
Rocky Enterprise Linux 9.2 Manual Pages on command 'fchmodat.2'

$ man fchmodat.2

CHMOD(2) Linux Programmer's Manual CHMOD(2)

NAME

 chmod, fchmod, fchmodat - change permissions of a file

SYNOPSIS

 #include <sys/stat.h>

 int chmod(const char *pathname, mode_t mode);

 int fchmod(int fd, mode_t mode);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <sys/stat.h>

 int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 fchmod():

 Since glibc 2.24:

 _POSIX_C_SOURCE >= 199309L

 Glibc 2.19 to 2.23

 _POSIX_C_SOURCE

 Glibc 2.16 to 2.19:

 _BSD_SOURCE || _POSIX_C_SOURCE Page 1/6

 Glibc 2.12 to 2.16:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500 ||

 _POSIX_C_SOURCE >= 200809L

 Glibc 2.11 and earlier:

 _BSD_SOURCE || _XOPEN_SOURCE >= 500

 fchmodat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 The chmod() and fchmod() system calls change a files mode bits. (The

 file mode consists of the file permission bits plus the set-user-ID,

 set-group-ID, and sticky bits.) These system calls differ only in how

 the file is specified:

 * chmod() changes the mode of the file specified whose pathname is

 given in pathname, which is dereferenced if it is a symbolic link.

 * fchmod() changes the mode of the file referred to by the open file

 descriptor fd.

 The new file mode is specified in mode, which is a bit mask created by

 ORing together zero or more of the following:

 S_ISUID (04000) set-user-ID (set process effective user ID on ex?

 ecve(2))

 S_ISGID (02000) set-group-ID (set process effective group ID on ex?

 ecve(2); mandatory locking, as described in fcntl(2);

 take a new file's group from parent directory, as de?

 scribed in chown(2) and mkdir(2))

 S_ISVTX (01000) sticky bit (restricted deletion flag, as described in

 unlink(2))

 S_IRUSR (00400) read by owner

 S_IWUSR (00200) write by owner

 S_IXUSR (00100) execute/search by owner ("search" applies for direc?

 tories, and means that entries within the directory Page 2/6

 can be accessed)

 S_IRGRP (00040) read by group

 S_IWGRP (00020) write by group

 S_IXGRP (00010) execute/search by group

 S_IROTH (00004) read by others

 S_IWOTH (00002) write by others

 S_IXOTH (00001) execute/search by others

 The effective UID of the calling process must match the owner of the

 file, or the process must be privileged (Linux: it must have the

 CAP_FOWNER capability).

 If the calling process is not privileged (Linux: does not have the

 CAP_FSETID capability), and the group of the file does not match the

 effective group ID of the process or one of its supplementary group

 IDs, the S_ISGID bit will be turned off, but this will not cause an er?

 ror to be returned.

 As a security measure, depending on the filesystem, the set-user-ID and

 set-group-ID execution bits may be turned off if a file is written.

 (On Linux, this occurs if the writing process does not have the

 CAP_FSETID capability.) On some filesystems, only the superuser can

 set the sticky bit, which may have a special meaning. For the sticky

 bit, and for set-user-ID and set-group-ID bits on directories, see in?

 ode(7).

 On NFS filesystems, restricting the permissions will immediately influ?

 ence already open files, because the access control is done on the

 server, but open files are maintained by the client. Widening the per?

 missions may be delayed for other clients if attribute caching is en?

 abled on them.

 fchmodat()

 The fchmodat() system call operates in exactly the same way as chmod(),

 except for the differences described here.

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd

 (rather than relative to the current working directory of the calling Page 3/6

 process, as is done by chmod() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then

 pathname is interpreted relative to the current working directory of

 the calling process (like chmod()).

 If pathname is absolute, then dirfd is ignored.

 flags can either be 0, or include the following flag:

 AT_SYMLINK_NOFOLLOW

 If pathname is a symbolic link, do not dereference it: instead

 operate on the link itself. This flag is not currently imple?

 mented.

 See openat(2) for an explanation of the need for fchmodat().

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 Depending on the filesystem, errors other than those listed below can

 be returned.

 The more general errors for chmod() are listed below:

 EACCES Search permission is denied on a component of the path prefix.

 (See also path_resolution(7).)

 EFAULT pathname points outside your accessible address space.

 EIO An I/O error occurred.

 ELOOP Too many symbolic links were encountered in resolving pathname.

 ENAMETOOLONG

 pathname is too long.

 ENOENT The file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR

 A component of the path prefix is not a directory.

 EPERM The effective UID does not match the owner of the file, and the

 process is not privileged (Linux: it does not have the

 CAP_FOWNER capability).

 EPERM The file is marked immutable or append-only. (See Page 4/6

 ioctl_iflags(2).)

 EROFS The named file resides on a read-only filesystem.

 The general errors for fchmod() are listed below:

 EBADF The file descriptor fd is not valid.

 EIO See above.

 EPERM See above.

 EROFS See above.

 The same errors that occur for chmod() can also occur for fchmodat().

 The following additional errors can occur for fchmodat():

 EBADF dirfd is not a valid file descriptor.

 EINVAL Invalid flag specified in flags.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to

 a file other than a directory.

 ENOTSUP

 flags specified AT_SYMLINK_NOFOLLOW, which is not supported.

VERSIONS

 fchmodat() was added to Linux in kernel 2.6.16; library support was

 added to glibc in version 2.4.

CONFORMING TO

 chmod(), fchmod(): 4.4BSD, SVr4, POSIX.1-2001i, POSIX.1-2008.

 fchmodat(): POSIX.1-2008.

NOTES

 C library/kernel differences

 The GNU C library fchmodat() wrapper function implements the POSIX-

 specified interface described in this page. This interface differs

 from the underlying Linux system call, which does not have a flags ar?

 gument.

 Glibc notes

 On older kernels where fchmodat() is unavailable, the glibc wrapper

 function falls back to the use of chmod(). When pathname is a relative

 pathname, glibc constructs a pathname based on the symbolic link in

 /proc/self/fd that corresponds to the dirfd argument. Page 5/6

SEE ALSO

 chmod(1), chown(2), execve(2), open(2), stat(2), inode(7), path_resolu?

 tion(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 CHMOD(2)

Page 6/6

