
Rocky Enterprise Linux 9.2 Manual Pages on command 'fcntl64.2'

$ man fcntl64.2

FCNTL(2) Linux Programmer's Manual FCNTL(2)

NAME

 fcntl - manipulate file descriptor

SYNOPSIS

 #include <unistd.h>

 #include <fcntl.h>

 int fcntl(int fd, int cmd, ... /* arg */);

DESCRIPTION

 fcntl() performs one of the operations described below on the open file

 descriptor fd. The operation is determined by cmd.

 fcntl() can take an optional third argument. Whether or not this argu?

 ment is required is determined by cmd. The required argument type is

 indicated in parentheses after each cmd name (in most cases, the re?

 quired type is int, and we identify the argument using the name arg),

 or void is specified if the argument is not required.

 Certain of the operations below are supported only since a particular

 Linux kernel version. The preferred method of checking whether the

 host kernel supports a particular operation is to invoke fcntl() with Page 1/28

 the desired cmd value and then test whether the call failed with EIN?

 VAL, indicating that the kernel does not recognize this value.

 Duplicating a file descriptor

 F_DUPFD (int)

 Duplicate the file descriptor fd using the lowest-numbered

 available file descriptor greater than or equal to arg. This is

 different from dup2(2), which uses exactly the file descriptor

 specified.

 On success, the new file descriptor is returned.

 See dup(2) for further details.

 F_DUPFD_CLOEXEC (int; since Linux 2.6.24)

 As for F_DUPFD, but additionally set the close-on-exec flag for

 the duplicate file descriptor. Specifying this flag permits a

 program to avoid an additional fcntl() F_SETFD operation to set

 the FD_CLOEXEC flag. For an explanation of why this flag is

 useful, see the description of O_CLOEXEC in open(2).

 File descriptor flags

 The following commands manipulate the flags associated with a file de?

 scriptor. Currently, only one such flag is defined: FD_CLOEXEC, the

 close-on-exec flag. If the FD_CLOEXEC bit is set, the file descriptor

 will automatically be closed during a successful execve(2). (If the

 execve(2) fails, the file descriptor is left open.) If the FD_CLOEXEC

 bit is not set, the file descriptor will remain open across an ex?

 ecve(2).

 F_GETFD (void)

 Return (as the function result) the file descriptor flags; arg

 is ignored.

 F_SETFD (int)

 Set the file descriptor flags to the value specified by arg.

 In multithreaded programs, using fcntl() F_SETFD to set the close-on-

 exec flag at the same time as another thread performs a fork(2) plus

 execve(2) is vulnerable to a race condition that may unintentionally

 leak the file descriptor to the program executed in the child process. Page 2/28

 See the discussion of the O_CLOEXEC flag in open(2) for details and a

 remedy to the problem.

 File status flags

 Each open file description has certain associated status flags, ini?

 tialized by open(2) and possibly modified by fcntl(). Duplicated file

 descriptors (made with dup(2), fcntl(F_DUPFD), fork(2), etc.) refer to

 the same open file description, and thus share the same file status

 flags.

 The file status flags and their semantics are described in open(2).

 F_GETFL (void)

 Return (as the function result) the file access mode and the

 file status flags; arg is ignored.

 F_SETFL (int)

 Set the file status flags to the value specified by arg. File

 access mode (O_RDONLY, O_WRONLY, O_RDWR) and file creation flags

 (i.e., O_CREAT, O_EXCL, O_NOCTTY, O_TRUNC) in arg are ignored.

 On Linux, this command can change only the O_APPEND, O_ASYNC,

 O_DIRECT, O_NOATIME, and O_NONBLOCK flags. It is not possible

 to change the O_DSYNC and O_SYNC flags; see BUGS, below.

 Advisory record locking

 Linux implements traditional ("process-associated") UNIX record locks,

 as standardized by POSIX. For a Linux-specific alternative with better

 semantics, see the discussion of open file description locks below.

 F_SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test

 for the existence of record locks (also known as byte-range, file-seg?

 ment, or file-region locks). The third argument, lock, is a pointer to

 a structure that has at least the following fields (in unspecified or?

 der).

 struct flock {

 ...

 short l_type; /* Type of lock: F_RDLCK,

 F_WRLCK, F_UNLCK */

 short l_whence; /* How to interpret l_start: Page 3/28

 SEEK_SET, SEEK_CUR, SEEK_END */

 off_t l_start; /* Starting offset for lock */

 off_t l_len; /* Number of bytes to lock */

 pid_t l_pid; /* PID of process blocking our lock

 (set by F_GETLK and F_OFD_GETLK) */

 ...

 };

 The l_whence, l_start, and l_len fields of this structure specify the

 range of bytes we wish to lock. Bytes past the end of the file may be

 locked, but not bytes before the start of the file.

 l_start is the starting offset for the lock, and is interpreted rela?

 tive to either: the start of the file (if l_whence is SEEK_SET); the

 current file offset (if l_whence is SEEK_CUR); or the end of the file

 (if l_whence is SEEK_END). In the final two cases, l_start can be a

 negative number provided the offset does not lie before the start of

 the file.

 l_len specifies the number of bytes to be locked. If l_len is posi?

 tive, then the range to be locked covers bytes l_start up to and in?

 cluding l_start+l_len-1. Specifying 0 for l_len has the special mean?

 ing: lock all bytes starting at the location specified by l_whence and

 l_start through to the end of file, no matter how large the file grows.

 POSIX.1-2001 allows (but does not require) an implementation to support

 a negative l_len value; if l_len is negative, the interval described by

 lock covers bytes l_start+l_len up to and including l_start-1. This is

 supported by Linux since kernel versions 2.4.21 and 2.5.49.

 The l_type field can be used to place a read (F_RDLCK) or a write

 (F_WRLCK) lock on a file. Any number of processes may hold a read lock

 (shared lock) on a file region, but only one process may hold a write

 lock (exclusive lock). An exclusive lock excludes all other locks,

 both shared and exclusive. A single process can hold only one type of

 lock on a file region; if a new lock is applied to an already-locked

 region, then the existing lock is converted to the new lock type.

 (Such conversions may involve splitting, shrinking, or coalescing with Page 4/28

 an existing lock if the byte range specified by the new lock does not

 precisely coincide with the range of the existing lock.)

 F_SETLK (struct flock *)

 Acquire a lock (when l_type is F_RDLCK or F_WRLCK) or release a

 lock (when l_type is F_UNLCK) on the bytes specified by the

 l_whence, l_start, and l_len fields of lock. If a conflicting

 lock is held by another process, this call returns -1 and sets

 errno to EACCES or EAGAIN. (The error returned in this case

 differs across implementations, so POSIX requires a portable ap?

 plication to check for both errors.)

 F_SETLKW (struct flock *)

 As for F_SETLK, but if a conflicting lock is held on the file,

 then wait for that lock to be released. If a signal is caught

 while waiting, then the call is interrupted and (after the sig?

 nal handler has returned) returns immediately (with return value

 -1 and errno set to EINTR; see signal(7)).

 F_GETLK (struct flock *)

 On input to this call, lock describes a lock we would like to

 place on the file. If the lock could be placed, fcntl() does

 not actually place it, but returns F_UNLCK in the l_type field

 of lock and leaves the other fields of the structure unchanged.

 If one or more incompatible locks would prevent this lock being

 placed, then fcntl() returns details about one of those locks in

 the l_type, l_whence, l_start, and l_len fields of lock. If the

 conflicting lock is a traditional (process-associated) record

 lock, then the l_pid field is set to the PID of the process

 holding that lock. If the conflicting lock is an open file de?

 scription lock, then l_pid is set to -1. Note that the returned

 information may already be out of date by the time the caller

 inspects it.

 In order to place a read lock, fd must be open for reading. In order

 to place a write lock, fd must be open for writing. To place both

 types of lock, open a file read-write. Page 5/28

 When placing locks with F_SETLKW, the kernel detects deadlocks, whereby

 two or more processes have their lock requests mutually blocked by

 locks held by the other processes. For example, suppose process A

 holds a write lock on byte 100 of a file, and process B holds a write

 lock on byte 200. If each process then attempts to lock the byte al?

 ready locked by the other process using F_SETLKW, then, without dead?

 lock detection, both processes would remain blocked indefinitely. When

 the kernel detects such deadlocks, it causes one of the blocking lock

 requests to immediately fail with the error EDEADLK; an application

 that encounters such an error should release some of its locks to allow

 other applications to proceed before attempting regain the locks that

 it requires. Circular deadlocks involving more than two processes are

 also detected. Note, however, that there are limitations to the ker?

 nel's deadlock-detection algorithm; see BUGS.

 As well as being removed by an explicit F_UNLCK, record locks are auto?

 matically released when the process terminates.

 Record locks are not inherited by a child created via fork(2), but are

 preserved across an execve(2).

 Because of the buffering performed by the stdio(3) library, the use of

 record locking with routines in that package should be avoided; use

 read(2) and write(2) instead.

 The record locks described above are associated with the process (un?

 like the open file description locks described below). This has some

 unfortunate consequences:

 * If a process closes any file descriptor referring to a file, then

 all of the process's locks on that file are released, regardless of

 the file descriptor(s) on which the locks were obtained. This is

 bad: it means that a process can lose its locks on a file such as

 /etc/passwd or /etc/mtab when for some reason a library function de?

 cides to open, read, and close the same file.

 * The threads in a process share locks. In other words, a multi?

 threaded program can't use record locking to ensure that threads

 don't simultaneously access the same region of a file. Page 6/28

 Open file description locks solve both of these problems.

 Open file description locks (non-POSIX)

 Open file description locks are advisory byte-range locks whose opera?

 tion is in most respects identical to the traditional record locks de?

 scribed above. This lock type is Linux-specific, and available since

 Linux 3.15. (There is a proposal with the Austin Group to include this

 lock type in the next revision of POSIX.1.) For an explanation of open

 file descriptions, see open(2).

 The principal difference between the two lock types is that whereas

 traditional record locks are associated with a process, open file de?

 scription locks are associated with the open file description on which

 they are acquired, much like locks acquired with flock(2). Conse?

 quently (and unlike traditional advisory record locks), open file de?

 scription locks are inherited across fork(2) (and clone(2) with

 CLONE_FILES), and are only automatically released on the last close of

 the open file description, instead of being released on any close of

 the file.

 Conflicting lock combinations (i.e., a read lock and a write lock or

 two write locks) where one lock is an open file description lock and

 the other is a traditional record lock conflict even when they are ac?

 quired by the same process on the same file descriptor.

 Open file description locks placed via the same open file description

 (i.e., via the same file descriptor, or via a duplicate of the file de?

 scriptor created by fork(2), dup(2), fcntl() F_DUPFD, and so on) are

 always compatible: if a new lock is placed on an already locked region,

 then the existing lock is converted to the new lock type. (Such con?

 versions may result in splitting, shrinking, or coalescing with an ex?

 isting lock as discussed above.)

 On the other hand, open file description locks may conflict with each

 other when they are acquired via different open file descriptions.

 Thus, the threads in a multithreaded program can use open file descrip?

 tion locks to synchronize access to a file region by having each thread

 perform its own open(2) on the file and applying locks via the result? Page 7/28

 ing file descriptor.

 As with traditional advisory locks, the third argument to fcntl(),

 lock, is a pointer to an flock structure. By contrast with traditional

 record locks, the l_pid field of that structure must be set to zero

 when using the commands described below.

 The commands for working with open file description locks are analogous

 to those used with traditional locks:

 F_OFD_SETLK (struct flock *)

 Acquire an open file description lock (when l_type is F_RDLCK or

 F_WRLCK) or release an open file description lock (when l_type

 is F_UNLCK) on the bytes specified by the l_whence, l_start, and

 l_len fields of lock. If a conflicting lock is held by another

 process, this call returns -1 and sets errno to EAGAIN.

 F_OFD_SETLKW (struct flock *)

 As for F_OFD_SETLK, but if a conflicting lock is held on the

 file, then wait for that lock to be released. If a signal is

 caught while waiting, then the call is interrupted and (after

 the signal handler has returned) returns immediately (with re?

 turn value -1 and errno set to EINTR; see signal(7)).

 F_OFD_GETLK (struct flock *)

 On input to this call, lock describes an open file description

 lock we would like to place on the file. If the lock could be

 placed, fcntl() does not actually place it, but returns F_UNLCK

 in the l_type field of lock and leaves the other fields of the

 structure unchanged. If one or more incompatible locks would

 prevent this lock being placed, then details about one of these

 locks are returned via lock, as described above for F_GETLK.

 In the current implementation, no deadlock detection is performed for

 open file description locks. (This contrasts with process-associated

 record locks, for which the kernel does perform deadlock detection.)

 Mandatory locking

 Warning: the Linux implementation of mandatory locking is unreliable.

 See BUGS below. Because of these bugs, and the fact that the feature Page 8/28

 is believed to be little used, since Linux 4.5, mandatory locking has

 been made an optional feature, governed by a configuration option (CON?

 FIG_MANDATORY_FILE_LOCKING). This is an initial step toward removing

 this feature completely.

 By default, both traditional (process-associated) and open file de?

 scription record locks are advisory. Advisory locks are not enforced

 and are useful only between cooperating processes.

 Both lock types can also be mandatory. Mandatory locks are enforced

 for all processes. If a process tries to perform an incompatible ac?

 cess (e.g., read(2) or write(2)) on a file region that has an incompat?

 ible mandatory lock, then the result depends upon whether the O_NON?

 BLOCK flag is enabled for its open file description. If the O_NONBLOCK

 flag is not enabled, then the system call is blocked until the lock is

 removed or converted to a mode that is compatible with the access. If

 the O_NONBLOCK flag is enabled, then the system call fails with the er?

 ror EAGAIN.

 To make use of mandatory locks, mandatory locking must be enabled both

 on the filesystem that contains the file to be locked, and on the file

 itself. Mandatory locking is enabled on a filesystem using the "-o

 mand" option to mount(8), or the MS_MANDLOCK flag for mount(2). Manda?

 tory locking is enabled on a file by disabling group execute permission

 on the file and enabling the set-group-ID permission bit (see chmod(1)

 and chmod(2)).

 Mandatory locking is not specified by POSIX. Some other systems also

 support mandatory locking, although the details of how to enable it

 vary across systems.

 Lost locks

 When an advisory lock is obtained on a networked filesystem such as NFS

 it is possible that the lock might get lost. This may happen due to

 administrative action on the server, or due to a network partition

 (i.e., loss of network connectivity with the server) which lasts long

 enough for the server to assume that the client is no longer function?

 ing. Page 9/28

 When the filesystem determines that a lock has been lost, future

 read(2) or write(2) requests may fail with the error EIO. This error

 will persist until the lock is removed or the file descriptor is

 closed. Since Linux 3.12, this happens at least for NFSv4 (including

 all minor versions).

 Some versions of UNIX send a signal (SIGLOST) in this circumstance.

 Linux does not define this signal, and does not provide any asynchro?

 nous notification of lost locks.

 Managing signals

 F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and F_SETSIG

 are used to manage I/O availability signals:

 F_GETOWN (void)

 Return (as the function result) the process ID or process group

 ID currently receiving SIGIO and SIGURG signals for events on

 file descriptor fd. Process IDs are returned as positive val?

 ues; process group IDs are returned as negative values (but see

 BUGS below). arg is ignored.

 F_SETOWN (int)

 Set the process ID or process group ID that will receive SIGIO

 and SIGURG signals for events on the file descriptor fd. The

 target process or process group ID is specified in arg. A

 process ID is specified as a positive value; a process group ID

 is specified as a negative value. Most commonly, the calling

 process specifies itself as the owner (that is, arg is specified

 as getpid(2)).

 As well as setting the file descriptor owner, one must also en?

 able generation of signals on the file descriptor. This is done

 by using the fcntl() F_SETFL command to set the O_ASYNC file

 status flag on the file descriptor. Subsequently, a SIGIO sig?

 nal is sent whenever input or output becomes possible on the

 file descriptor. The fcntl() F_SETSIG command can be used to

 obtain delivery of a signal other than SIGIO.

 Sending a signal to the owner process (group) specified by F_SE? Page 10/28

 TOWN is subject to the same permissions checks as are described

 for kill(2), where the sending process is the one that employs

 F_SETOWN (but see BUGS below). If this permission check fails,

 then the signal is silently discarded. Note: The F_SETOWN oper?

 ation records the caller's credentials at the time of the fc?

 ntl() call, and it is these saved credentials that are used for

 the permission checks.

 If the file descriptor fd refers to a socket, F_SETOWN also se?

 lects the recipient of SIGURG signals that are delivered when

 out-of-band data arrives on that socket. (SIGURG is sent in any

 situation where select(2) would report the socket as having an

 "exceptional condition".)

 The following was true in 2.6.x kernels up to and including ker?

 nel 2.6.11:

 If a nonzero value is given to F_SETSIG in a multi?

 threaded process running with a threading library that

 supports thread groups (e.g., NPTL), then a positive

 value given to F_SETOWN has a different meaning: instead

 of being a process ID identifying a whole process, it is

 a thread ID identifying a specific thread within a

 process. Consequently, it may be necessary to pass F_SE?

 TOWN the result of gettid(2) instead of getpid(2) to get

 sensible results when F_SETSIG is used. (In current

 Linux threading implementations, a main thread's thread

 ID is the same as its process ID. This means that a sin?

 gle-threaded program can equally use gettid(2) or get?

 pid(2) in this scenario.) Note, however, that the state?

 ments in this paragraph do not apply to the SIGURG signal

 generated for out-of-band data on a socket: this signal

 is always sent to either a process or a process group,

 depending on the value given to F_SETOWN.

 The above behavior was accidentally dropped in Linux 2.6.12, and

 won't be restored. From Linux 2.6.32 onward, use F_SETOWN_EX to Page 11/28

 target SIGIO and SIGURG signals at a particular thread.

 F_GETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)

 Return the current file descriptor owner settings as defined by

 a previous F_SETOWN_EX operation. The information is returned

 in the structure pointed to by arg, which has the following

 form:

 struct f_owner_ex {

 int type;

 pid_t pid;

 };

 The type field will have one of the values F_OWNER_TID,

 F_OWNER_PID, or F_OWNER_PGRP. The pid field is a positive inte?

 ger representing a thread ID, process ID, or process group ID.

 See F_SETOWN_EX for more details.

 F_SETOWN_EX (struct f_owner_ex *) (since Linux 2.6.32)

 This operation performs a similar task to F_SETOWN. It allows

 the caller to direct I/O availability signals to a specific

 thread, process, or process group. The caller specifies the

 target of signals via arg, which is a pointer to a f_owner_ex

 structure. The type field has one of the following values,

 which define how pid is interpreted:

 F_OWNER_TID

 Send the signal to the thread whose thread ID (the value

 returned by a call to clone(2) or gettid(2)) is specified

 in pid.

 F_OWNER_PID

 Send the signal to the process whose ID is specified in

 pid.

 F_OWNER_PGRP

 Send the signal to the process group whose ID is speci?

 fied in pid. (Note that, unlike with F_SETOWN, a process

 group ID is specified as a positive value here.)

 F_GETSIG (void) Page 12/28

 Return (as the function result) the signal sent when input or

 output becomes possible. A value of zero means SIGIO is sent.

 Any other value (including SIGIO) is the signal sent instead,

 and in this case additional info is available to the signal han?

 dler if installed with SA_SIGINFO. arg is ignored.

 F_SETSIG (int)

 Set the signal sent when input or output becomes possible to the

 value given in arg. A value of zero means to send the default

 SIGIO signal. Any other value (including SIGIO) is the signal

 to send instead, and in this case additional info is available

 to the signal handler if installed with SA_SIGINFO.

 By using F_SETSIG with a nonzero value, and setting SA_SIGINFO

 for the signal handler (see sigaction(2)), extra information

 about I/O events is passed to the handler in a siginfo_t struc?

 ture. If the si_code field indicates the source is SI_SIGIO,

 the si_fd field gives the file descriptor associated with the

 event. Otherwise, there is no indication which file descriptors

 are pending, and you should use the usual mechanisms (select(2),

 poll(2), read(2) with O_NONBLOCK set etc.) to determine which

 file descriptors are available for I/O.

 Note that the file descriptor provided in si_fd is the one that

 was specified during the F_SETSIG operation. This can lead to

 an unusual corner case. If the file descriptor is duplicated

 (dup(2) or similar), and the original file descriptor is closed,

 then I/O events will continue to be generated, but the si_fd

 field will contain the number of the now closed file descriptor.

 By selecting a real time signal (value >= SIGRTMIN), multiple

 I/O events may be queued using the same signal numbers. (Queu?

 ing is dependent on available memory.) Extra information is

 available if SA_SIGINFO is set for the signal handler, as above.

 Note that Linux imposes a limit on the number of real-time sig?

 nals that may be queued to a process (see getrlimit(2) and sig?

 nal(7)) and if this limit is reached, then the kernel reverts to Page 13/28

 delivering SIGIO, and this signal is delivered to the entire

 process rather than to a specific thread.

 Using these mechanisms, a program can implement fully asynchronous I/O

 without using select(2) or poll(2) most of the time.

 The use of O_ASYNC is specific to BSD and Linux. The only use of

 F_GETOWN and F_SETOWN specified in POSIX.1 is in conjunction with the

 use of the SIGURG signal on sockets. (POSIX does not specify the SIGIO

 signal.) F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and F_SETSIG are Linux-

 specific. POSIX has asynchronous I/O and the aio_sigevent structure to

 achieve similar things; these are also available in Linux as part of

 the GNU C Library (Glibc).

 Leases

 F_SETLEASE and F_GETLEASE (Linux 2.4 onward) are used to establish a

 new lease, and retrieve the current lease, on the open file description

 referred to by the file descriptor fd. A file lease provides a mecha?

 nism whereby the process holding the lease (the "lease holder") is no?

 tified (via delivery of a signal) when a process (the "lease breaker")

 tries to open(2) or truncate(2) the file referred to by that file de?

 scriptor.

 F_SETLEASE (int)

 Set or remove a file lease according to which of the following

 values is specified in the integer arg:

 F_RDLCK

 Take out a read lease. This will cause the calling

 process to be notified when the file is opened for writ?

 ing or is truncated. A read lease can be placed only on

 a file descriptor that is opened read-only.

 F_WRLCK

 Take out a write lease. This will cause the caller to be

 notified when the file is opened for reading or writing

 or is truncated. A write lease may be placed on a file

 only if there are no other open file descriptors for the

 file. Page 14/28

 F_UNLCK

 Remove our lease from the file.

 Leases are associated with an open file description (see open(2)).

 This means that duplicate file descriptors (created by, for example,

 fork(2) or dup(2)) refer to the same lease, and this lease may be modi?

 fied or released using any of these descriptors. Furthermore, the

 lease is released by either an explicit F_UNLCK operation on any of

 these duplicate file descriptors, or when all such file descriptors

 have been closed.

 Leases may be taken out only on regular files. An unprivileged process

 may take out a lease only on a file whose UID (owner) matches the

 filesystem UID of the process. A process with the CAP_LEASE capability

 may take out leases on arbitrary files.

 F_GETLEASE (void)

 Indicates what type of lease is associated with the file de?

 scriptor fd by returning either F_RDLCK, F_WRLCK, or F_UNLCK,

 indicating, respectively, a read lease , a write lease, or no

 lease. arg is ignored.

 When a process (the "lease breaker") performs an open(2) or truncate(2)

 that conflicts with a lease established via F_SETLEASE, the system call

 is blocked by the kernel and the kernel notifies the lease holder by

 sending it a signal (SIGIO by default). The lease holder should re?

 spond to receipt of this signal by doing whatever cleanup is required

 in preparation for the file to be accessed by another process (e.g.,

 flushing cached buffers) and then either remove or downgrade its lease.

 A lease is removed by performing an F_SETLEASE command specifying arg

 as F_UNLCK. If the lease holder currently holds a write lease on the

 file, and the lease breaker is opening the file for reading, then it is

 sufficient for the lease holder to downgrade the lease to a read lease.

 This is done by performing an F_SETLEASE command specifying arg as

 F_RDLCK.

 If the lease holder fails to downgrade or remove the lease within the

 number of seconds specified in /proc/sys/fs/lease-break-time, then the Page 15/28

 kernel forcibly removes or downgrades the lease holder's lease.

 Once a lease break has been initiated, F_GETLEASE returns the target

 lease type (either F_RDLCK or F_UNLCK, depending on what would be com?

 patible with the lease breaker) until the lease holder voluntarily

 downgrades or removes the lease or the kernel forcibly does so after

 the lease break timer expires.

 Once the lease has been voluntarily or forcibly removed or downgraded,

 and assuming the lease breaker has not unblocked its system call, the

 kernel permits the lease breaker's system call to proceed.

 If the lease breaker's blocked open(2) or truncate(2) is interrupted by

 a signal handler, then the system call fails with the error EINTR, but

 the other steps still occur as described above. If the lease breaker

 is killed by a signal while blocked in open(2) or truncate(2), then the

 other steps still occur as described above. If the lease breaker spec?

 ifies the O_NONBLOCK flag when calling open(2), then the call immedi?

 ately fails with the error EWOULDBLOCK, but the other steps still occur

 as described above.

 The default signal used to notify the lease holder is SIGIO, but this

 can be changed using the F_SETSIG command to fcntl(). If a F_SETSIG

 command is performed (even one specifying SIGIO), and the signal han?

 dler is established using SA_SIGINFO, then the handler will receive a

 siginfo_t structure as its second argument, and the si_fd field of this

 argument will hold the file descriptor of the leased file that has been

 accessed by another process. (This is useful if the caller holds

 leases against multiple files.)

 File and directory change notification (dnotify)

 F_NOTIFY (int)

 (Linux 2.4 onward) Provide notification when the directory re?

 ferred to by fd or any of the files that it contains is changed.

 The events to be notified are specified in arg, which is a bit

 mask specified by ORing together zero or more of the following

 bits:

 DN_ACCESS Page 16/28

 A file was accessed (read(2), pread(2), readv(2), and

 similar)

 DN_MODIFY

 A file was modified (write(2), pwrite(2), writev(2),

 truncate(2), ftruncate(2), and similar).

 DN_CREATE

 A file was created (open(2), creat(2), mknod(2),

 mkdir(2), link(2), symlink(2), rename(2) into this direc?

 tory).

 DN_DELETE

 A file was unlinked (unlink(2), rename(2) to another di?

 rectory, rmdir(2)).

 DN_RENAME

 A file was renamed within this directory (rename(2)).

 DN_ATTRIB

 The attributes of a file were changed (chown(2),

 chmod(2), utime(2), utimensat(2), and similar).

 (In order to obtain these definitions, the _GNU_SOURCE feature

 test macro must be defined before including any header files.)

 Directory notifications are normally "one-shot", and the appli?

 cation must reregister to receive further notifications. Alter?

 natively, if DN_MULTISHOT is included in arg, then notification

 will remain in effect until explicitly removed.

 A series of F_NOTIFY requests is cumulative, with the events in

 arg being added to the set already monitored. To disable noti?

 fication of all events, make an F_NOTIFY call specifying arg as

 0.

 Notification occurs via delivery of a signal. The default sig?

 nal is SIGIO, but this can be changed using the F_SETSIG command

 to fcntl(). (Note that SIGIO is one of the nonqueuing standard

 signals; switching to the use of a real-time signal means that

 multiple notifications can be queued to the process.) In the

 latter case, the signal handler receives a siginfo_t structure Page 17/28

 as its second argument (if the handler was established using

 SA_SIGINFO) and the si_fd field of this structure contains the

 file descriptor which generated the notification (useful when

 establishing notification on multiple directories).

 Especially when using DN_MULTISHOT, a real time signal should be

 used for notification, so that multiple notifications can be

 queued.

 NOTE: New applications should use the inotify interface (avail?

 able since kernel 2.6.13), which provides a much superior inter?

 face for obtaining notifications of filesystem events. See ino?

 tify(7).

 Changing the capacity of a pipe

 F_SETPIPE_SZ (int; since Linux 2.6.35)

 Change the capacity of the pipe referred to by fd to be at least

 arg bytes. An unprivileged process can adjust the pipe capacity

 to any value between the system page size and the limit defined

 in /proc/sys/fs/pipe-max-size (see proc(5)). Attempts to set

 the pipe capacity below the page size are silently rounded up to

 the page size. Attempts by an unprivileged process to set the

 pipe capacity above the limit in /proc/sys/fs/pipe-max-size

 yield the error EPERM; a privileged process (CAP_SYS_RESOURCE)

 can override the limit.

 When allocating the buffer for the pipe, the kernel may use a

 capacity larger than arg, if that is convenient for the imple?

 mentation. (In the current implementation, the allocation is

 the next higher power-of-two page-size multiple of the requested

 size.) The actual capacity (in bytes) that is set is returned

 as the function result.

 Attempting to set the pipe capacity smaller than the amount of

 buffer space currently used to store data produces the error

 EBUSY.

 Note that because of the way the pages of the pipe buffer are

 employed when data is written to the pipe, the number of bytes Page 18/28

 that can be written may be less than the nominal size, depending

 on the size of the writes.

 F_GETPIPE_SZ (void; since Linux 2.6.35)

 Return (as the function result) the capacity of the pipe re?

 ferred to by fd.

 File Sealing

 File seals limit the set of allowed operations on a given file. For

 each seal that is set on a file, a specific set of operations will fail

 with EPERM on this file from now on. The file is said to be sealed.

 The default set of seals depends on the type of the underlying file and

 filesystem. For an overview of file sealing, a discussion of its pur?

 pose, and some code examples, see memfd_create(2).

 Currently, file seals can be applied only to a file descriptor returned

 by memfd_create(2) (if the MFD_ALLOW_SEALING was employed). On other

 filesystems, all fcntl() operations that operate on seals will return

 EINVAL.

 Seals are a property of an inode. Thus, all open file descriptors re?

 ferring to the same inode share the same set of seals. Furthermore,

 seals can never be removed, only added.

 F_ADD_SEALS (int; since Linux 3.17)

 Add the seals given in the bit-mask argument arg to the set of

 seals of the inode referred to by the file descriptor fd. Seals

 cannot be removed again. Once this call succeeds, the seals are

 enforced by the kernel immediately. If the current set of seals

 includes F_SEAL_SEAL (see below), then this call will be re?

 jected with EPERM. Adding a seal that is already set is a no-

 op, in case F_SEAL_SEAL is not set already. In order to place a

 seal, the file descriptor fd must be writable.

 F_GET_SEALS (void; since Linux 3.17)

 Return (as the function result) the current set of seals of the

 inode referred to by fd. If no seals are set, 0 is returned.

 If the file does not support sealing, -1 is returned and errno

 is set to EINVAL. Page 19/28

 The following seals are available:

 F_SEAL_SEAL

 If this seal is set, any further call to fcntl() with

 F_ADD_SEALS fails with the error EPERM. Therefore, this seal

 prevents any modifications to the set of seals itself. If the

 initial set of seals of a file includes F_SEAL_SEAL, then this

 effectively causes the set of seals to be constant and locked.

 F_SEAL_SHRINK

 If this seal is set, the file in question cannot be reduced in

 size. This affects open(2) with the O_TRUNC flag as well as

 truncate(2) and ftruncate(2). Those calls fail with EPERM if

 you try to shrink the file in question. Increasing the file

 size is still possible.

 F_SEAL_GROW

 If this seal is set, the size of the file in question cannot be

 increased. This affects write(2) beyond the end of the file,

 truncate(2), ftruncate(2), and fallocate(2). These calls fail

 with EPERM if you use them to increase the file size. If you

 keep the size or shrink it, those calls still work as expected.

 F_SEAL_WRITE

 If this seal is set, you cannot modify the contents of the file.

 Note that shrinking or growing the size of the file is still

 possible and allowed. Thus, this seal is normally used in com?

 bination with one of the other seals. This seal affects

 write(2) and fallocate(2) (only in combination with the FAL?

 LOC_FL_PUNCH_HOLE flag). Those calls fail with EPERM if this

 seal is set. Furthermore, trying to create new shared, writable

 memory-mappings via mmap(2) will also fail with EPERM.

 Using the F_ADD_SEALS operation to set the F_SEAL_WRITE seal

 fails with EBUSY if any writable, shared mapping exists. Such

 mappings must be unmapped before you can add this seal. Fur?

 thermore, if there are any asynchronous I/O operations (io_sub?

 mit(2)) pending on the file, all outstanding writes will be dis? Page 20/28

 carded.

 F_SEAL_FUTURE_WRITE (since Linux 5.1)

 The effect of this seal is similar to F_SEAL_WRITE, but the con?

 tents of the file can still be modified via shared writable map?

 pings that were created prior to the seal being set. Any at?

 tempt to create a new writable mapping on the file via mmap(2)

 will fail with EPERM. Likewise, an attempt to write to the file

 via write(2) will fail with EPERM.

 Using this seal, one process can create a memory buffer that it

 can continue to modify while sharing that buffer on a "read-

 only" basis with other processes.

 File read/write hints

 Write lifetime hints can be used to inform the kernel about the rela?

 tive expected lifetime of writes on a given inode or via a particular

 open file description. (See open(2) for an explanation of open file

 descriptions.) In this context, the term "write lifetime" means the

 expected time the data will live on media, before being overwritten or

 erased.

 An application may use the different hint values specified below to

 separate writes into different write classes, so that multiple users or

 applications running on a single storage back-end can aggregate their

 I/O patterns in a consistent manner. However, there are no functional

 semantics implied by these flags, and different I/O classes can use the

 write lifetime hints in arbitrary ways, so long as the hints are used

 consistently.

 The following operations can be applied to the file descriptor, fd:

 F_GET_RW_HINT (uint64_t *; since Linux 4.13)

 Returns the value of the read/write hint associated with the un?

 derlying inode referred to by fd.

 F_SET_RW_HINT (uint64_t *; since Linux 4.13)

 Sets the read/write hint value associated with the underlying

 inode referred to by fd. This hint persists until either it is

 explicitly modified or the underlying filesystem is unmounted. Page 21/28

 F_GET_FILE_RW_HINT (uint64_t *; since Linux 4.13)

 Returns the value of the read/write hint associated with the

 open file description referred to by fd.

 F_SET_FILE_RW_HINT (uint64_t *; since Linux 4.13)

 Sets the read/write hint value associated with the open file de?

 scription referred to by fd.

 If an open file description has not been assigned a read/write hint,

 then it shall use the value assigned to the inode, if any.

 The following read/write hints are valid since Linux 4.13:

 RWH_WRITE_LIFE_NOT_SET

 No specific hint has been set. This is the default value.

 RWH_WRITE_LIFE_NONE

 No specific write lifetime is associated with this file or in?

 ode.

 RWH_WRITE_LIFE_SHORT

 Data written to this inode or via this open file description is

 expected to have a short lifetime.

 RWH_WRITE_LIFE_MEDIUM

 Data written to this inode or via this open file description is

 expected to have a lifetime longer than data written with

 RWH_WRITE_LIFE_SHORT.

 RWH_WRITE_LIFE_LONG

 Data written to this inode or via this open file description is

 expected to have a lifetime longer than data written with

 RWH_WRITE_LIFE_MEDIUM.

 RWH_WRITE_LIFE_EXTREME

 Data written to this inode or via this open file description is

 expected to have a lifetime longer than data written with

 RWH_WRITE_LIFE_LONG.

 All the write-specific hints are relative to each other, and no indi?

 vidual absolute meaning should be attributed to them.

RETURN VALUE

 For a successful call, the return value depends on the operation: Page 22/28

 F_DUPFD

 The new file descriptor.

 F_GETFD

 Value of file descriptor flags.

 F_GETFL

 Value of file status flags.

 F_GETLEASE

 Type of lease held on file descriptor.

 F_GETOWN

 Value of file descriptor owner.

 F_GETSIG

 Value of signal sent when read or write becomes possible, or

 zero for traditional SIGIO behavior.

 F_GETPIPE_SZ, F_SETPIPE_SZ

 The pipe capacity.

 F_GET_SEALS

 A bit mask identifying the seals that have been set for the in?

 ode referred to by fd.

 All other commands

 Zero.

 On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES or EAGAIN

 Operation is prohibited by locks held by other processes.

 EAGAIN The operation is prohibited because the file has been memory-

 mapped by another process.

 EBADF fd is not an open file descriptor

 EBADF cmd is F_SETLK or F_SETLKW and the file descriptor open mode

 doesn't match with the type of lock requested.

 EBUSY cmd is F_SETPIPE_SZ and the new pipe capacity specified in arg

 is smaller than the amount of buffer space currently used to

 store data in the pipe.

 EBUSY cmd is F_ADD_SEALS, arg includes F_SEAL_WRITE, and there exists Page 23/28

 a writable, shared mapping on the file referred to by fd.

 EDEADLK

 It was detected that the specified F_SETLKW command would cause

 a deadlock.

 EFAULT lock is outside your accessible address space.

 EINTR cmd is F_SETLKW or F_OFD_SETLKW and the operation was inter?

 rupted by a signal; see signal(7).

 EINTR cmd is F_GETLK, F_SETLK, F_OFD_GETLK, or F_OFD_SETLK, and the

 operation was interrupted by a signal before the lock was

 checked or acquired. Most likely when locking a remote file

 (e.g., locking over NFS), but can sometimes happen locally.

 EINVAL The value specified in cmd is not recognized by this kernel.

 EINVAL cmd is F_ADD_SEALS and arg includes an unrecognized sealing bit.

 EINVAL cmd is F_ADD_SEALS or F_GET_SEALS and the filesystem containing

 the inode referred to by fd does not support sealing.

 EINVAL cmd is F_DUPFD and arg is negative or is greater than the maxi?

 mum allowable value (see the discussion of RLIMIT_NOFILE in

 getrlimit(2)).

 EINVAL cmd is F_SETSIG and arg is not an allowable signal number.

 EINVAL cmd is F_OFD_SETLK, F_OFD_SETLKW, or F_OFD_GETLK, and l_pid was

 not specified as zero.

 EMFILE cmd is F_DUPFD and the per-process limit on the number of open

 file descriptors has been reached.

 ENOLCK Too many segment locks open, lock table is full, or a remote

 locking protocol failed (e.g., locking over NFS).

 ENOTDIR

 F_NOTIFY was specified in cmd, but fd does not refer to a direc?

 tory.

 EPERM cmd is F_SETPIPE_SZ and the soft or hard user pipe limit has

 been reached; see pipe(7).

 EPERM Attempted to clear the O_APPEND flag on a file that has the ap?

 pend-only attribute set.

 EPERM cmd was F_ADD_SEALS, but fd was not open for writing or the cur? Page 24/28

 rent set of seals on the file already includes F_SEAL_SEAL.

CONFORMING TO

 SVr4, 4.3BSD, POSIX.1-2001. Only the operations F_DUPFD, F_GETFD,

 F_SETFD, F_GETFL, F_SETFL, F_GETLK, F_SETLK, and F_SETLKW are specified

 in POSIX.1-2001.

 F_GETOWN and F_SETOWN are specified in POSIX.1-2001. (To get their

 definitions, define either _XOPEN_SOURCE with the value 500 or greater,

 or _POSIX_C_SOURCE with the value 200809L or greater.)

 F_DUPFD_CLOEXEC is specified in POSIX.1-2008. (To get this definition,

 define _POSIX_C_SOURCE with the value 200809L or greater, or

 _XOPEN_SOURCE with the value 700 or greater.)

 F_GETOWN_EX, F_SETOWN_EX, F_SETPIPE_SZ, F_GETPIPE_SZ, F_GETSIG, F_SET?

 SIG, F_NOTIFY, F_GETLEASE, and F_SETLEASE are Linux-specific. (Define

 the _GNU_SOURCE macro to obtain these definitions.)

 F_OFD_SETLK, F_OFD_SETLKW, and F_OFD_GETLK are Linux-specific (and one

 must define _GNU_SOURCE to obtain their definitions), but work is being

 done to have them included in the next version of POSIX.1.

 F_ADD_SEALS and F_GET_SEALS are Linux-specific.

NOTES

 The errors returned by dup2(2) are different from those returned by

 F_DUPFD.

 File locking

 The original Linux fcntl() system call was not designed to handle large

 file offsets (in the flock structure). Consequently, an fcntl64() sys?

 tem call was added in Linux 2.4. The newer system call employs a dif?

 ferent structure for file locking, flock64, and corresponding commands,

 F_GETLK64, F_SETLK64, and F_SETLKW64. However, these details can be

 ignored by applications using glibc, whose fcntl() wrapper function

 transparently employs the more recent system call where it is avail?

 able.

 Record locks

 Since kernel 2.0, there is no interaction between the types of lock

 placed by flock(2) and fcntl(). Page 25/28

 Several systems have more fields in struct flock such as, for example,

 l_sysid (to identify the machine where the lock is held). Clearly,

 l_pid alone is not going to be very useful if the process holding the

 lock may live on a different machine; on Linux, while present on some

 architectures (such as MIPS32), this field is not used.

 The original Linux fcntl() system call was not designed to handle large

 file offsets (in the flock structure). Consequently, an fcntl64() sys?

 tem call was added in Linux 2.4. The newer system call employs a dif?

 ferent structure for file locking, flock64, and corresponding commands,

 F_GETLK64, F_SETLK64, and F_SETLKW64. However, these details can be

 ignored by applications using glibc, whose fcntl() wrapper function

 transparently employs the more recent system call where it is avail?

 able.

 Record locking and NFS

 Before Linux 3.12, if an NFSv4 client loses contact with the server for

 a period of time (defined as more than 90 seconds with no communica?

 tion), it might lose and regain a lock without ever being aware of the

 fact. (The period of time after which contact is assumed lost is known

 as the NFSv4 leasetime. On a Linux NFS server, this can be determined

 by looking at /proc/fs/nfsd/nfsv4leasetime, which expresses the period

 in seconds. The default value for this file is 90.) This scenario po?

 tentially risks data corruption, since another process might acquire a

 lock in the intervening period and perform file I/O.

 Since Linux 3.12, if an NFSv4 client loses contact with the server, any

 I/O to the file by a process which "thinks" it holds a lock will fail

 until that process closes and reopens the file. A kernel parameter,

 nfs.recover_lost_locks, can be set to 1 to obtain the pre-3.12 behav?

 ior, whereby the client will attempt to recover lost locks when contact

 is reestablished with the server. Because of the attendant risk of

 data corruption, this parameter defaults to 0 (disabled).

BUGS

 F_SETFL

 It is not possible to use F_SETFL to change the state of the O_DSYNC Page 26/28

 and O_SYNC flags. Attempts to change the state of these flags are

 silently ignored.

 F_GETOWN

 A limitation of the Linux system call conventions on some architectures

 (notably i386) means that if a (negative) process group ID to be re?

 turned by F_GETOWN falls in the range -1 to -4095, then the return

 value is wrongly interpreted by glibc as an error in the system call;

 that is, the return value of fcntl() will be -1, and errno will contain

 the (positive) process group ID. The Linux-specific F_GETOWN_EX opera?

 tion avoids this problem. Since glibc version 2.11, glibc makes the

 kernel F_GETOWN problem invisible by implementing F_GETOWN using

 F_GETOWN_EX.

 F_SETOWN

 In Linux 2.4 and earlier, there is bug that can occur when an unprivi?

 leged process uses F_SETOWN to specify the owner of a socket file de?

 scriptor as a process (group) other than the caller. In this case, fc?

 ntl() can return -1 with errno set to EPERM, even when the owner

 process (group) is one that the caller has permission to send signals

 to. Despite this error return, the file descriptor owner is set, and

 signals will be sent to the owner.

 Deadlock detection

 The deadlock-detection algorithm employed by the kernel when dealing

 with F_SETLKW requests can yield both false negatives (failures to de?

 tect deadlocks, leaving a set of deadlocked processes blocked indefi?

 nitely) and false positives (EDEADLK errors when there is no deadlock).

 For example, the kernel limits the lock depth of its dependency search

 to 10 steps, meaning that circular deadlock chains that exceed that

 size will not be detected. In addition, the kernel may falsely indi?

 cate a deadlock when two or more processes created using the clone(2)

 CLONE_FILES flag place locks that appear (to the kernel) to conflict.

 Mandatory locking

 The Linux implementation of mandatory locking is subject to race condi?

 tions which render it unreliable: a write(2) call that overlaps with a Page 27/28

 lock may modify data after the mandatory lock is acquired; a read(2)

 call that overlaps with a lock may detect changes to data that were

 made only after a write lock was acquired. Similar races exist between

 mandatory locks and mmap(2). It is therefore inadvisable to rely on

 mandatory locking.

SEE ALSO

 dup2(2), flock(2), open(2), socket(2), lockf(3), capabilities(7), fea?

 ture_test_macros(7), lslocks(8)

 locks.txt, mandatory-locking.txt, and dnotify.txt in the Linux kernel

 source directory Documentation/filesystems/ (on older kernels, these

 files are directly under the Documentation/ directory, and mandatory-

 locking.txt is called mandatory.txt)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 FCNTL(2)

Page 28/28

