takes effect at the time

 the command line is read, which means that you cannot search one

 part of the filesystem with this option on and part of it with

 this option off (if you need to do that, you will need to issue

 two find commands instead, one with the option and one without

 it).

 Furthermore, find with the -ignore_readdir_race option will ig?

 nore errors of the -delete action in the case the file has dis?

 appeared since the parent directory was read: it will not output

 an error diagnostic, and the return code of the -delete action

 will be true.

 -maxdepth levels

 Descend at most levels (a non-negative integer) levels of direc?

 tories below the starting-points. Using -maxdepth 0 means only

 apply the tests and actions to the starting-points themselves.

 -mindepth levels

 Do not apply any tests or actions at levels less than levels (a

 non-negative integer). Using -mindepth 1 means process all

 files except the starting-points.

 -mount Don't descend directories on other filesystems. An alternate

 name for -xdev, for compatibility with some other versions of

 find.

 -noignore_readdir_race

 Turns off the effect of -ignore_readdir_race.

 -noleaf Page 9/42

 Do not optimize by assuming that directories contain 2 fewer

 subdirectories than their hard link count. This option is

 needed when searching filesystems that do not follow the Unix

 directory-link convention, such as CD-ROM or MS-DOS filesystems

 or AFS volume mount points. Each directory on a normal Unix

 filesystem has at least 2 hard links: its name and its `.' en?

 try. Additionally, its subdirectories (if any) each have a `..'

 entry linked to that directory. When find is examining a direc?

 tory, after it has statted 2 fewer subdirectories than the di?

 rectory's link count, it knows that the rest of the entries in

 the directory are non-directories (`leaf' files in the directory

 tree). If only the files' names need to be examined, there is

 no need to stat them; this gives a significant increase in

 search speed.

 -version, --version

 Print the find version number and exit.

 -xautofs

 Don't descend directories on autofs filesystems.

 -xdev Don't descend directories on other filesystems.

 TESTS

 Some tests, for example -newerXY and -samefile, allow comparison be?

 tween the file currently being examined and some reference file speci?

 fied on the command line. When these tests are used, the interpreta?

 tion of the reference file is determined by the options -H, -L and -P

 and any previous -follow, but the reference file is only examined once,

 at the time the command line is parsed. If the reference file cannot

 be examined (for example, the stat(2) system call fails for it), an er?

 ror message is issued, and find exits with a nonzero status.

 A numeric argument n can be specified to tests (like -amin, -mtime,

 -gid, -inum, -links, -size, -uid and -used) as

 +n for greater than n,

 -n for less than n,

 n for exactly n. Page 10/42

 Supported tests:

 -amin n

 File was last accessed less than, more than or exactly n minutes

 ago.

 -anewer reference

 Time of the last access of the current file is more recent than

 that of the last data modification of the reference file. If

 reference is a symbolic link and the -H option or the -L option

 is in effect, then the time of the last data modification of the

 file it points to is always used.

 -atime n

 File was last accessed less than, more than or exactly n*24

 hours ago. When find figures out how many 24-hour periods ago

 the file was last accessed, any fractional part is ignored, so

 to match -atime +1, a file has to have been accessed at least

 two days ago.

 -cmin n

 File's status was last changed less than, more than or exactly n

 minutes ago.

 -cnewer reference

 Time of the last status change of the current file is more re?

 cent than that of the last data modification of the reference

 file. If reference is a symbolic link and the -H option or the

 -L option is in effect, then the time of the last data modifica?

 tion of the file it points to is always used.

 -ctime n

 File's status was last changed less than, more than or exactly

 n*24 hours ago. See the comments for -atime to understand how

 rounding affects the interpretation of file status change times.

 -empty File is empty and is either a regular file or a directory.

 -executable

 Matches files which are executable and directories which are

 searchable (in a file name resolution sense) by the current Page 11/42

 user. This takes into account access control lists and other

 permissions artefacts which the -perm test ignores. This test

 makes use of the access(2) system call, and so can be fooled by

 NFS servers which do UID mapping (or root-squashing), since many

 systems implement access(2) in the client's kernel and so cannot

 make use of the UID mapping information held on the server. Be?

 cause this test is based only on the result of the access(2)

 system call, there is no guarantee that a file for which this

 test succeeds can actually be executed.

 -false Always false.

 -fstype type

 File is on a filesystem of type type. The valid filesystem

 types vary among different versions of Unix; an incomplete list

 of filesystem types that are accepted on some version of Unix or

 another is: ufs, 4.2, 4.3, nfs, tmp, mfs, S51K, S52K. You can

 use -printf with the %F directive to see the types of your

 filesystems.

 -gid n File's numeric group ID is less than, more than or exactly n.

 -group gname

 File belongs to group gname (numeric group ID allowed).

 -ilname pattern

 Like -lname, but the match is case insensitive. If the -L op?

 tion or the -follow option is in effect, this test returns false

 unless the symbolic link is broken.

 -iname pattern

 Like -name, but the match is case insensitive. For example, the

 patterns `fo*' and `F??' match the file names `Foo', `FOO',

 `foo', `fOo', etc. The pattern `*foo*` will also match a file

 called '.foobar'.

 -inum n

 File has inode number smaller than, greater than or exactly n.

 It is normally easier to use the -samefile test instead.

 -ipath pattern Page 12/42

 Like -path. but the match is case insensitive.

 -iregex pattern

 Like -regex, but the match is case insensitive.

 -iwholename pattern

 See -ipath. This alternative is less portable than -ipath.

 -links n

 File has less than, more than or exactly n hard links.

 -lname pattern

 File is a symbolic link whose contents match shell pattern pat?

 tern. The metacharacters do not treat `/' or `.' specially. If

 the -L option or the -follow option is in effect, this test re?

 turns false unless the symbolic link is broken.

 -mmin n

 File's data was last modified less than, more than or exactly n

 minutes ago.

 -mtime n

 File's data was last modified less than, more than or exactly

 n*24 hours ago. See the comments for -atime to understand how

 rounding affects the interpretation of file modification times.

 -name pattern

 Base of file name (the path with the leading directories re?

 moved) matches shell pattern pattern. Because the leading di?

 rectories are removed, the file names considered for a match

 with -name will never include a slash, so `-name a/b' will never

 match anything (you probably need to use -path instead). A

 warning is issued if you try to do this, unless the environment

 variable POSIXLY_CORRECT is set. The metacharacters (`*', `?',

 and `[]') match a `.' at the start of the base name (this is a

 change in findutils-4.2.2; see section STANDARDS CONFORMANCE be?

 low). To ignore a directory and the files under it, use -prune

 rather than checking every file in the tree; see an example in

 the description of that action. Braces are not recognised as

 being special, despite the fact that some shells including Bash Page 13/42

 imbue braces with a special meaning in shell patterns. The

 filename matching is performed with the use of the fnmatch(3)

 library function. Don't forget to enclose the pattern in quotes

 in order to protect it from expansion by the shell.

 -newer reference

 Time of the last data modification of the current file is more

 recent than that of the last data modification of the reference

 file. If reference is a symbolic link and the -H option or the

 -L option is in effect, then the time of the last data modifica?

 tion of the file it points to is always used.

 -newerXY reference

 Succeeds if timestamp X of the file being considered is newer

 than timestamp Y of the file reference. The letters X and Y can

 be any of the following letters:

 a The access time of the file reference

 B The birth time of the file reference

 c The inode status change time of reference

 m The modification time of the file reference

 t reference is interpreted directly as a time

 Some combinations are invalid; for example, it is invalid for X

 to be t. Some combinations are not implemented on all systems;

 for example B is not supported on all systems. If an invalid or

 unsupported combination of XY is specified, a fatal error re?

 sults. Time specifications are interpreted as for the argument

 to the -d option of GNU date. If you try to use the birth time

 of a reference file, and the birth time cannot be determined, a

 fatal error message results. If you specify a test which refers

 to the birth time of files being examined, this test will fail

 for any files where the birth time is unknown.

 -nogroup

 No group corresponds to file's numeric group ID.

 -nouser

 No user corresponds to file's numeric user ID. Page 14/42

 -path pattern

 File name matches shell pattern pattern. The metacharacters do

 not treat `/' or `.' specially; so, for example,

 find . -path "./sr*sc"

 will print an entry for a directory called ./src/misc (if one

 exists). To ignore a whole directory tree, use -prune rather

 than checking every file in the tree. Note that the pattern

 match test applies to the whole file name, starting from one of

 the start points named on the command line. It would only make

 sense to use an absolute path name here if the relevant start

 point is also an absolute path. This means that this command

 will never match anything:

 find bar -path /foo/bar/myfile -print

 Find compares the -path argument with the concatenation of a di?

 rectory name and the base name of the file it's examining.

 Since the concatenation will never end with a slash, -path argu?

 ments ending in a slash will match nothing (except perhaps a

 start point specified on the command line). The predicate -path

 is also supported by HP-UX find and is part of the POSIX 2008

 standard.

 -perm mode

 File's permission bits are exactly mode (octal or symbolic).

 Since an exact match is required, if you want to use this form

 for symbolic modes, you may have to specify a rather complex

 mode string. For example `-perm g=w' will only match files

 which have mode 0020 (that is, ones for which group write per?

 mission is the only permission set). It is more likely that you

 will want to use the `/' or `-' forms, for example `-perm -g=w',

 which matches any file with group write permission. See the EX?

 AMPLES section for some illustrative examples.

 -perm -mode

 All of the permission bits mode are set for the file. Symbolic

 modes are accepted in this form, and this is usually the way in Page 15/42

 which you would want to use them. You must specify `u', `g' or

 `o' if you use a symbolic mode. See the EXAMPLES section for

 some illustrative examples.

 -perm /mode

 Any of the permission bits mode are set for the file. Symbolic

 modes are accepted in this form. You must specify `u', `g' or

 `o' if you use a symbolic mode. See the EXAMPLES section for

 some illustrative examples. If no permission bits in mode are

 set, this test matches any file (the idea here is to be consis?

 tent with the behaviour of -perm -000).

 -perm +mode

 This is no longer supported (and has been deprecated since

 2005). Use -perm /mode instead.

 -readable

 Matches files which are readable by the current user. This

 takes into account access control lists and other permissions

 artefacts which the -perm test ignores. This test makes use of

 the access(2) system call, and so can be fooled by NFS servers

 which do UID mapping (or root-squashing), since many systems im?

 plement access(2) in the client's kernel and so cannot make use

 of the UID mapping information held on the server.

 -regex pattern

 File name matches regular expression pattern. This is a match

 on the whole path, not a search. For example, to match a file

 named ./fubar3, you can use the regular expression `.*bar.' or

 `.*b.*3', but not `f.*r3'. The regular expressions understood

 by find are by default Emacs Regular Expressions (except that

 `.' matches newline), but this can be changed with the -regex?

 type option.

 -samefile name

 File refers to the same inode as name. When -L is in effect,

 this can include symbolic links.

 -size n[cwbkMG] Page 16/42

 File uses less than, more than or exactly n units of space,

 rounding up. The following suffixes can be used:

 `b' for 512-byte blocks (this is the default if no suffix is

 used)

 `c' for bytes

 `w' for two-byte words

 `k' for kibibytes (KiB, units of 1024 bytes)

 `M' for mebibytes (MiB, units of 1024 * 1024 = 1048576 bytes)

 `G' for gibibytes (GiB, units of 1024 * 1024 * 1024 =

 1073741824 bytes)

 The size is simply the st_size member of the struct stat popu?

 lated by the lstat (or stat) system call, rounded up as shown

 above. In other words, it's consistent with the result you get

 for ls -l. Bear in mind that the `%k' and `%b' format speci?

 fiers of -printf handle sparse files differently. The `b' suf?

 fix always denotes 512-byte blocks and never 1024-byte blocks,

 which is different to the behaviour of -ls.

 The + and - prefixes signify greater than and less than, as

 usual; i.e., an exact size of n units does not match. Bear in

 mind that the size is rounded up to the next unit. Therefore

 -size -1M is not equivalent to -size -1048576c. The former only

 matches empty files, the latter matches files from 0 to

 1,048,575 bytes.

 -true Always true.

 -type c

 File is of type c:

 b block (buffered) special

 c character (unbuffered) special

 d directory

 p named pipe (FIFO)

 f regular file

 l symbolic link; this is never true if the -L option or the

 -follow option is in effect, unless the symbolic link is Page 17/42

 broken. If you want to search for symbolic links when -L

 is in effect, use -xtype.

 s socket

 D door (Solaris)

 To search for more than one type at once, you can supply the

 combined list of type letters separated by a comma `,' (GNU ex?

 tension).

 -uid n File's numeric user ID is less than, more than or exactly n.

 -used n

 File was last accessed less than, more than or exactly n days

 after its status was last changed.

 -user uname

 File is owned by user uname (numeric user ID allowed).

 -wholename pattern

 See -path. This alternative is less portable than -path.

 -writable

 Matches files which are writable by the current user. This

 takes into account access control lists and other permissions

 artefacts which the -perm test ignores. This test makes use of

 the access(2) system call, and so can be fooled by NFS servers

 which do UID mapping (or root-squashing), since many systems im?

 plement access(2) in the client's kernel and so cannot make use

 of the UID mapping information held on the server.

 -xtype c

 The same as -type unless the file is a symbolic link. For sym?

 bolic links: if the -H or -P option was specified, true if the

 file is a link to a file of type c; if the -L option has been

 given, true if c is `l'. In other words, for symbolic links,

 -xtype checks the type of the file that -type does not check.

 -context pattern

 (SELinux only) Security context of the file matches glob pat?

 tern.

 ACTIONS Page 18/42

 -delete

 Delete files; true if removal succeeded. If the removal failed,

 an error message is issued. If -delete fails, find's exit sta?

 tus will be nonzero (when it eventually exits). Use of -delete

 automatically turns on the `-depth' option.

 Warnings: Don't forget that the find command line is evaluated

 as an expression, so putting -delete first will make find try to

 delete everything below the starting points you specified. When

 testing a find command line that you later intend to use with

 -delete, you should explicitly specify -depth in order to avoid

 later surprises. Because -delete implies -depth, you cannot

 usefully use -prune and -delete together.

 Together with the -ignore_readdir_race option, find will ignore

 errors of the -delete action in the case the file has disap?

 peared since the parent directory was read: it will not output

 an error diagnostic, and the return code of the -delete action

 will be true.

 -exec command ;

 Execute command; true if 0 status is returned. All following

 arguments to find are taken to be arguments to the command until

 an argument consisting of `;' is encountered. The string `{}'

 is replaced by the current file name being processed everywhere

 it occurs in the arguments to the command, not just in arguments

 where it is alone, as in some versions of find. Both of these

 constructions might need to be escaped (with a `\') or quoted to

 protect them from expansion by the shell. See the EXAMPLES sec?

 tion for examples of the use of the -exec option. The specified

 command is run once for each matched file. The command is exe?

 cuted in the starting directory. There are unavoidable security

 problems surrounding use of the -exec action; you should use the

 -execdir option instead.

 -exec command {} +

 This variant of the -exec action runs the specified command on Page 19/42

 the selected files, but the command line is built by appending

 each selected file name at the end; the total number of invoca?

 tions of the command will be much less than the number of

 matched files. The command line is built in much the same way

 that xargs builds its command lines. Only one instance of `{}'

 is allowed within the command, and it must appear at the end,

 immediately before the `+'; it needs to be escaped (with a `\')

 or quoted to protect it from interpretation by the shell. The

 command is executed in the starting directory. If any invoca?

 tion with the `+' form returns a non-zero value as exit status,

 then find returns a non-zero exit status. If find encounters an

 error, this can sometimes cause an immediate exit, so some pend?

 ing commands may not be run at all. For this reason -exec my-

 command ... {} + -quit may not result in my-command actually be?

 ing run. This variant of -exec always returns true.

 -execdir command ;

 -execdir command {} +

 Like -exec, but the specified command is run from the subdirec?

 tory containing the matched file, which is not normally the di?

 rectory in which you started find. As with -exec, the {} should

 be quoted if find is being invoked from a shell. This a much

 more secure method for invoking commands, as it avoids race con?

 ditions during resolution of the paths to the matched files. As

 with the -exec action, the `+' form of -execdir will build a

 command line to process more than one matched file, but any

 given invocation of command will only list files that exist in

 the same subdirectory. If you use this option, you must ensure

 that your $PATH environment variable does not reference `.';

 otherwise, an attacker can run any commands they like by leaving

 an appropriately-named file in a directory in which you will run

 -execdir. The same applies to having entries in $PATH which are

 empty or which are not absolute directory names. If any invoca?

 tion with the `+' form returns a non-zero value as exit status, Page 20/42

 then find returns a non-zero exit status. If find encounters an

 error, this can sometimes cause an immediate exit, so some pend?

 ing commands may not be run at all. The result of the action

 depends on whether the + or the ; variant is being used; -ex?

 ecdir command {} + always returns true, while -execdir com?

 mand {} ; returns true only if command returns 0.

 -fls file

 True; like -ls but write to file like -fprint. The output file

 is always created, even if the predicate is never matched. See

 the UNUSUAL FILENAMES section for information about how unusual

 characters in filenames are handled.

 -fprint file

 True; print the full file name into file file. If file does not

 exist when find is run, it is created; if it does exist, it is

 truncated. The file names /dev/stdout and /dev/stderr are han?

 dled specially; they refer to the standard output and standard

 error output, respectively. The output file is always created,

 even if the predicate is never matched. See the UNUSUAL FILE?

 NAMES section for information about how unusual characters in

 filenames are handled.

 -fprint0 file

 True; like -print0 but write to file like -fprint. The output

 file is always created, even if the predicate is never matched.

 See the UNUSUAL FILENAMES section for information about how un?

 usual characters in filenames are handled.

 -fprintf file format

 True; like -printf but write to file like -fprint. The output

 file is always created, even if the predicate is never matched.

 See the UNUSUAL FILENAMES section for information about how un?

 usual characters in filenames are handled.

 -ls True; list current file in ls -dils format on standard output.

 The block counts are of 1 KB blocks, unless the environment

 variable POSIXLY_CORRECT is set, in which case 512-byte blocks Page 21/42

 are used. See the UNUSUAL FILENAMES section for information

 about how unusual characters in filenames are handled.

 -ok command ;

 Like -exec but ask the user first. If the user agrees, run the

 command. Otherwise just return false. If the command is run,

 its standard input is redirected from /dev/null.

 The response to the prompt is matched against a pair of regular

 expressions to determine if it is an affirmative or negative re?

 sponse. This regular expression is obtained from the system if

 the `POSIXLY_CORRECT' environment variable is set, or otherwise

 from find's message translations. If the system has no suitable

 definition, find's own definition will be used. In either case,

 the interpretation of the regular expression itself will be af?

 fected by the environment variables 'LC_CTYPE' (character

 classes) and 'LC_COLLATE' (character ranges and equivalence

 classes).

 -okdir command ;

 Like -execdir but ask the user first in the same way as for -ok.

 If the user does not agree, just return false. If the command

 is run, its standard input is redirected from /dev/null.

 -print True; print the full file name on the standard output, followed

 by a newline. If you are piping the output of find into another

 program and there is the faintest possibility that the files

 which you are searching for might contain a newline, then you

 should seriously consider using the -print0 option instead of

 -print. See the UNUSUAL FILENAMES section for information about

 how unusual characters in filenames are handled.

 -print0

 True; print the full file name on the standard output, followed

 by a null character (instead of the newline character that

 -print uses). This allows file names that contain newlines or

 other types of white space to be correctly interpreted by pro?

 grams that process the find output. This option corresponds to Page 22/42

 the -0 option of xargs.

 -printf format

 True; print format on the standard output, interpreting `\' es?

 capes and `%' directives. Field widths and precisions can be

 specified as with the printf(3) C function. Please note that

 many of the fields are printed as %s rather than %d, and this

 may mean that flags don't work as you might expect. This also

 means that the `-' flag does work (it forces fields to be left-

 aligned). Unlike -print, -printf does not add a newline at the

 end of the string. The escapes and directives are:

 \a Alarm bell.

 \b Backspace.

 \c Stop printing from this format immediately and flush the

 output.

 \f Form feed.

 \n Newline.

 \r Carriage return.

 \t Horizontal tab.

 \v Vertical tab.

 \0 ASCII NUL.

 \\ A literal backslash (`\').

 \NNN The character whose ASCII code is NNN (octal).

 A `\' character followed by any other character is treated as an

 ordinary character, so they both are printed.

 %% A literal percent sign.

 %a File's last access time in the format returned by the C

 ctime(3) function.

 %Ak File's last access time in the format specified by k,

 which is either `@' or a directive for the C strftime(3)

 function. The following shows an incomplete list of pos?

 sible values for k. Please refer to the documentation of

 strftime(3) for the full list. Some of the conversion

 specification characters might not be available on all Page 23/42

 systems, due to differences in the implementation of the

 strftime(3) library function.

 @ seconds since Jan. 1, 1970, 00:00 GMT, with frac?

 tional part.

 Time fields:

 H hour (00..23)

 I hour (01..12)

 k hour (0..23)

 l hour (1..12)

 M minute (00..59)

 p locale's AM or PM

 r time, 12-hour (hh:mm:ss [AP]M)

 S Second (00.00 .. 61.00). There is a fractional

 part.

 T time, 24-hour (hh:mm:ss.xxxxxxxxxx)

 + Date and time, separated by `+', for example

 `2004-04-28+22:22:05.0'. This is a GNU extension.

 The time is given in the current timezone (which

 may be affected by setting the TZ environment

 variable). The seconds field includes a frac?

 tional part.

 X locale's time representation (H:M:S). The seconds

 field includes a fractional part.

 Z time zone (e.g., EDT), or nothing if no time zone

 is determinable

 Date fields:

 a locale's abbreviated weekday name (Sun..Sat)

 A locale's full weekday name, variable length (Sun?

 day..Saturday)

 b locale's abbreviated month name (Jan..Dec)

 B locale's full month name, variable length (Janu?

 ary..December)

 c locale's date and time (Sat Nov 04 12:02:33 EST Page 24/42

 1989). The format is the same as for ctime(3) and

 so to preserve compatibility with that format,

 there is no fractional part in the seconds field.

 d day of month (01..31)

 D date (mm/dd/yy)

 F date (yyyy-mm-dd)

 h same as b

 j day of year (001..366)

 m month (01..12)

 U week number of year with Sunday as first day of

 week (00..53)

 w day of week (0..6)

 W week number of year with Monday as first day of

 week (00..53)

 x locale's date representation (mm/dd/yy)

 y last two digits of year (00..99)

 Y year (1970...)

 %b The amount of disk space used for this file in 512-byte

 blocks. Since disk space is allocated in multiples of

 the filesystem block size this is usually greater than

 %s/512, but it can also be smaller if the file is a

 sparse file.

 %c File's last status change time in the format returned by

 the C ctime(3) function.

 %Ck File's last status change time in the format specified by

 k, which is the same as for %A.

 %d File's depth in the directory tree; 0 means the file is a

 starting-point.

 %D The device number on which the file exists (the st_dev

 field of struct stat), in decimal.

 %f Print the basename; the file's name with any leading di?

 rectories removed (only the last element). For /, the

 result is `/'. See the EXAMPLES section for an example. Page 25/42

 %F Type of the filesystem the file is on; this value can be

 used for -fstype.

 %g File's group name, or numeric group ID if the group has

 no name.

 %G File's numeric group ID.

 %h Dirname; the Leading directories of the file's name (all

 but the last element). If the file name contains no

 slashes (since it is in the current directory) the %h

 specifier expands to `.'. For files which are themselves

 directories and contain a slash (including /), %h expands

 to the empty string. See the EXAMPLES section for an ex?

 ample.

 %H Starting-point under which file was found.

 %i File's inode number (in decimal).

 %k The amount of disk space used for this file in 1 KB

 blocks. Since disk space is allocated in multiples of

 the filesystem block size this is usually greater than

 %s/1024, but it can also be smaller if the file is a

 sparse file.

 %l Object of symbolic link (empty string if file is not a

 symbolic link).

 %m File's permission bits (in octal). This option uses the

 `traditional' numbers which most Unix implementations

 use, but if your particular implementation uses an un?

 usual ordering of octal permissions bits, you will see a

 difference between the actual value of the file's mode

 and the output of %m. Normally you will want to have a

 leading zero on this number, and to do this, you should

 use the # flag (as in, for example, `%#m').

 %M File's permissions (in symbolic form, as for ls). This

 directive is supported in findutils 4.2.5 and later.

 %n Number of hard links to file.

 %p File's name. Page 26/42

 %P File's name with the name of the starting-point under

 which it was found removed.

 %s File's size in bytes.

 %S File's sparseness. This is calculated as (BLOCK?

 SIZE*st_blocks / st_size). The exact value you will get

 for an ordinary file of a certain length is system-depen?

 dent. However, normally sparse files will have values

 less than 1.0, and files which use indirect blocks may

 have a value which is greater than 1.0. In general the

 number of blocks used by a file is file system dependent.

 The value used for BLOCKSIZE is system-dependent, but is

 usually 512 bytes. If the file size is zero, the value

 printed is undefined. On systems which lack support for

 st_blocks, a file's sparseness is assumed to be 1.0.

 %t File's last modification time in the format returned by

 the C ctime(3) function.

 %Tk File's last modification time in the format specified by

 k, which is the same as for %A.

 %u File's user name, or numeric user ID if the user has no

 name.

 %U File's numeric user ID.

 %y File's type (like in ls -l), U=unknown type (shouldn't

 happen)

 %Y File's type (like %y), plus follow symbolic links:

 `L'=loop, `N'=nonexistent, `?' for any other error when

 determining the type of the target of a symbolic link.

 %Z (SELinux only) file's security context.

 %{ %[%(

 Reserved for future use.

 A `%' character followed by any other character is discarded,

 but the other character is printed (don't rely on this, as fur?

 ther format characters may be introduced). A `%' at the end of

 the format argument causes undefined behaviour since there is no Page 27/42

 following character. In some locales, it may hide your door

 keys, while in others it may remove the final page from the

 novel you are reading.

 The %m and %d directives support the #, 0 and + flags, but the

 other directives do not, even if they print numbers. Numeric

 directives that do not support these flags include G, U, b, D, k

 and n. The `-' format flag is supported and changes the align?

 ment of a field from right-justified (which is the default) to

 left-justified.

 See the UNUSUAL FILENAMES section for information about how un?

 usual characters in filenames are handled.

 -prune True; if the file is a directory, do not descend into it. If

 -depth is given, then -prune has no effect. Because -delete im?

 plies -depth, you cannot usefully use -prune and -delete to?

 gether. For example, to skip the directory src/emacs and all

 files and directories under it, and print the names of the other

 files found, do something like this:

 find . -path ./src/emacs -prune -o -print

 -quit Exit immediately (with return value zero if no errors have oc?

 curred). This is different to -prune because -prune only ap?

 plies to the contents of pruned directories, while -quit simply

 makes find stop immediately. No child processes will be left

 running. Any command lines which have been built by -exec ... +

 or -execdir ... + are invoked before the program is exited. Af?

 ter -quit is executed, no more files specified on the command

 line will be processed. For example,

 `find /tmp/foo /tmp/bar -print -quit` will print only

 `/tmp/foo`.

 One common use of -quit is to stop searching the file system

 once we have found what we want. For example, if we want to

 find just a single file we can do this:

 find / -name needle -print -quit

 OPERATORS Page 28/42

 Listed in order of decreasing precedence:

 (expr)

 Force precedence. Since parentheses are special to the shell,

 you will normally need to quote them. Many of the examples in

 this manual page use backslashes for this purpose: `\(...\)' in?

 stead of `(...)'.

 ! expr True if expr is false. This character will also usually need

 protection from interpretation by the shell.

 -not expr

 Same as ! expr, but not POSIX compliant.

 expr1 expr2

 Two expressions in a row are taken to be joined with an implied

 -a; expr2 is not evaluated if expr1 is false.

 expr1 -a expr2

 Same as expr1 expr2.

 expr1 -and expr2

 Same as expr1 expr2, but not POSIX compliant.

 expr1 -o expr2

 Or; expr2 is not evaluated if expr1 is true.

 expr1 -or expr2

 Same as expr1 -o expr2, but not POSIX compliant.

 expr1 , expr2

 List; both expr1 and expr2 are always evaluated. The value of

 expr1 is discarded; the value of the list is the value of expr2.

 The comma operator can be useful for searching for several dif?

 ferent types of thing, but traversing the filesystem hierarchy

 only once. The -fprintf action can be used to list the various

 matched items into several different output files.

 Please note that -a when specified implicitly (for example by two tests

 appearing without an explicit operator between them) or explicitly has

 higher precedence than -o. This means that find . -name afile -o -name

 bfile -print will never print afile.

UNUSUAL FILENAMES Page 29/42

 Many of the actions of find result in the printing of data which is un?

 der the control of other users. This includes file names, sizes, modi?

 fication times and so forth. File names are a potential problem since

 they can contain any character except `\0' and `/'. Unusual characters

 in file names can do unexpected and often undesirable things to your

 terminal (for example, changing the settings of your function keys on

 some terminals). Unusual characters are handled differently by various

 actions, as described below.

 -print0, -fprint0

 Always print the exact filename, unchanged, even if the output

 is going to a terminal.

 -ls, -fls

 Unusual characters are always escaped. White space, backslash,

 and double quote characters are printed using C-style escaping

 (for example `\f', `\"'). Other unusual characters are printed

 using an octal escape. Other printable characters (for -ls and

 -fls these are the characters between octal 041 and 0176) are

 printed as-is.

 -printf, -fprintf

 If the output is not going to a terminal, it is printed as-is.

 Otherwise, the result depends on which directive is in use. The

 directives %D, %F, %g, %G, %H, %Y, and %y expand to values which

 are not under control of files' owners, and so are printed as-

 is. The directives %a, %b, %c, %d, %i, %k, %m, %M, %n, %s, %t,

 %u and %U have values which are under the control of files' own?

 ers but which cannot be used to send arbitrary data to the ter?

 minal, and so these are printed as-is. The directives %f, %h,

 %l, %p and %P are quoted. This quoting is performed in the same

 way as for GNU ls. This is not the same quoting mechanism as

 the one used for -ls and -fls. If you are able to decide what

 format to use for the output of find then it is normally better

 to use `\0' as a terminator than to use newline, as file names

 can contain white space and newline characters. The setting of Page 30/42

 the `LC_CTYPE' environment variable is used to determine which

 characters need to be quoted.

 -print, -fprint

 Quoting is handled in the same way as for -printf and -fprintf.

 If you are using find in a script or in a situation where the

 matched files might have arbitrary names, you should consider

 using -print0 instead of -print.

 The -ok and -okdir actions print the current filename as-is. This may

 change in a future release.

STANDARDS CONFORMANCE

 For closest compliance to the POSIX standard, you should set the

 POSIXLY_CORRECT environment variable. The following options are speci?

 fied in the POSIX standard (IEEE Std 1003.1-2008, 2016 Edition):

 -H This option is supported.

 -L This option is supported.

 -name This option is supported, but POSIX conformance depends on the

 POSIX conformance of the system's fnmatch(3) library function.

 As of findutils-4.2.2, shell metacharacters (`*', `?' or `[]'

 for example) match a leading `.', because IEEE PASC interpreta?

 tion 126 requires this. This is a change from previous versions

 of findutils.

 -type Supported. POSIX specifies `b', `c', `d', `l', `p', `f' and

 `s'. GNU find also supports `D', representing a Door, where the

 OS provides these. Furthermore, GNU find allows multiple types

 to be specified at once in a comma-separated list.

 -ok Supported. Interpretation of the response is according to the

 `yes' and `no' patterns selected by setting the `LC_MESSAGES'

 environment variable. When the `POSIXLY_CORRECT' environment

 variable is set, these patterns are taken system's definition of

 a positive (yes) or negative (no) response. See the system's

 documentation for nl_langinfo(3), in particular YESEXPR and NO?

 EXPR. When `POSIXLY_CORRECT' is not set, the patterns are in?

 stead taken from find's own message catalogue. Page 31/42

 -newer Supported. If the file specified is a symbolic link, it is al?

 ways dereferenced. This is a change from previous behaviour,

 which used to take the relevant time from the symbolic link; see

 the HISTORY section below.

 -perm Supported. If the POSIXLY_CORRECT environment variable is not

 set, some mode arguments (for example +a+x) which are not valid

 in POSIX are supported for backward-compatibility.

 Other primaries

 The primaries -atime, -ctime, -depth, -exec, -group, -links,

 -mtime, -nogroup, -nouser, -ok, -path, -print, -prune, -size,

 -user and -xdev are all supported.

 The POSIX standard specifies parentheses `(', `)', negation `!' and the

 logical AND/OR operators -a and -o.

 All other options, predicates, expressions and so forth are extensions

 beyond the POSIX standard. Many of these extensions are not unique to

 GNU find, however.

 The POSIX standard requires that find detects loops:

 The find utility shall detect infinite loops; that is, entering

 a previously visited directory that is an ancestor of the last

 file encountered. When it detects an infinite loop, find shall

 write a diagnostic message to standard error and shall either

 recover its position in the hierarchy or terminate.

 GNU find complies with these requirements. The link count of directo?

 ries which contain entries which are hard links to an ancestor will of?

 ten be lower than they otherwise should be. This can mean that GNU

 find will sometimes optimise away the visiting of a subdirectory which

 is actually a link to an ancestor. Since find does not actually enter

 such a subdirectory, it is allowed to avoid emitting a diagnostic mes?

 sage. Although this behaviour may be somewhat confusing, it is un?

 likely that anybody actually depends on this behaviour. If the leaf

 optimisation has been turned off with -noleaf, the directory entry will

 always be examined and the diagnostic message will be issued where it

 is appropriate. Symbolic links cannot be used to create filesystem cy? Page 32/42

 cles as such, but if the -L option or the -follow option is in use, a

 diagnostic message is issued when find encounters a loop of symbolic

 links. As with loops containing hard links, the leaf optimisation will

 often mean that find knows that it doesn't need to call stat() or

 chdir() on the symbolic link, so this diagnostic is frequently not nec?

 essary.

 The -d option is supported for compatibility with various BSD systems,

 but you should use the POSIX-compliant option -depth instead.

 The POSIXLY_CORRECT environment variable does not affect the behaviour

 of the -regex or -iregex tests because those tests aren't specified in

 the POSIX standard.

ENVIRONMENT VARIABLES

 LANG Provides a default value for the internationalization variables

 that are unset or null.

 LC_ALL If set to a non-empty string value, override the values of all

 the other internationalization variables.

 LC_COLLATE

 The POSIX standard specifies that this variable affects the pat?

 tern matching to be used for the -name option. GNU find uses

 the fnmatch(3) library function, and so support for `LC_COLLATE'

 depends on the system library. This variable also affects the

 interpretation of the response to -ok; while the `LC_MESSAGES'

 variable selects the actual pattern used to interpret the re?

 sponse to -ok, the interpretation of any bracket expressions in

 the pattern will be affected by `LC_COLLATE'.

 LC_CTYPE

 This variable affects the treatment of character classes used in

 regular expressions and also with the -name test, if the sys?

 tem's fnmatch(3) library function supports this. This variable

 also affects the interpretation of any character classes in the

 regular expressions used to interpret the response to the prompt

 issued by -ok. The `LC_CTYPE' environment variable will also

 affect which characters are considered to be unprintable when Page 33/42

 filenames are printed; see the section UNUSUAL FILENAMES.

 LC_MESSAGES

 Determines the locale to be used for internationalised messages.

 If the `POSIXLY_CORRECT' environment variable is set, this also

 determines the interpretation of the response to the prompt made

 by the -ok action.

 NLSPATH

 Determines the location of the internationalisation message cat?

 alogues.

 PATH Affects the directories which are searched to find the executa?

 bles invoked by -exec, -execdir, -ok and -okdir.

 POSIXLY_CORRECT

 Determines the block size used by -ls and -fls. If POSIXLY_COR?

 RECT is set, blocks are units of 512 bytes. Otherwise they are

 units of 1024 bytes.

 Setting this variable also turns off warning messages (that is,

 implies -nowarn) by default, because POSIX requires that apart

 from the output for -ok, all messages printed on stderr are di?

 agnostics and must result in a non-zero exit status.

 When POSIXLY_CORRECT is not set, -perm +zzz is treated just like

 -perm /zzz if +zzz is not a valid symbolic mode. When

 POSIXLY_CORRECT is set, such constructs are treated as an error.

 When POSIXLY_CORRECT is set, the response to the prompt made by

 the -ok action is interpreted according to the system's message

 catalogue, as opposed to according to find's own message trans?

 lations.

 TZ Affects the time zone used for some of the time-related format

 directives of -printf and -fprintf.

EXAMPLES

 Simple `find|xargs` approach

 ? Find files named core in or below the directory /tmp and delete

 them.

 $ find /tmp -name core -type f -print | xargs /bin/rm -f Page 34/42

 Note that this will work incorrectly if there are any filenames

 containing newlines, single or double quotes, or spaces.

 Safer `find -print0 | xargs -0` approach

 ? Find files named core in or below the directory /tmp and delete

 them, processing filenames in such a way that file or directory

 names containing single or double quotes, spaces or newlines are

 correctly handled.

 $ find /tmp -name core -type f -print0 | xargs -0 /bin/rm -f

 The -name test comes before the -type test in order to avoid

 having to call stat(2) on every file.

 Note that there is still a race between the time find traverses the hi?

 erarchy printing the matching filenames, and the time the process exe?

 cuted by xargs works with that file.

 Executing a command for each file

 ? Run file on every file in or below the current directory.

 $ find . -type f -exec file '{}' \;

 Notice that the braces are enclosed in single quote marks to

 protect them from interpretation as shell script punctuation.

 The semicolon is similarly protected by the use of a backslash,

 though single quotes could have been used in that case also.

 In many cases, one might prefer the `-exec ... +` or better the `-ex?

 ecdir ... +` syntax for performance and security reasons.

 Traversing the filesystem just once - for 2 different actions

 ? Traverse the filesystem just once, listing set-user-ID files and

 directories into /root/suid.txt and large files into

 /root/big.txt.

 $ find / \

 \(-perm -4000 -fprintf /root/suid.txt '%#m %u %p\n' \) , \

 \(-size +100M -fprintf /root/big.txt '%-10s %p\n' \)

 This example uses the line-continuation character '\' on the

 first two lines to instruct the shell to continue reading the

 command on the next line.

 Searching files by age Page 35/42

 ? Search for files in your home directory which have been modified

 in the last twenty-four hours.

 $ find $HOME -mtime 0

 This command works this way because the time since each file was

 last modified is divided by 24 hours and any remainder is dis?

 carded. That means that to match -mtime 0, a file will have to

 have a modification in the past which is less than 24 hours ago.

 Searching files by permissions

 ? Search for files which are executable but not readable.

 $ find /sbin /usr/sbin -executable \! -readable -print

 ? Search for files which have read and write permission for their

 owner, and group, but which other users can read but not write

 to.

 $ find . -perm 664

 Files which meet these criteria but have other permissions bits

 set (for example if someone can execute the file) will not be

 matched.

 ? Search for files which have read and write permission for their

 owner and group, and which other users can read, without regard

 to the presence of any extra permission bits (for example the

 executable bit).

 $ find . -perm -664

 This will match a file which has mode 0777, for example.

 ? Search for files which are writable by somebody (their owner, or

 their group, or anybody else).

 $ find . -perm /222

 ? Search for files which are writable by either their owner or

 their group.

 $ find . -perm /220

 $ find . -perm /u+w,g+w

 $ find . -perm /u=w,g=w

 All three of these commands do the same thing, but the first one

 uses the octal representation of the file mode, and the other Page 36/42

 two use the symbolic form. The files don't have to be writable

 by both the owner and group to be matched; either will do.

 ? Search for files which are writable by both their owner and

 their group.

 $ find . -perm -220

 $ find . -perm -g+w,u+w

 Both these commands do the same thing.

 ? A more elaborate search on permissions.

 $ find . -perm -444 -perm /222 \! -perm /111

 $ find . -perm -a+r -perm /a+w \! -perm /a+x

 These two commands both search for files that are readable for

 everybody (-perm -444 or -perm -a+r), have at least one write

 bit set (-perm /222 or -perm /a+w) but are not executable for

 anybody (! -perm /111 or ! -perm /a+x respectively).

 Pruning - omitting files and subdirectories

 ? Copy the contents of /source-dir to /dest-dir, but omit files

 and directories named .snapshot (and anything in them). It also

 omits files or directories whose name ends in '~', but not their

 contents.

 $ cd /source-dir

 $ find . -name .snapshot -prune -o \(\! -name '*~' -print0 \) \

 | cpio -pmd0 /dest-dir

 The construct -prune -o \(... -print0 \) is quite common. The

 idea here is that the expression before -prune matches things

 which are to be pruned. However, the -prune action itself re?

 turns true, so the following -o ensures that the right hand side

 is evaluated only for those directories which didn't get pruned

 (the contents of the pruned directories are not even visited, so

 their contents are irrelevant). The expression on the right

 hand side of the -o is in parentheses only for clarity. It em?

 phasises that the -print0 action takes place only for things

 that didn't have -prune applied to them. Because the default

 `and' condition between tests binds more tightly than -o, this Page 37/42

 is the default anyway, but the parentheses help to show what is

 going on.

 ? Given the following directory of projects and their associated

 SCM administrative directories, perform an efficient search for

 the projects' roots:

 $ find repo/ \

 \(-exec test -d '{}/.svn' \; \

 -or -exec test -d '{}/.git' \; \

 -or -exec test -d '{}/CVS' \; \

 \) -print -prune

 Sample output:

 repo/project1/CVS

 repo/gnu/project2/.svn

 repo/gnu/project3/.svn

 repo/gnu/project3/src/.svn

 repo/project4/.git

 In this example, -prune prevents unnecessary descent into direc?

 tories that have already been discovered (for example we do not

 search project3/src because we already found project3/.svn), but

 ensures sibling directories (project2 and project3) are found.

 Other useful examples

 ? Search for several file types.

 $ find /tmp -type f,d,l

 Search for files, directories, and symbolic links in the direc?

 tory /tmp passing these types as a comma-separated list (GNU ex?

 tension), which is otherwise equivalent to the longer, yet more

 portable:

 $ find /tmp \(-type f -o -type d -o -type l \)

 ? Search for files with the particular name needle and stop imme?

 diately when we find the first one.

 $ find / -name needle -print -quit

 ? Demonstrate the interpretation of the %f and %h format direc?

 tives of the -printf action for some corner-cases. Here is an Page 38/42

 example including some output.

 $ find . .. / /tmp /tmp/TRACE compile compile/64/tests/find -maxdepth 0 -printf '[%h][%f]\n'

 [.][.]

 [.][..]

 [][/]

 [][tmp]

 [/tmp][TRACE]

 [.][compile]

 [compile/64/tests][find]

EXIT STATUS

 find exits with status 0 if all files are processed successfully,

 greater than 0 if errors occur. This is deliberately a very broad de?

 scription, but if the return value is non-zero, you should not rely on

 the correctness of the results of find.

 When some error occurs, find may stop immediately, without completing

 all the actions specified. For example, some starting points may not

 have been examined or some pending program invocations for

 -exec ... {} + or -execdir ... {} + may not have been performed.

HISTORY

 As of findutils-4.2.2, shell metacharacters (`*', `?' or `[]' for exam?

 ple) used in filename patterns match a leading `.', because IEEE POSIX

 interpretation 126 requires this.

 As of findutils-4.3.3, -perm /000 now matches all files instead of

 none.

 Nanosecond-resolution timestamps were implemented in findutils-4.3.3.

 As of findutils-4.3.11, the -delete action sets find's exit status to a

 nonzero value when it fails. However, find will not exit immediately.

 Previously, find's exit status was unaffected by the failure of

 -delete.

 Feature Added in Also occurs in

 -newerXY 4.3.3 BSD

 -D 4.3.1

 -O 4.3.1 Page 39/42

 -readable 4.3.0

 -writable 4.3.0

 -executable 4.3.0

 -regextype 4.2.24

 -exec ... + 4.2.12 POSIX

 -execdir 4.2.12 BSD

 -okdir 4.2.12

 -samefile 4.2.11

 -H 4.2.5 POSIX

 -L 4.2.5 POSIX

 -P 4.2.5 BSD

 -delete 4.2.3

 -quit 4.2.3

 -d 4.2.3 BSD

 -wholename 4.2.0

 -iwholename 4.2.0

 -ignore_readdir_race 4.2.0

 -fls 4.0

 -ilname 3.8

 -iname 3.8

 -ipath 3.8

 -iregex 3.8

 The syntax -perm +MODE was removed in findutils-4.5.12, in favour of

 -perm /MODE. The +MODE syntax had been deprecated since findu?

 tils-4.2.21 which was released in 2005.

NON-BUGS

 Operator precedence surprises

 The command find . -name afile -o -name bfile -print will never print

 afile because this is actually equivalent to find . -name afile -o \(

 -name bfile -a -print \). Remember that the precedence of -a is higher

 than that of -o and when there is no operator specified between tests,

 -a is assumed.

 ?paths must precede expression? error message Page 40/42

 $ find . -name *.c -print

 find: paths must precede expression

 find: possible unquoted pattern after predicate `-name'?

 This happens when the shell could expand the pattern *.c to more than

 one file name existing in the current directory, and passing the re?

 sulting file names in the command line to find like this:

 find . -name frcode.c locate.c word_io.c -print

 That command is of course not going to work, because the -name predi?

 cate allows exactly only one pattern as argument. Instead of doing

 things this way, you should enclose the pattern in quotes or escape the

 wildcard, thus allowing find to use the pattern with the wildcard dur?

 ing the search for file name matching instead of file names expanded by

 the parent shell:

 $ find . -name '*.c' -print

 $ find . -name *.c -print

BUGS

 There are security problems inherent in the behaviour that the POSIX

 standard specifies for find, which therefore cannot be fixed. For ex?

 ample, the -exec action is inherently insecure, and -execdir should be

 used instead.

 The environment variable LC_COLLATE has no effect on the -ok action.

REPORTING BUGS

 GNU findutils online help: <https://www.gnu.org/software/findu?

 tils/#get-help>

 Report any translation bugs to <https://translationproject.org/team/>

 Report any other issue via the form at the GNU Savannah bug tracker:

 <https://savannah.gnu.org/bugs/?group=findutils>

 General topics about the GNU findutils package are discussed at the

 bug-findutils mailing list:

 <https://lists.gnu.org/mailman/listinfo/bug-findutils>

COPYRIGHT

 Copyright ? 1990-2021 Free Software Foundation, Inc. License GPLv3+:

 GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>. Page 41/42

 This is free software: you are free to change and redistribute it.

 There is NO WARRANTY, to the extent permitted by law.

SEE ALSO

 chmod(1), locate(1), ls(1), updatedb(1), xargs(1), lstat(2), stat(2),

 ctime(3) fnmatch(3), printf(3), strftime(3), locatedb(5), regex(7)

 Full documentation <https://www.gnu.org/software/findutils/find>

 or available locally via: info find

 FIND(1)

Page 42/42

