
Rocky Enterprise Linux 9.2 Manual Pages on command 'dup.2'

$ man dup.2

DUP(2) Linux Programmer's Manual DUP(2)

NAME

 dup, dup2, dup3 - duplicate a file descriptor

SYNOPSIS

 #include <unistd.h>

 int dup(int oldfd);

 int dup2(int oldfd, int newfd);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h> /* Obtain O_* constant definitions */

 #include <unistd.h>

 int dup3(int oldfd, int newfd, int flags);

DESCRIPTION

 The dup() system call creates a copy of the file descriptor oldfd, us?

 ing the lowest-numbered unused file descriptor for the new descriptor.

 After a successful return, the old and new file descriptors may be used

 interchangeably. They refer to the same open file description (see

 open(2)) and thus share file offset and file status flags; for example,

 if the file offset is modified by using lseek(2) on one of the file de? Page 1/4

 scriptors, the offset is also changed for the other.

 The two file descriptors do not share file descriptor flags (the close-

 on-exec flag). The close-on-exec flag (FD_CLOEXEC; see fcntl(2)) for

 the duplicate descriptor is off.

 dup2()

 The dup2() system call performs the same task as dup(), but instead of

 using the lowest-numbered unused file descriptor, it uses the file de?

 scriptor number specified in newfd. If the file descriptor newfd was

 previously open, it is silently closed before being reused.

 The steps of closing and reusing the file descriptor newfd are per?

 formed atomically. This is important, because trying to implement

 equivalent functionality using close(2) and dup() would be subject to

 race conditions, whereby newfd might be reused between the two steps.

 Such reuse could happen because the main program is interrupted by a

 signal handler that allocates a file descriptor, or because a parallel

 thread allocates a file descriptor.

 Note the following points:

 * If oldfd is not a valid file descriptor, then the call fails, and

 newfd is not closed.

 * If oldfd is a valid file descriptor, and newfd has the same value as

 oldfd, then dup2() does nothing, and returns newfd.

 dup3()

 dup3() is the same as dup2(), except that:

 * The caller can force the close-on-exec flag to be set for the new

 file descriptor by specifying O_CLOEXEC in flags. See the descrip?

 tion of the same flag in open(2) for reasons why this may be useful.

 * If oldfd equals newfd, then dup3() fails with the error EINVAL.

RETURN VALUE

 On success, these system calls return the new file descriptor. On er?

 ror, -1 is returned, and errno is set appropriately.

ERRORS

 EBADF oldfd isn't an open file descriptor.

 EBADF newfd is out of the allowed range for file descriptors (see the Page 2/4

 discussion of RLIMIT_NOFILE in getrlimit(2)).

 EBUSY (Linux only) This may be returned by dup2() or dup3() during a

 race condition with open(2) and dup().

 EINTR The dup2() or dup3() call was interrupted by a signal; see sig?

 nal(7).

 EINVAL (dup3()) flags contain an invalid value.

 EINVAL (dup3()) oldfd was equal to newfd.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached (see the discussion of RLIMIT_NOFILE in getr?

 limit(2)).

VERSIONS

 dup3() was added to Linux in version 2.6.27; glibc support is available

 starting with version 2.9.

CONFORMING TO

 dup(), dup2(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

 dup3() is Linux-specific.

NOTES

 The error returned by dup2() is different from that returned by fc?

 ntl(..., F_DUPFD, ...) when newfd is out of range. On some systems,

 dup2() also sometimes returns EINVAL like F_DUPFD.

 If newfd was open, any errors that would have been reported at close(2)

 time are lost. If this is of concern, then?unless the program is sin?

 gle-threaded and does not allocate file descriptors in signal handlers?

 the correct approach is not to close newfd before calling dup2(), be?

 cause of the race condition described above. Instead, code something

 like the following could be used:

 /* Obtain a duplicate of 'newfd' that can subsequently

 be used to check for close() errors; an EBADF error

 means that 'newfd' was not open. */

 tmpfd = dup(newfd);

 if (tmpfd == -1 && errno != EBADF) {

 /* Handle unexpected dup() error */

 } Page 3/4

 /* Atomically duplicate 'oldfd' on 'newfd' */

 if (dup2(oldfd, newfd) == -1) {

 /* Handle dup2() error */

 }

 /* Now check for close() errors on the file originally

 referred to by 'newfd' */

 if (tmpfd != -1) {

 if (close(tmpfd) == -1) {

 /* Handle errors from close */

 }

 }

SEE ALSO

 close(2), fcntl(2), open(2), pidfd_getfd(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 DUP(2)

Page 4/4

