
Rocky Enterprise Linux 9.2 Manual Pages on command 'dracut.cmdline.7'

$ man dracut.cmdline.7

DRACUT.CMDLINE(7) dracut DRACUT.CMDLINE(7)

NAME

 dracut.cmdline - dracut kernel command line options

DESCRIPTION

 The root device used by the kernel is specified in the boot

 configuration file on the kernel command line, as always.

 The traditional root=/dev/sda1 style device specification is allowed,

 but not encouraged. The root device should better be identified by

 LABEL or UUID. If a label is used, as in root=LABEL=<label_of_root> the

 initramfs will search all available devices for a filesystem with the

 appropriate label, and mount that device as the root filesystem.

 root=UUID=<uuidnumber> will mount the partition with that UUID as the

 root filesystem.

 In the following all kernel command line parameters, which are

 processed by dracut, are described.

 "rd.*" parameters mentioned without "=" are boolean parameters. They

 can be turned on/off by setting them to {0|1}. If the assignment with

 "=" is missing "=1" is implied. For example rd.info can be turned off Page 1/34

 with rd.info=0 or turned on with rd.info=1 or rd.info. The last value

 in the kernel command line is the value, which is honored.

 Standard

 init=<path to real init>

 specify the path to the init program to be started after the

 initramfs has finished

 root=<path to blockdevice>

 specify the block device to use as the root filesystem.

 Example.

 root=/dev/sda1

 root=/dev/disk/by-path/pci-0000:00:1f.1-scsi-0:0:1:0-part1

 root=/dev/disk/by-label/Root

 root=LABEL=Root

 root=/dev/disk/by-uuid/3f5ad593-4546-4a94-a374-bcfb68aa11f7

 root=UUID=3f5ad593-4546-4a94-a374-bcfb68aa11f7

 root=PARTUUID=3f5ad593-4546-4a94-a374-bcfb68aa11f7

 rootfstype=<filesystem type>

 "auto" if not specified.

 Example.

 rootfstype=ext3

 rootflags=<mount options>

 specify additional mount options for the root filesystem. If not

 set, /etc/fstab of the real root will be parsed for special mount

 options and mounted accordingly.

 ro

 force mounting / and /usr (if it is a separate device) read-only.

 If none of ro and rw is present, both are mounted according to

 /etc/fstab.

 rw

 force mounting / and /usr (if it is a separate device) read-write.

 See also ro option.

 rootfallback=<path to blockdevice>

 specify the block device to use as the root filesystem, if the Page 2/34

 normal root cannot be found. This can only be a simple block device

 with a simple file system, for which the filesystem driver is

 either compiled in, or added manually to the initramfs. This

 parameter can be specified multiple times.

 rd.auto rd.auto=1

 enable autoassembly of special devices like cryptoLUKS, dmraid,

 mdraid or lvm. Default is off as of dracut version >= 024.

 rd.hostonly=0

 removes all compiled in configuration of the host system the

 initramfs image was built on. This helps booting, if any disk

 layout changed, especially in combination with rd.auto or other

 parameters specifying the layout.

 rd.cmdline=ask

 prompts the user for additional kernel command line parameters

 rd.fstab=0

 do not honor special mount options for the root filesystem found in

 /etc/fstab of the real root.

 resume=<path to resume partition>

 resume from a swap partition

 Example.

 resume=/dev/disk/by-path/pci-0000:00:1f.1-scsi-0:0:1:0-part1

 resume=/dev/disk/by-uuid/3f5ad593-4546-4a94-a374-bcfb68aa11f7

 resume=UUID=3f5ad593-4546-4a94-a374-bcfb68aa11f7

 rd.skipfsck

 skip fsck for rootfs and /usr. If you?re mounting /usr read-only

 and the init system performs fsck before remount, you might want to

 use this option to avoid duplication.

 iso-scan/filename

 Mount all mountable devices and search for ISO pointed by the argument.

 When the ISO is found set it up as a loop device. Device containing

 this ISO image will stay mounted at /run/initramfs/isoscandev. Using

 iso-scan/filename with a Fedora/Red Hat/CentOS Live iso should just

 work by copying the original kernel cmdline parameters. Page 3/34

 Example.

 menuentry 'Live Fedora 20' --class fedora --class gnu-linux --class gnu --class os {

 set isolabel=Fedora-Live-LXDE-x86_64-20-1

 set isofile="/boot/iso/Fedora-Live-LXDE-x86_64-20-1.iso"

 loopback loop $isofile

 linux (loop)/isolinux/vmlinuz0 boot=isolinux iso-scan/filename=$isofile root=live:LABEL=$isolabel ro rd.live.image

quiet rhgb

 initrd (loop)/isolinux/initrd0.img

 }

 Misc

 rd.emergency=[reboot|poweroff|halt]

 specify, what action to execute in case of a critical failure.

 rd.shell=0 must also be specified.

 rd.driver.blacklist=<drivername>[,<drivername>,...]

 do not load kernel module <drivername>. This parameter can be

 specified multiple times.

 rd.driver.pre=<drivername>[,<drivername>,...]

 force loading kernel module <drivername>. This parameter can be

 specified multiple times.

 rd.driver.post=<drivername>[,<drivername>,...]

 force loading kernel module <drivername> after all automatic

 loading modules have been loaded. This parameter can be specified

 multiple times.

 rd.retry=<seconds>

 specify how long dracut should retry the initqueue to configure

 devices. The default is 180 seconds. After 2/3 of the time,

 degraded raids are force started. If you have hardware, which takes

 a very long time to announce its drives, you might want to extend

 this value.

 rd.timeout=<seconds>

 specify how long dracut should wait for devices to appear. The

 default is 0, which means forever. Note that this timeout should be

 longer than rd.retry to allow for proper configuration. Page 4/34

 rd.noverifyssl

 accept self-signed certificates for ssl downloads.

 rd.ctty=<terminal device>

 specify the controlling terminal for the console. This is useful,

 if you have multiple "console=" arguments.

 rd.shutdown.timeout.umount=<seconds>

 specify how long dracut should wait for an individual umount to

 finish during shutdown. This avoids the system from blocking when

 unmounting a file system cannot complete and waits indefinitely.

 Value 0 means to wait forever. The default is 90 seconds.

 Debug

 If you are dropped to an emergency shell, the file

 /run/initramfs/rdsosreport.txt is created, which can be saved to a (to

 be mounted by hand) partition (usually /boot) or a USB stick.

 Additional debugging info can be produced by adding rd.debug to the

 kernel command line. /run/initramfs/rdsosreport.txt contains all logs

 and the output of some tools. It should be attached to any report about

 dracut problems.

 rd.info

 print informational output though "quiet" is set

 rd.shell

 allow dropping to a shell, if root mounting fails

 rd.debug

 set -x for the dracut shell. If systemd is active in the initramfs,

 all output is logged to the systemd journal, which you can inspect

 with "journalctl -ab". If systemd is not active, the logs are

 written to dmesg and /run/initramfs/init.log. If "quiet" is set, it

 also logs to the console.

 rd.memdebug=[0-5]

 Print memory usage info at various points, set the verbose level

 from 0 to 5.

 Higher level means more debugging output:

 0 - no output Page 5/34

 1 - partial /proc/meminfo

 2 - /proc/meminfo

 3 - /proc/meminfo + /proc/slabinfo

 4 - /proc/meminfo + /proc/slabinfo + memstrack summary

 NOTE: memstrack is a memory tracing tool that tracks the total memory

 consumption, and peak memory consumption of each kernel modules

 and userspace progress during the whole initramfs runtime, report

 is genereted and the end of initramsfs run.

 5 - /proc/meminfo + /proc/slabinfo + memstrack (with top memory stacktrace)

 NOTE: memstrack (with top memory stacktrace) will print top memory

 allocation stack traces during the whole initramfs runtime.

 rd.break

 drop to a shell at the end

 rd.break={cmdline|pre-udev|pre-trigger|initqueue|pre-mount|mount|pre-pivot|cleanup}

 drop to a shell on defined breakpoint

 rd.udev.info

 set udev to loglevel info

 rd.udev.debug

 set udev to loglevel debug

 I18N

 rd.vconsole.keymap=<keymap base file name>

 keyboard translation table loaded by loadkeys; taken from keymaps

 directory; will be written as KEYMAP to /etc/vconsole.conf in the

 initramfs.

 Example.

 rd.vconsole.keymap=de-latin1-nodeadkeys

 rd.vconsole.keymap.ext=<list of keymap base file names>

 list of extra keymaps to bo loaded (sep. by space); will be written

 as EXT_KEYMAP to /etc/vconsole.conf in the initramfs

 rd.vconsole.unicode

 boolean, indicating UTF-8 mode; will be written as UNICODE to

 /etc/vconsole.conf in the initramfs

 rd.vconsole.font= Page 6/34

 console font; taken from consolefonts directory; will be written as

 FONT to /etc/vconsole.conf in the initramfs.

 Example.

 rd.vconsole.font=eurlatgr

 rd.vconsole.font.map=<console map base file name>

 see description of -m parameter in setfont manual; taken from

 consoletrans directory; will be written as FONT_MAP to

 /etc/vconsole.conf in the initramfs

 rd.vconsole.font.unimap=<unicode table base file name>

 see description of -u parameter in setfont manual; taken from

 unimaps directory; will be written as FONT_UNIMAP to

 /etc/vconsole.conf in the initramfs

 rd.locale.LANG=<locale>

 taken from the environment; if no UNICODE is defined we set its

 value in basis of LANG value (whether it ends with ".utf8" (or

 similar) or not); will be written as LANG to /etc/locale.conf in

 the initramfs.

 Example.

 rd.locale.LANG=pl_PL.utf8

 rd.locale.LC_ALL=<locale>

 taken from the environment; will be written as LC_ALL to

 /etc/locale.conf in the initramfs

 LVM

 rd.lvm=0

 disable LVM detection

 rd.lvm.vg=<volume group name>

 only activate all logical volumes in the the volume groups with the

 given name. rd.lvm.vg can be specified multiple times on the kernel

 command line.

 rd.lvm.lv=<volume group name>/<logical volume name>

 only activate the logical volumes with the given name. rd.lvm.lv

 can be specified multiple times on the kernel command line.

 rd.lvm.conf=0 Page 7/34

 remove any /etc/lvm/lvm.conf, which may exist in the initramfs

 crypto LUKS

 rd.luks=0

 disable crypto LUKS detection

 rd.luks.uuid=<luks uuid>

 only activate the LUKS partitions with the given UUID. Any "luks-"

 of the LUKS UUID is removed before comparing to <luks uuid>. The

 comparisons also matches, if <luks uuid> is only the beginning of

 the LUKS UUID, so you don?t have to specify the full UUID. This

 parameter can be specified multiple times. <luks uuid> may be

 prefixed by the keyword keysource:, see rd.luks.key below.

 rd.luks.allow-discards=<luks uuid>

 Allow using of discards (TRIM) requests for LUKS partitions with

 the given UUID. Any "luks-" of the LUKS UUID is removed before

 comparing to <luks uuid>. The comparisons also matches, if <luks

 uuid> is only the beginning of the LUKS UUID, so you don?t have to

 specify the full UUID. This parameter can be specified multiple

 times.

 rd.luks.allow-discards

 Allow using of discards (TRIM) requests on all LUKS partitions.

 rd.luks.crypttab=0

 do not check, if LUKS partition is in /etc/crypttab

 rd.luks.timeout=<seconds>

 specify how long dracut should wait when waiting for the user to

 enter the password. This avoid blocking the boot if no password is

 entered. It does not apply to luks key. The default is 0, which

 means forever.

 crypto LUKS - key on removable device support

 NB: If systemd is included in the dracut initrd, dracut?s built in

 removable device keying support won?t work. systemd will prompt for a

 password from the console even if you?ve supplied rd.luks.key. You may

 be able to use standard systemd fstab(5) syntax to get the same effect.

 If you do need rd.luks.key to work, you will have to exclude the Page 8/34

 "systemd" dracut module and any modules that depend on it. See

 dracut.conf(5) and https://bugzilla.redhat.com/show_bug.cgi?id=905683

 for more information.

 rd.luks.key=<keypath>[:<keydev>[:<luksdev>]]

 <keypath> is the pathname of a key file, relative to the root of

 the filesystem on some device. It?s REQUIRED. When <keypath> ends

 with .gpg it?s considered to be key encrypted symmetrically with

 GPG. You will be prompted for the GPG password on boot. GPG support

 comes with the crypt-gpg module, which needs to be added

 explicitly.

 <keydev> identifies the device on which the key file resides. It

 may be the kernel name of the device (should start with "/dev/"), a

 UUID (prefixed with "UUID=") or a label (prefix with "LABEL="). You

 don?t have to specify a full UUID. Just its beginning will suffice,

 even if its ambiguous. All matching devices will be probed. This

 parameter is recommended, but not required. If it?s not present,

 all block devices will be probed, which may significantly increase

 boot time.

 If <luksdev> is given, the specified key will only be used for the

 specified LUKS device. Possible values are the same as for

 <keydev>. Unless you have several LUKS devices, you don?t have to

 specify this parameter. The simplest usage is:

 Example.

 rd.luks.key=/foo/bar.key

 As you see, you can skip colons in such a case.

 Note

 Your LUKS partition must match your key file.

 dracut provides keys to cryptsetup with -d (an older alias for

 --key-file). This uses the entire binary content of the key file as

 part of the secret. If you pipe a password into cryptsetup without

 -d or --key-file, it will be treated as text user input, and only

 characters before the first newline will be used. Therefore, when

 you?re creating an encrypted partition for dracut to mount, and you Page 9/34

 pipe a key into cryptsetup luksFormat,you must use -d -.

 Here is an example for a key encrypted with GPG (warning:

 --batch-mode will overwrite the device without asking for

 confirmation):

 gpg --quiet --decrypt rootkey.gpg | \

 cryptsetup --batch-mode --key-file - \

 luksFormat /dev/sda47

 If you use unencrypted key files, just use the key file pathname

 instead of the standard input. For a random key with 256 bits of

 entropy, you might use:

 head -32c /dev/urandom > rootkey.key

 cryptsetup --batch-mode --key-file rootkey.key \

 luksFormat /dev/sda47

 You can also use regular key files on an encrypted keydev.

 Compared to using GPG encrypted keyfiles on an unencrypted device

 this provides the following advantages:

 ? you can unlock your disk(s) using multiple passphrases

 ? better security by not loosing the key stretching mechanism

 To use an encrypted keydev you must ensure that it becomes

 available by using the keyword keysource, e.g.

 rd.luks.uuid=keysource:aaaa aaaa being the uuid of the encrypted

 keydev.

 Example:

 Lets assume you have three disks A, B and C with the uuids aaaa,

 bbbb and cccc. You want to unlock A and B using keyfile keyfile.

 The unlocked volumes be A', B' and C' with the uuids AAAA, BBBB and

 CCCC. keyfile is saved on C' as /keyfile.

 One luks keyslot of each A, B and C is setup with a passphrase.

 Another luks keyslot of each A and B is setup with keyfile.

 To boot this configuration you could use:

 rd.luks.uuid=aaaa

 rd.luks.uuid=bbbb

 rd.luks.uuid=keysource:cccc Page 10/34

 rd.luks.key=/keyfile:UUID=CCCC

 Dracut asks for the passphrase for C and uses the keyfile to unlock

 A and B. If getting the passphrase for C fails it falls back to

 asking for the passphrases for A and B.

 If you want C' to stay unlocked, specify a luks name for it, e.g.

 rd.luks.name=cccc=mykeys, otherwise it gets closed when not needed

 anymore.

 rd.luks.key.tout=0

 specify how many times dracut will try to read the keys specified

 in in rd.luk.key. This gives a chance to the removable device

 containing the key to initialise.

 MD RAID

 rd.md=0

 disable MD RAID detection

 rd.md.imsm=0

 disable MD RAID for imsm/isw raids, use DM RAID instead

 rd.md.ddf=0

 disable MD RAID for SNIA ddf raids, use DM RAID instead

 rd.md.conf=0

 ignore mdadm.conf included in initramfs

 rd.md.waitclean=1

 wait for any resync, recovery, or reshape activity to finish before

 continuing

 rd.md.uuid=<md raid uuid>

 only activate the raid sets with the given UUID. This parameter can

 be specified multiple times.

 DM RAID

 rd.dm=0

 disable DM RAID detection

 rd.dm.uuid=<dm raid uuid>

 only activate the raid sets with the given UUID. This parameter can

 be specified multiple times.

 MULTIPATH Page 11/34

 rd.multipath=0

 disable multipath detection

 rd.multipath=default

 use default multipath settings

 FIPS

 rd.fips

 enable FIPS

 boot=<boot device>

 specify the device, where /boot is located.

 Example.

 boot=/dev/sda1

 boot=/dev/disk/by-path/pci-0000:00:1f.1-scsi-0:0:1:0-part1

 boot=UUID=<uuid>

 boot=LABEL=<label>

 rd.fips.skipkernel

 skip checksum check of the kernel image. Useful, if the kernel

 image is not in a separate boot partition.

 Network

 Important

 It is recommended to either bind an interface to a MAC with the

 ifname argument, or to use the systemd-udevd predictable network

 interface names.

 Predictable network interface device names based on:

 ? firmware/bios-provided index numbers for on-board devices

 ? firmware-provided pci-express hotplug slot index number

 ? physical/geographical location of the hardware

 ? the interface?s MAC address

 See:

 http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames

 Two character prefixes based on the type of interface:

 en

 ethernet

 wl Page 12/34

 wlan

 ww

 wwan

 Type of names:

 o<index>

 on-board device index number

 s<slot>[f<function>][d<dev_id>]

 hotplug slot index number

 x<MAC>

 MAC address

 [P<domain>]p<bus>s<slot>[f<function>][d<dev_id>]

 PCI geographical location

 [P<domain>]p<bus>s<slot>[f<function>][u<port>][..][c<config>][i<interface>]

 USB port number chain

 All multi-function PCI devices will carry the [f<function>] number

 in the device name, including the function 0 device.

 When using PCI geography, The PCI domain is only prepended when it

 is not 0.

 For USB devices the full chain of port numbers of hubs is composed.

 If the name gets longer than the maximum number of 15 characters,

 the name is not exported. The usual USB configuration == 1 and

 interface == 0 values are suppressed.

 PCI ethernet card with firmware index "1"

 ? eno1

 PCI ethernet card in hotplug slot with firmware index number

 ? ens1

 PCI ethernet multi-function card with 2 ports

 ? enp2s0f0

 ? enp2s0f1

 PCI wlan card

 ? wlp3s0

 USB built-in 3G modem

 ? wwp0s29u1u4i6 Page 13/34

 USB Android phone

 ? enp0s29u1u2

 The following options are supported by the network-legacy dracut

 module. Other network modules might support a slightly different set of

 options; refer to the documentation of the specific network module in

 use. For NetworkManager, see nm-initrd-generator(8).

 ip={dhcp|on|any|dhcp6|auto6|either6|link6|single-dhcp}

 dhcp|on|any

 get ip from dhcp server from all interfaces. If netroot=dhcp,

 loop sequentially through all interfaces (eth0, eth1, ...) and

 use the first with a valid DHCP root-path.

 single-dhcp

 Send DHCP on all available interfaces in parallel, as opposed

 to one after another. After the first DHCP response is

 received, stop DHCP on all other interfaces. This gives the

 fastest boot time by using the IP on interface for which DHCP

 succeeded first during early boot. Caveat: Does not apply to

 Network Manager and to SUSE using wicked.

 auto6

 IPv6 autoconfiguration

 dhcp6

 IPv6 DHCP

 either6

 if auto6 fails, then dhcp6

 link6

 bring up interface for IPv6 link-local addressing

 ip=<interface>:{dhcp|on|any|dhcp6|auto6|link6}[:[<mtu>][:<macaddr>]]

 This parameter can be specified multiple times.

 dhcp|on|any|dhcp6

 get ip from dhcp server on a specific interface

 auto6

 do IPv6 autoconfiguration

 link6 Page 14/34

 bring up interface for IPv6 link local address

 <macaddr>

 optionally set <macaddr> on the <interface>. This cannot be

 used in conjunction with the ifname argument for the same

 <interface>.

ip=<client-IP>:[<peer>]:<gateway-IP>:<netmask>:<client_hostname>:<interface>:{none|off|dhcp|on|any|dhcp6|auto6|ibft}[:[<

mtu>][:<macaddr>]]

 explicit network configuration. If you want do define a IPv6

 address, put it in brackets (e.g. [2001:DB8::1]). This parameter

 can be specified multiple times. <peer> is optional and is the

 address of the remote endpoint for pointopoint interfaces and it

 may be followed by a slash and a decimal number, encoding the

 network prefix length.

 <macaddr>

 optionally set <macaddr> on the <interface>. This cannot be

 used in conjunction with the ifname argument for the same

 <interface>.

ip=<client-IP>:[<peer>]:<gateway-IP>:<netmask>:<client_hostname>:<interface>:{none|off|dhcp|on|any|dhcp6|auto6|ibft}[:[<

dns1>][:<dns2>]]

 explicit network configuration. If you want do define a IPv6

 address, put it in brackets (e.g. [2001:DB8::1]). This parameter

 can be specified multiple times. <peer> is optional and is the

 address of the remote endpoint for pointopoint interfaces and it

 may be followed by a slash and a decimal number, encoding the

 network prefix length.

 ifname=<interface>:<MAC>

 Assign network device name <interface> (i.e. "bootnet") to the NIC

 with MAC <MAC>.

 Warning

 Do not use the default kernel naming scheme for the interface

 name, as it can conflict with the kernel names. So, don?t use Page 15/34

 "eth[0-9]+" for the interface name. Better name it "bootnet" or

 "bluesocket".

 rd.route=<net>/<netmask>:<gateway>[:<interface>]

 Add a static route with route options, which are separated by a

 colon. IPv6 addresses have to be put in brackets.

 Example.

 rd.route=192.168.200.0/24:192.168.100.222:ens10

 rd.route=192.168.200.0/24:192.168.100.222

 rd.route=192.168.200.0/24::ens10

 rd.route=[2001:DB8:3::/8]:[2001:DB8:2::1]:ens10

 bootdev=<interface>

 specify network interface to use routing and netroot information

 from. Required if multiple ip= lines are used.

 BOOTIF=<MAC>

 specify network interface to use routing and netroot information

 from.

 rd.bootif=0

 Disable BOOTIF parsing, which is provided by PXE

 nameserver=<IP> [nameserver=<IP> ...]

 specify nameserver(s) to use

 rd.peerdns=0

 Disable DNS setting of DHCP parameters.

 biosdevname=0

 boolean, turn off biosdevname network interface renaming

 rd.neednet=1

 boolean, bring up network even without netroot set

 vlan=<vlanname>:<phydevice>

 Setup vlan device named <vlanname> on <phydevice>. We support the

 four styles of vlan names: VLAN_PLUS_VID (vlan0005),

 VLAN_PLUS_VID_NO_PAD (vlan5), DEV_PLUS_VID (eth0.0005),

 DEV_PLUS_VID_NO_PAD (eth0.5)

 bond=<bondname>[:<bondslaves>:[:<options>[:<mtu>]]]

 Setup bonding device <bondname> on top of <bondslaves>. Page 16/34

 <bondslaves> is a comma-separated list of physical (ethernet)

 interfaces. <options> is a comma-separated list on bonding options

 (modinfo bonding for details) in format compatible with

 initscripts. If <options> includes multi-valued arp_ip_target

 option, then its values should be separated by semicolon. if the

 mtu is specified, it will be set on the bond master. Bond without

 parameters assumes bond=bond0:eth0,eth1:mode=balance-rr

 team=<teammaster>:<teamslaves>[:<teamrunner>]

 Setup team device <teammaster> on top of <teamslaves>. <teamslaves>

 is a comma-separated list of physical (ethernet) interfaces.

 <teamrunner> is the runner type to be used (see teamd.conf(5));

 defaults to activebackup. Team without parameters assumes

 team=team0:eth0,eth1:activebackup

 bridge=<bridgename>:<ethnames>

 Setup bridge <bridgename> with <ethnames>. <ethnames> is a

 comma-separated list of physical (ethernet) interfaces. Bridge

 without parameters assumes bridge=br0:eth0

 NFS

 root=[<server-ip>:]<root-dir>[:<nfs-options>]

 mount nfs share from <server-ip>:/<root-dir>, if no server-ip is

 given, use dhcp next_server. If server-ip is an IPv6 address it has

 to be put in brackets, e.g. [2001:DB8::1]. NFS options can be

 appended with the prefix ":" or "," and are separated by ",".

 root=nfs:[<server-ip>:]<root-dir>[:<nfs-options>],

 root=nfs4:[<server-ip>:]<root-dir>[:<nfs-options>], root={dhcp|dhcp6}

 netroot=dhcp alone directs initrd to look at the DHCP root-path

 where NFS options can be specified.

 Example.

 root-path=<server-ip>:<root-dir>[,<nfs-options>]

 root-path=nfs:<server-ip>:<root-dir>[,<nfs-options>]

 root-path=nfs4:<server-ip>:<root-dir>[,<nfs-options>]

 root=/dev/nfs nfsroot=[<server-ip>:]<root-dir>[:<nfs-options>]

 Deprecated! kernel Documentation_/filesystems/nfsroot.txt_ defines Page 17/34

 this method. This is supported by dracut, but not recommended.

 rd.nfs.domain=<NFSv4 domain name>

 Set the NFSv4 domain name. Will override the settings in

 /etc/idmap.conf.

 rd.net.dhcp.retry=<cnt>

 If this option is set, dracut will try to connect via dhcp <cnt>

 times before failing. Default is 1.

 rd.net.timeout.dhcp=<arg>

 If this option is set, dhclient is called with "-timeout <arg>".

 rd.net.timeout.iflink=<seconds>

 Wait <seconds> until link shows up. Default is 60 seconds.

 rd.net.timeout.ifup=<seconds>

 Wait <seconds> until link has state "UP". Default is 20 seconds.

 rd.net.timeout.route=<seconds>

 Wait <seconds> until route shows up. Default is 20 seconds.

 rd.net.timeout.ipv6dad=<seconds>

 Wait <seconds> until IPv6 DAD is finished. Default is 50 seconds.

 rd.net.timeout.ipv6auto=<seconds>

 Wait <seconds> until IPv6 automatic addresses are assigned. Default

 is 40 seconds.

 rd.net.timeout.carrier=<seconds>

 Wait <seconds> until carrier is recognized. Default is 10 seconds.

 CIFS

 root=cifs://[<username>[:<password>]@]<server-ip>:<root-dir>

 mount cifs share from <server-ip>:/<root-dir>, if no server-ip is

 given, use dhcp next_server. if server-ip is an IPv6 address it has

 to be put in brackets, e.g. [2001:DB8::1]. If a username or

 password are not specified as part of the root, then they must be

 passed on the command line through cifsuser/cifspass.

 Warning

 Passwords specified on the kernel command line are visible for

 all users via the file /proc/cmdline and via dmesg or can be

 sniffed on the network, when using DHCP with DHCP root-path. Page 18/34

 cifsuser=<username>

 Set the cifs username, if not specified as part of the root.

 cifspass=<password>

 Set the cifs password, if not specified as part of the root.

 Warning

 Passwords specified on the kernel command line are visible for

 all users via the file /proc/cmdline and via dmesg or can be

 sniffed on the network, when using DHCP with DHCP root-path.

 iSCSI

root=iscsi:[<username>:<password>[:<reverse>:<password>]@][<servername>]:[<protocol>]:[<port>][:[<iscsi_iface_name>]

:[<netdev_name>]]:[<LUN>]:<targetname>

 protocol defaults to "6", LUN defaults to "0". If the "servername"

 field is provided by BOOTP or DHCP, then that field is used in

 conjunction with other associated fields to contact the boot server

 in the Boot stage. However, if the "servername" field is not

 provided, then the "targetname" field is then used in the Discovery

 Service stage in conjunction with other associated fields. See

 rfc4173[1].

 Warning

 Passwords specified on the kernel command line are visible for

 all users via the file /proc/cmdline and via dmesg or can be

 sniffed on the network, when using DHCP with DHCP root-path.

 Example.

 root=iscsi:192.168.50.1::::iqn.2009-06.dracut:target0

 If servername is an IPv6 address, it has to be put in brackets:

 Example.

 root=iscsi:[2001:DB8::1]::::iqn.2009-06.dracut:target0

 root=???

netroot=iscsi:[<username>:<password>[:<reverse>:<password>]@][<servername>]:[<protocol>]:[<port>][:[<iscsi_iface_nam

e>]:[<netdev_name>]]:[<LUN>]:<targetname>

 ... Page 19/34

 multiple netroot options allow setting up multiple iscsi disks:

 Example.

 root=UUID=12424547

 netroot=iscsi:192.168.50.1::::iqn.2009-06.dracut:target0

 netroot=iscsi:192.168.50.1::::iqn.2009-06.dracut:target1

 If servername is an IPv6 address, it has to be put in brackets:

 Example.

 netroot=iscsi:[2001:DB8::1]::::iqn.2009-06.dracut:target0

 Warning

 Passwords specified on the kernel command line are visible for

 all users via the file /proc/cmdline and via dmesg or can be

 sniffed on the network, when using DHCP with DHCP root-path.

 You may want to use rd.iscsi.firmware.

 root=??? rd.iscsi.initiator=<initiator> rd.iscsi.target.name=<target

 name> rd.iscsi.target.ip=<target ip> rd.iscsi.target.port=<target port>

 rd.iscsi.target.group=<target group> rd.iscsi.username=<username>

 rd.iscsi.password=<password> rd.iscsi.in.username=<in username>

 rd.iscsi.in.password=<in password>

 manually specify all iscsistart parameter (see iscsistart --help)

 Warning

 Passwords specified on the kernel command line are visible for

 all users via the file /proc/cmdline and via dmesg or can be

 sniffed on the network, when using DHCP with DHCP root-path.

 You may want to use rd.iscsi.firmware.

 root=??? netroot=iscsi rd.iscsi.firmware=1

 will read the iscsi parameter from the BIOS firmware

 rd.iscsi.login_retry_max=<num>

 maximum number of login retries

 rd.iscsi.param=<param>

 <param> will be passed as "--param <param>" to iscsistart. This

 parameter can be specified multiple times.

 Example.

 "netroot=iscsi rd.iscsi.firmware=1 rd.iscsi.param=node.session.timeo.replacement_timeout=30" Page 20/34

 will result in

 iscsistart -b --param node.session.timeo.replacement_timeout=30

 rd.iscsi.ibft rd.iscsi.ibft=1: Turn on iBFT autoconfiguration for the

 interfaces

 rd.iscsi.mp rd.iscsi.mp=1: Configure all iBFT interfaces, not only used

 for booting (multipath)

 rd.iscsi.waitnet=0: Turn off waiting for all interfaces to be up before

 trying to login to the iSCSI targets.

 rd.iscsi.testroute=0: Turn off checking, if the route to the iSCSI

 target IP is possible before trying to login.

 FCoE

 rd.fcoe=0

 disable FCoE and lldpad

 fcoe=<edd|interface|MAC>:{dcb|nodcb}:{fabric|vn2vn}

 Try to connect to a FCoE SAN through the NIC specified by

 <interface> or <MAC> or EDD settings. The second argument specifies

 if DCB should be used. The optional third argument specifies

 whether fabric or VN2VN mode should be used. This parameter can be

 specified multiple times.

 Note

 letters in the MAC-address must be lowercase!

 NVMf

 rd.nonvmf=0

 Disable NVMf

 rd.nvmf.hostnqn=<hostNQN>

 NVMe host NQN to use

 rd.nvmf.hostid=<hostID>

 NVMe host id to use

 rd.nvmf.discover={rdma|fc|tcp},<traddr>,[<host_traddr>],[<trsvcid>]

 Discover and connect to a NVMe-over-Fabric controller specified by

 <traddr> and the optionally <host_traddr> or <trsvcid>. The first

 argument specifies the transport to use; currently only rdma, fc,

 or tcp are supported. The <traddr> parameter can be set to auto to Page 21/34

 select autodiscovery; in that case all other parameters are

 ignored. This parameter can be specified multiple times.

 NBD

 root=???

 netroot=nbd:<server>:<port/exportname>[:<fstype>[:<mountopts>[:<nbdopts>]]]

 mount nbd share from <server>.

 NOTE: If "exportname" instead of "port" is given the standard port

 is used. Newer versions of nbd are only supported with

 "exportname".

 root=/dev/root netroot=dhcp with dhcp

 root-path=nbd:<server>:<port/exportname>[:<fstype>[:<mountopts>[:<nbdopts>]]]

 netroot=dhcp alone directs initrd to look at the DHCP root-path

 where NBD options can be specified. This syntax is only usable in

 cases where you are directly mounting the volume as the rootfs.

 NOTE: If "exportname" instead of "port" is given the standard port

 is used. Newer versions of nbd are only supported with

 "exportname".

 VIRTIOFS

 root=virtiofs:<mount-tag>

 mount virtiofs share using the tag <mount-tag>. The tag name is

 arbitrary and must match the tag given in the qemu -device command.

 rootfstype=virtiofs root=<mount-tag>

 mount virtiofs share using the tag <mount-tag>. The tag name is

 arbitrary and must match the tag given in the qemu -device command.

 Both formats are supported by the virtiofs dracut module. See

 https://gitlab.com/virtio-fs/virtiofsd for more information.

 Example.

 root=virtiofs:host rw

 DASD

 rd.dasd=....

 same syntax as the kernel module parameter (s390 only)

 ZFCP

 rd.zfcp=<zfcp adaptor device bus ID>,<WWPN>,<FCPLUN> Page 22/34

 rd.zfcp can be specified multiple times on the kernel command line.

 rd.zfcp=<zfcp adaptor device bus ID>

 If NPIV is enabled and the allow_lun_scan parameter to the zfcp

 module is set to Y then the zfcp adaptor will be initiating a scan

 internally and the <WWPN> and <FCPLUN> parameters can be omitted.

 Example.

 rd.zfcp=0.0.4000,0x5005076300C213e9,0x5022000000000000

 rd.zfcp=0.0.4000

 rd.zfcp.conf=0

 ignore zfcp.conf included in the initramfs

 ZNET

 rd.znet=<nettype>,<subchannels>,<options>

 The whole parameter is appended to /etc/ccw.conf, which is used on

 RHEL/Fedora with ccw_init, which is called from udev for certain

 devices on z-series. rd.znet can be specified multiple times on the

 kernel command line.

 rd.znet_ifname=<ifname>:<subchannels>

 Assign network device name <interface> (i.e. "bootnet") to the NIC

 corresponds to the subchannels. This is useful when dracut?s

 default "ifname=" doesn?t work due to device having a changing MAC

 address.

 Example.

 rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=1,portname=foo

 rd.znet=ctc,0.0.0600,0.0.0601,protocol=bar

 Booting live images

 Dracut offers multiple options for live booted images:

 SquashFS with read-only filesystem image

 The system will boot with a read-only filesystem from the SquashFS

 and apply a writable Device-mapper snapshot or an OverlayFS overlay

 mount for the read-only base filesystem. This method ensures a

 relatively fast boot and lower RAM usage. Users must be careful to

 avoid writing too many blocks to a snapshot volume. Once the blocks

 of the snapshot overlay are exhausted, the root filesystem becomes Page 23/34

 read-only and may cause application failures. The snapshot overlay

 file is marked Overflow, and a difficult recovery is required to

 repair and enlarge the overlay offline. Non-persistent overlays are

 sparse files in RAM that only consume content space as required

 blocks are allocated. They default to an apparent size of 32 GiB in

 RAM. The size can be adjusted with the rd.live.overlay.size= kernel

 command line option.

 The filesystem structure is traditionally expected to be:

 squashfs.img | SquashFS from LiveCD .iso

 !(mount)

 /LiveOS

 |- rootfs.img | Filesystem image to mount read-only

 !(mount)

 /bin | Live filesystem

 /boot |

 /dev |

 ... |

 For OverlayFS mount overlays, the filesystem structure may also be

 a direct compression of the root filesystem:

 squashfs.img | SquashFS from LiveCD .iso

 !(mount)

 /bin | Live filesystem

 /boot |

 /dev |

 ... |

 Dracut uses one of the overlay methods of live booting by default.

 No additional command line options are required other than

 root=live:<URL> to specify the location of your squashed

 filesystem.

 ? The compressed SquashFS image can be copied during boot to RAM

 at /run/initramfs/squashed.img by using the rd.live.ram=1

 option.

 ? A device with a persistent overlay can be booted read-only by Page 24/34

 using the rd.live.overlay.readonly option on the kernel command

 line. This will either cause a temporary, writable overlay to

 be stacked over a read-only snapshot of the root filesystem or

 the OverlayFS mount will use an additional lower layer with the

 root filesystem.

 Uncompressed live filesystem image

 When the live system was installed with the --skipcompress option

 of the livecd-iso-to-disk installation script for Live USB devices,

 the root filesystem image, rootfs.img, is expanded on installation

 and no SquashFS is involved during boot.

 ? If rd.live.ram=1 is used in this situation, the full,

 uncompressed root filesystem is copied during boot to

 /run/initramfs/rootfs.img in the /run tmpfs.

 ? If rd.live.overlay=none is provided as a kernel command line

 option, a writable, linear Device-mapper target is created on

 boot with no overlay.

 Writable filesystem image

 The system will retrieve a compressed filesystem image, extract it

 to /run/initramfs/fsimg/rootfs.img, connect it to a loop device,

 create a writable, linear Device-mapper target at

 /dev/mapper/live-rw, and mount that as a writable volume at /. More

 RAM is required during boot but the live filesystem is easier to

 manage if it becomes full. Users can make a filesystem image of any

 size and that size will be maintained when the system boots. There

 is no persistence of root filesystem changes between boots with

 this option.

 The filesystem structure is expected to be:

 rootfs.tgz | Compressed tarball containing filesystem image

 !(unpack)

 /rootfs.img | Filesystem image at /run/initramfs/fsimg/

 !(mount)

 /bin | Live filesystem

 /boot | Page 25/34

 /dev |

 ... |

 To use this boot option, ensure that rd.writable.fsimg=1 is in your

 kernel command line and add the root=live:<URL> to specify the

 location of your compressed filesystem image tarball or SquashFS

 image.

 rd.writable.fsimg=1

 Enables writable filesystem support. The system will boot with a

 fully writable (but non-persistent) filesystem without snapshots

 (see notes above about available live boot options). You can use

 the rootflags option to set mount options for the live filesystem

 as well (see documentation about rootflags in the Standard section

 above). This implies that the whole image is copied to RAM before

 the boot continues.

 Note

 There must be enough free RAM available to hold the complete

 image.

 This method is very suitable for diskless boots.

 root=live:<url>

 Boots a live image retrieved from <url>. Requires the dracut

 livenet module. Valid handlers: http, https, ftp, torrent, tftp.

 Examples.

 root=live:http://example.com/liveboot.img

 root=live:ftp://ftp.example.com/liveboot.img

 root=live:torrent://example.com/liveboot.img.torrent

 rd.live.debug=1

 Enables debug output from the live boot process.

 rd.live.dir=<path>

 Specifies the directory within the boot device where the

 squashfs.img or rootfs.img can be found. By default, this is

 /LiveOS.

 rd.live.squashimg=<filename of SquashFS image>

 Specifies the filename for a SquashFS image of the root filesystem. Page 26/34

 By default, this is squashfs.img.

 rd.live.ram=1

 Copy the complete image to RAM and use this for booting. This is

 useful when the image resides on, e.g., a DVD which needs to be

 ejected later on.

 rd.live.overlay={<devspec>[:{<pathspec>|auto}]|none}

 Manage the usage of a permanent overlay.

 ? <devspec> specifies the path to a device with a mountable

 filesystem.

 ? <pathspec> is the path to a file within that filesystem, which

 shall be used to persist the changes made to the device

 specified by the root=live:<url> option.

 The default pathspec, when auto or no :<pathspec> is given, is

 /<rd.live.dir>/overlay-<label>-<uuid>, where <label> is the

 device LABEL, and <uuid> is the device UUID. * none (the word

 itself) specifies that no overlay will be used, such as when an

 uncompressed, writable live root filesystem is available.

 If a persistent overlay is detected at the standard LiveOS

 path, the overlay & overlay type detected, whether

 Device-mapper or OverlayFS, will be used.

 Examples.

 rd.live.overlay=/dev/sdb1:persistent-overlay.img

 rd.live.overlay=UUID=99440c1f-8daa-41bf-b965-b7240a8996f4

 rd.live.overlay.cowfs=[btrfs|ext4|xfs]

 Specifies the filesystem to use when formatting the overlay

 partition. The default is ext4.

 rd.live.overlay.size=<size_MiB>

 Specifies a non-persistent Device-mapper overlay size in MiB. The

 default is 32768.

 rd.live.overlay.readonly=1

 This is used to boot with a normally read-write persistent overlay

 in a read-only mode. With this option, either an additional,

 non-persistent, writable snapshot overlay will be stacked over a Page 27/34

 read-only snapshot, /dev/mapper/live-ro, of the base filesystem

 with the persistent overlay, or a read-only loop device, in the

 case of a writable rootfs.img, or an OverlayFS mount will use the

 persistent overlay directory linked at /run/overlayfs-r as an

 additional lower layer along with the base root filesystem and

 apply a transient, writable upper directory overlay, in order to

 complete the booted root filesystem.

 rd.live.overlay.reset=1

 Specifies that a persistent overlay should be reset on boot. All

 previous root filesystem changes are vacated by this action.

 rd.live.overlay.thin=1

 Enables the usage of thin snapshots instead of classic dm

 snapshots. The advantage of thin snapshots is that they support

 discards, and will free blocks that are not claimed by the

 filesystem. In this use case, this means that memory is given back

 to the kernel when the filesystem does not claim it anymore.

 rd.live.overlay.overlayfs=1

 Enables the use of the OverlayFS kernel module, if available, to

 provide a copy-on-write union directory for the root filesystem.

 OverlayFS overlays are directories of the files that have changed

 on the read-only base (lower) filesystem. The root filesystem is

 provided through a special overlay type mount that merges the lower

 and upper directories. If an OverlayFS upper directory is not

 present on the boot device, a tmpfs directory will be created at

 /run/overlayfs to provide temporary storage. Persistent storage can

 be provided on vfat or msdos formatted devices by supplying the

 OverlayFS upper directory within an embedded filesystem that

 supports the creation of trusted.* extended attributes and provides

 a valid d_type in readdir responses, such as with ext4 and xfs. On

 non-vfat-formatted devices, a persistent OverlayFS overlay can

 extend the available root filesystem storage up to the capacity of

 the LiveOS disk device.

 If a persistent overlay is detected at the standard LiveOS path, Page 28/34

 the overlay & overlay type detected, whether OverlayFS or

 Device-mapper, will be used.

 The rd.live.overlay.readonly option, which allows a persistent

 overlayfs to be mounted read-only through a higher level transient

 overlay directory, has been implemented through the multiple lower

 layers feature of OverlayFS.

 ZIPL

 rd.zipl=<path to blockdevice>

 Update the dracut commandline with the values found in the

 dracut-cmdline.conf file on the given device. The values are merged

 into the existing commandline values and the udev events are

 regenerated.

 Example.

 rd.zipl=UUID=0fb28157-99e3-4395-adef-da3f7d44835a

 CIO_IGNORE

 rd.cio_accept=<device-ids>

 Remove the devices listed in <device-ids> from the default

 cio_ignore kernel command-line settings. <device-ids> is a list of

 comma-separated CCW device ids. The default for this value is taken

 from the /boot/zipl/active_devices.txt file.

 Example.

 rd.cio_accept=0.0.0180,0.0.0800,0.0.0801,0.0.0802

 Plymouth Boot Splash

 plymouth.enable=0

 disable the plymouth bootsplash completely.

 rd.plymouth=0

 disable the plymouth bootsplash only for the initramfs.

 Kernel keys

 masterkey=<kernel master key path name>

 Set the path name of the kernel master key.

 Example.

 masterkey=/etc/keys/kmk-trusted.blob

 masterkeytype=<kernel master key type> Page 29/34

 Set the type of the kernel master key.

 Example.

 masterkeytype=trusted

 evmkey=<EVM HMAC key path name>

 Set the path name of the EVM HMAC key.

 Example.

 evmkey=/etc/keys/evm-trusted.blob

 evmx509=<EVM X.509 cert path name>

 Set the path name of the EVM X.509 certificate.

 Example.

 evmx509=/etc/keys/x509_evm.der

 ecryptfskey=<eCryptfs key path name>

 Set the path name of the eCryptfs key.

 Example.

 ecryptfskey=/etc/keys/ecryptfs-trusted.blob

 Deprecated, renamed Options

 Here is a list of options, which were used in dracut prior to version

 008, and their new replacement.

 rdbreak

 rd.break

 rd.ccw

 rd.znet

 rd_CCW

 rd.znet

 rd_DASD_MOD

 rd.dasd

 rd_DASD

 rd.dasd

 rdinitdebug rdnetdebug

 rd.debug

 rd_NO_DM

 rd.dm=0

 rd_DM_UUID Page 30/34

 rd.dm.uuid

 rdblacklist

 rd.driver.blacklist

 rdinsmodpost

 rd.driver.post

 rdloaddriver

 rd.driver.pre

 rd_NO_FSTAB

 rd.fstab=0

 rdinfo

 rd.info

 check

 rd.live.check

 rdlivedebug

 rd.live.debug

 live_dir

 rd.live.dir

 liveimg

 rd.live.image

 overlay

 rd.live.overlay

 readonly_overlay

 rd.live.overlay.readonly

 reset_overlay

 rd.live.overlay.reset

 live_ram

 rd.live.ram

 rd_NO_CRYPTTAB

 rd.luks.crypttab=0

 rd_LUKS_KEYDEV_UUID

 rd.luks.keydev.uuid

 rd_LUKS_KEYPATH

 rd.luks.keypath Page 31/34

 rd_NO_LUKS

 rd.luks=0

 rd_LUKS_UUID

 rd.luks.uuid

 rd_NO_LVMCONF

 rd.lvm.conf

 rd_LVM_LV

 rd.lvm.lv

 rd_NO_LVM

 rd.lvm=0

 rd_LVM_SNAPSHOT

 rd.lvm.snapshot

 rd_LVM_SNAPSIZE

 rd.lvm.snapsize

 rd_LVM_VG

 rd.lvm.vg

 rd_NO_MDADMCONF

 rd.md.conf=0

 rd_NO_MDIMSM

 rd.md.imsm=0

 rd_NO_MD

 rd.md=0

 rd_MD_UUID

 rd.md.uuid

 rd_NO_MULTIPATH: rd.multipath=0

 rd_NFS_DOMAIN

 rd.nfs.domain

 iscsi_initiator

 rd.iscsi.initiator

 iscsi_target_name

 rd.iscsi.target.name

 iscsi_target_ip

 rd.iscsi.target.ip Page 32/34

 iscsi_target_port

 rd.iscsi.target.port

 iscsi_target_group

 rd.iscsi.target.group

 iscsi_username

 rd.iscsi.username

 iscsi_password

 rd.iscsi.password

 iscsi_in_username

 rd.iscsi.in.username

 iscsi_in_password

 rd.iscsi.in.password

 iscsi_firmware

 rd.iscsi.firmware=0

 rd_NO_PLYMOUTH

 rd.plymouth=0

 rd_retry

 rd.retry

 rdshell

 rd.shell

 rd_NO_SPLASH

 rd.splash

 rdudevdebug

 rd.udev.debug

 rdudevinfo

 rd.udev.info

 rd_NO_ZFCPCONF

 rd.zfcp.conf=0

 rd_ZFCP

 rd.zfcp

 rd_ZNET

 rd.znet

 KEYMAP Page 33/34

 vconsole.keymap

 KEYTABLE

 vconsole.keymap

 SYSFONT

 vconsole.font

 CONTRANS

 vconsole.font.map

 UNIMAP

 vconsole.font.unimap

 UNICODE

 vconsole.unicode

 EXT_KEYMAP

 vconsole.keymap.ext

 Configuration in the Initramfs

 /etc/conf.d/

 Any files found in /etc/conf.d/ will be sourced in the initramfs to

 set initial values. Command line options will override these values

 set in the configuration files.

 /etc/cmdline

 Can contain additional command line options. Deprecated, better use

 /etc/cmdline.d/*.conf.

 /etc/cmdline.d/*.conf

 Can contain additional command line options.

AUTHOR

 Harald Hoyer

SEE ALSO

 dracut(8) dracut.conf(5)

NOTES

 1. rfc4173

 http://tools.ietf.org/html/rfc4173#section-5

dracut c130ec7 02/14/2023 DRACUT.CMDLINE(7)

Page 34/34

