
Rocky Enterprise Linux 9.2 Manual Pages on command 'fexecve.3'

$ man fexecve.3

FEXECVE(3) Linux Programmer's Manual FEXECVE(3)

NAME

 fexecve - execute program specified via file descriptor

SYNOPSIS

 #include <unistd.h>

 int fexecve(int fd, char *const argv[], char *const envp[]);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fexecve():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _GNU_SOURCE

DESCRIPTION

 fexecve() performs the same task as execve(2), with the difference that

 the file to be executed is specified via a file descriptor, fd, rather

 than via a pathname. The file descriptor fd must be opened read-only

 (O_RDONLY) or with the O_PATH flag and the caller must have permission

 to execute the file that it refers to. Page 1/4

RETURN VALUE

 A successful call to fexecve() never returns. On error, the function

 does return, with a result value of -1, and errno is set appropriately.

ERRORS

 Errors are as for execve(2), with the following additions:

 EINVAL fd is not a valid file descriptor, or argv is NULL, or envp is

 NULL.

 ENOENT The close-on-exec flag is set on fd, and fd refers to a script.

 See BUGS.

 ENOSYS The kernel does not provide the execveat(2) system call, and the

 /proc filesystem could not be accessed.

VERSIONS

 fexecve() is implemented since glibc 2.3.2.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??????????????????????????????????????

 ?Interface ? Attribute ? Value ?

 ??????????????????????????????????????

 ?fexecve() ? Thread safety ? MT-Safe ?

 ??????????????????????????????????????

CONFORMING TO

 POSIX.1-2008. This function is not specified in POSIX.1-2001, and is

 not widely available on other systems. It is specified in

 POSIX.1-2008.

NOTES

 On Linux with glibc versions 2.26 and earlier, fexecve() is implemented

 using the proc(5) filesystem, so /proc needs to be mounted and avail?

 able at the time of the call. Since glibc 2.27, if the underlying ker?

 nel supports the execveat(2) system call, then fexecve() is implemented

 using that system call, with the benefit that /proc does not need to be

 mounted.

 The idea behind fexecve() is to allow the caller to verify (checksum) Page 2/4

 the contents of an executable before executing it. Simply opening the

 file, checksumming the contents, and then doing an execve(2) would not

 suffice, since, between the two steps, the filename, or a directory

 prefix of the pathname, could have been exchanged (by, for example,

 modifying the target of a symbolic link). fexecve() does not mitigate

 the problem that the contents of a file could be changed between the

 checksumming and the call to fexecve(); for that, the solution is to

 ensure that the permissions on the file prevent it from being modified

 by malicious users.

 The natural idiom when using fexecve() is to set the close-on-exec flag

 on fd, so that the file descriptor does not leak through to the program

 that is executed. This approach is natural for two reasons. First, it

 prevents file descriptors being consumed unnecessarily. (The executed

 program normally has no need of a file descriptor that refers to the

 program itself.) Second, if fexecve() is used recursively, employing

 the close-on-exec flag prevents the file descriptor exhaustion that

 would result from the fact that each step in the recursion would cause

 one more file descriptor to be passed to the new program. (But see

 BUGS.)

BUGS

 If fd refers to a script (i.e., it is an executable text file that

 names a script interpreter with a first line that begins with the char?

 acters #!) and the close-on-exec flag has been set for fd, then fex?

 ecve() fails with the error ENOENT. This error occurs because, by the

 time the script interpreter is executed, fd has already been closed be?

 cause of the close-on-exec flag. Thus, the close-on-exec flag can't be

 set on fd if it refers to a script, leading to the problems described

 in NOTES.

SEE ALSO

 execve(2), execveat(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the Page 3/4

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-10-10 FEXECVE(3)

Page 4/4

