
Rocky Enterprise Linux 9.2 Manual Pages on command 'epoll_ctl.2'

$ man epoll_ctl.2

EPOLL_CTL(2) Linux Programmer's Manual EPOLL_CTL(2)

NAME

 epoll_ctl - control interface for an epoll file descriptor

SYNOPSIS

 #include <sys/epoll.h>

 int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

DESCRIPTION

 This system call is used to add, modify, or remove entries in the in?

 terest list of the epoll(7) instance referred to by the file descriptor

 epfd. It requests that the operation op be performed for the target

 file descriptor, fd.

 Valid values for the op argument are:

 EPOLL_CTL_ADD

 Add an entry to the interest list of the epoll file descriptor,

 epfd. The entry includes the file descriptor, fd, a reference

 to the corresponding open file description (see epoll(7) and

 open(2)), and the settings specified in event.

 EPOLL_CTL_MOD Page 1/7

 Change the settings associated with fd in the interest list to

 the new settings specified in event.

 EPOLL_CTL_DEL

 Remove (deregister) the target file descriptor fd from the in?

 terest list. The event argument is ignored and can be NULL (but

 see BUGS below).

 The event argument describes the object linked to the file descriptor

 fd. The struct epoll_event is defined as:

 typedef union epoll_data {

 void *ptr;

 int fd;

 uint32_t u32;

 uint64_t u64;

 } epoll_data_t;

 struct epoll_event {

 uint32_t events; /* Epoll events */

 epoll_data_t data; /* User data variable */

 };

 The data member of the epoll_event structure specifies data that the

 kernel should save and then return (via epoll_wait(2)) when this file

 descriptor becomes ready.

 The events member of the epoll_event structure is a bit mask composed

 by ORing together zero or more of the following available event types:

 EPOLLIN

 The associated file is available for read(2) operations.

 EPOLLOUT

 The associated file is available for write(2) operations.

 EPOLLRDHUP (since Linux 2.6.17)

 Stream socket peer closed connection, or shut down writing half

 of connection. (This flag is especially useful for writing sim?

 ple code to detect peer shutdown when using edge-triggered moni?

 toring.)

 EPOLLPRI Page 2/7

 There is an exceptional condition on the file descriptor. See

 the discussion of POLLPRI in poll(2).

 EPOLLERR

 Error condition happened on the associated file descriptor.

 This event is also reported for the write end of a pipe when the

 read end has been closed.

 epoll_wait(2) will always report for this event; it is not nec?

 essary to set it in events when calling epoll_ctl().

 EPOLLHUP

 Hang up happened on the associated file descriptor.

 epoll_wait(2) will always wait for this event; it is not neces?

 sary to set it in events when calling epoll_ctl().

 Note that when reading from a channel such as a pipe or a stream

 socket, this event merely indicates that the peer closed its end

 of the channel. Subsequent reads from the channel will return 0

 (end of file) only after all outstanding data in the channel has

 been consumed.

 EPOLLET

 Requests edge-triggered notification for the associated file de?

 scriptor. The default behavior for epoll is level-triggered.

 See epoll(7) for more detailed information about edge-triggered

 and level-triggered notification.

 This flag is an input flag for the event.events field when call?

 ing epoll_ctl(); it is never returned by epoll_wait(2).

 EPOLLONESHOT (since Linux 2.6.2)

 Requests one-shot notification for the associated file descrip?

 tor. This means that after an event notified for the file de?

 scriptor by epoll_wait(2), the file descriptor is disabled in

 the interest list and no other events will be reported by the

 epoll interface. The user must call epoll_ctl() with

 EPOLL_CTL_MOD to rearm the file descriptor with a new event

 mask.

 This flag is an input flag for the event.events field when call? Page 3/7

 ing epoll_ctl(); it is never returned by epoll_wait(2).

 EPOLLWAKEUP (since Linux 3.5)

 If EPOLLONESHOT and EPOLLET are clear and the process has the

 CAP_BLOCK_SUSPEND capability, ensure that the system does not

 enter "suspend" or "hibernate" while this event is pending or

 being processed. The event is considered as being "processed"

 from the time when it is returned by a call to epoll_wait(2) un?

 til the next call to epoll_wait(2) on the same epoll(7) file de?

 scriptor, the closure of that file descriptor, the removal of

 the event file descriptor with EPOLL_CTL_DEL, or the clearing of

 EPOLLWAKEUP for the event file descriptor with EPOLL_CTL_MOD.

 See also BUGS.

 This flag is an input flag for the event.events field when call?

 ing epoll_ctl(); it is never returned by epoll_wait(2).

 EPOLLEXCLUSIVE (since Linux 4.5)

 Sets an exclusive wakeup mode for the epoll file descriptor that

 is being attached to the target file descriptor, fd. When a

 wakeup event occurs and multiple epoll file descriptors are at?

 tached to the same target file using EPOLLEXCLUSIVE, one or more

 of the epoll file descriptors will receive an event with

 epoll_wait(2). The default in this scenario (when EPOLLEXCLU?

 SIVE is not set) is for all epoll file descriptors to receive an

 event. EPOLLEXCLUSIVE is thus useful for avoiding thundering

 herd problems in certain scenarios.

 If the same file descriptor is in multiple epoll instances, some

 with the EPOLLEXCLUSIVE flag, and others without, then events

 will be provided to all epoll instances that did not specify

 EPOLLEXCLUSIVE, and at least one of the epoll instances that did

 specify EPOLLEXCLUSIVE.

 The following values may be specified in conjunction with

 EPOLLEXCLUSIVE: EPOLLIN, EPOLLOUT, EPOLLWAKEUP, and EPOLLET.

 EPOLLHUP and EPOLLERR can also be specified, but this is not re?

 quired: as usual, these events are always reported if they oc? Page 4/7

 cur, regardless of whether they are specified in events. At?

 tempts to specify other values in events yield the error EINVAL.

 EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation;

 attempts to employ it with EPOLL_CTL_MOD yield an error. If

 EPOLLEXCLUSIVE has been set using epoll_ctl(), then a subsequent

 EPOLL_CTL_MOD on the same epfd, fd pair yields an error. A call

 to epoll_ctl() that specifies EPOLLEXCLUSIVE in events and spec?

 ifies the target file descriptor fd as an epoll instance will

 likewise fail. The error in all of these cases is EINVAL.

 The EPOLLEXCLUSIVE flag is an input flag for the event.events

 field when calling epoll_ctl(); it is never returned by

 epoll_wait(2).

RETURN VALUE

 When successful, epoll_ctl() returns zero. When an error occurs,

 epoll_ctl() returns -1 and errno is set appropriately.

ERRORS

 EBADF epfd or fd is not a valid file descriptor.

 EEXIST op was EPOLL_CTL_ADD, and the supplied file descriptor fd is al?

 ready registered with this epoll instance.

 EINVAL epfd is not an epoll file descriptor, or fd is the same as epfd,

 or the requested operation op is not supported by this inter?

 face.

 EINVAL An invalid event type was specified along with EPOLLEXCLUSIVE in

 events.

 EINVAL op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

 EINVAL op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previously

 been applied to this epfd, fd pair.

 EINVAL EPOLLEXCLUSIVE was specified in event and fd refers to an epoll

 instance.

 ELOOP fd refers to an epoll instance and this EPOLL_CTL_ADD operation

 would result in a circular loop of epoll instances monitoring

 one another or a nesting depth of epoll instances greater than

 5. Page 5/7

 ENOENT op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered

 with this epoll instance.

 ENOMEM There was insufficient memory to handle the requested op control

 operation.

 ENOSPC The limit imposed by /proc/sys/fs/epoll/max_user_watches was en?

 countered while trying to register (EPOLL_CTL_ADD) a new file

 descriptor on an epoll instance. See epoll(7) for further de?

 tails.

 EPERM The target file fd does not support epoll. This error can occur

 if fd refers to, for example, a regular file or a directory.

VERSIONS

 epoll_ctl() was added to the kernel in version 2.6. Library support is

 provided in glibc starting with version 2.3.2.

CONFORMING TO

 epoll_ctl() is Linux-specific.

NOTES

 The epoll interface supports all file descriptors that support poll(2).

BUGS

 In kernel versions before 2.6.9, the EPOLL_CTL_DEL operation required a

 non-null pointer in event, even though this argument is ignored. Since

 Linux 2.6.9, event can be specified as NULL when using EPOLL_CTL_DEL.

 Applications that need to be portable to kernels before 2.6.9 should

 specify a non-null pointer in event.

 If EPOLLWAKEUP is specified in flags, but the caller does not have the

 CAP_BLOCK_SUSPEND capability, then the EPOLLWAKEUP flag is silently ig?

 nored. This unfortunate behavior is necessary because no validity

 checks were performed on the flags argument in the original implementa?

 tion, and the addition of the EPOLLWAKEUP with a check that caused the

 call to fail if the caller did not have the CAP_BLOCK_SUSPEND capabil?

 ity caused a breakage in at least one existing user-space application

 that happened to randomly (and uselessly) specify this bit. A robust

 application should therefore double check that it has the

 CAP_BLOCK_SUSPEND capability if attempting to use the EPOLLWAKEUP flag. Page 6/7

SEE ALSO

 epoll_create(2), epoll_wait(2), poll(2), epoll(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 EPOLL_CTL(2)

Page 7/7

