
Rocky Enterprise Linux 9.2 Manual Pages on command 'csh.1'

$ man csh.1

TCSH(1) General Commands Manual TCSH(1)

NAME

 tcsh - C shell with file name completion and command line editing

SYNOPSIS

 tcsh [-bcdefFimnqstvVxX] [-Dname[=value]] [arg ...]

 tcsh -l

DESCRIPTION

 tcsh is an enhanced but completely compatible version of the Berkeley

 UNIX C shell, csh(1). It is a command language interpreter usable both

 as an interactive login shell and a shell script command processor. It

 includes a command-line editor (see The command-line editor), program?

 mable word completion (see Completion and listing), spelling correction

 (see Spelling correction), a history mechanism (see History substitu?

 tion), job control (see Jobs) and a C-like syntax. The NEW FEATURES

 section describes major enhancements of tcsh over csh(1). Throughout

 this manual, features of tcsh not found in most csh(1) implementations

 (specifically, the 4.4BSD csh) are labeled with `(+)', and features

 which are present in csh(1) but not usually documented are labeled with Page 1/113

 `(u)'.

 Argument list processing

 If the first argument (argument 0) to the shell is `-' then it is a lo?

 gin shell. A login shell can be also specified by invoking the shell

 with the -l flag as the only argument.

 The rest of the flag arguments are interpreted as follows:

 -b Forces a ``break'' from option processing, causing any further

 shell arguments to be treated as non-option arguments. The remain?

 ing arguments will not be interpreted as shell options. This may

 be used to pass options to a shell script without confusion or pos?

 sible subterfuge. The shell will not run a set-user ID script

 without this option.

 -c Commands are read from the following argument (which must be

 present, and must be a single argument), stored in the command

 shell variable for reference, and executed. Any remaining argu?

 ments are placed in the argv shell variable.

 -d The shell loads the directory stack from ~/.cshdirs as described

 under Startup and shutdown, whether or not it is a login shell. (+)

 -Dname[=value]

 Sets the environment variable name to value. (Domain/OS only) (+)

 -e The shell exits if any invoked command terminates abnormally or

 yields a non-zero exit status.

 -f The shell does not load any resource or startup files, or perform

 any command hashing, and thus starts faster.

 -F The shell uses fork(2) instead of vfork(2) to spawn processes. (+)

 -i The shell is interactive and prompts for its top-level input, even

 if it appears to not be a terminal. Shells are interactive without

 this option if their inputs and outputs are terminals.

 -l The shell is a login shell. Applicable only if -l is the only flag

 specified.

 -m The shell loads ~/.tcshrc even if it does not belong to the effec?

 tive user. Newer versions of su(1) can pass -m to the shell. (+)

 -n The shell parses commands but does not execute them. This aids in Page 2/113

 debugging shell scripts.

 -q The shell accepts SIGQUIT (see Signal handling) and behaves when it

 is used under a debugger. Job control is disabled. (u)

 -s Command input is taken from the standard input.

 -t The shell reads and executes a single line of input. A `\' may be

 used to escape the newline at the end of this line and continue

 onto another line.

 -v Sets the verbose shell variable, so that command input is echoed

 after history substitution.

 -x Sets the echo shell variable, so that commands are echoed immedi?

 ately before execution.

 -V Sets the verbose shell variable even before executing ~/.tcshrc.

 -X Is to -x as -V is to -v.

 --help

 Print a help message on the standard output and exit. (+)

 --version

 Print the version/platform/compilation options on the standard out?

 put and exit. This information is also contained in the version

 shell variable. (+)

 After processing of flag arguments, if arguments remain but none of the

 -c, -i, -s, or -t options were given, the first argument is taken as

 the name of a file of commands, or ``script'', to be executed. The

 shell opens this file and saves its name for possible resubstitution by

 `$0'. Because many systems use either the standard version 6 or ver?

 sion 7 shells whose shell scripts are not compatible with this shell,

 the shell uses such a `standard' shell to execute a script whose first

 character is not a `#', i.e., that does not start with a comment.

 Remaining arguments are placed in the argv shell variable.

 Startup and shutdown

 A login shell begins by executing commands from the system files

 /etc/csh.cshrc and /etc/csh.login. It then executes commands from

 files in the user's home directory: first ~/.tcshrc (+) or, if ~/.tc?

 shrc is not found, ~/.cshrc, then the contents of ~/.history (or the Page 3/113

 value of the histfile shell variable) are loaded into memory, then

 ~/.login, and finally ~/.cshdirs (or the value of the dirsfile shell

 variable) (+). The shell may read /etc/csh.login before instead of af?

 ter /etc/csh.cshrc, and ~/.login before instead of after ~/.tcshrc or

 ~/.cshrc and ~/.history, if so compiled; see the version shell vari?

 able. (+)

 Non-login shells read only /etc/csh.cshrc and ~/.tcshrc or ~/.cshrc on

 startup.

 For examples of startup files, please consult http://tcshrc.source?

 forge.net.

 Commands like stty(1) and tset(1), which need be run only once per lo?

 gin, usually go in one's ~/.login file. Users who need to use the same

 set of files with both csh(1) and tcsh can have only a ~/.cshrc which

 checks for the existence of the tcsh shell variable (q.v.) before using

 tcsh-specific commands, or can have both a ~/.cshrc and a ~/.tcshrc

 which sources (see the builtin command) ~/.cshrc. The rest of this

 manual uses `~/.tcshrc' to mean `~/.tcshrc or, if ~/.tcshrc is not

 found, ~/.cshrc'.

 In the normal case, the shell begins reading commands from the termi?

 nal, prompting with `> '. (Processing of arguments and the use of the

 shell to process files containing command scripts are described later.)

 The shell repeatedly reads a line of command input, breaks it into

 words, places it on the command history list, parses it and executes

 each command in the line.

 One can log out by typing `^D' on an empty line, `logout' or `login' or

 via the shell's autologout mechanism (see the autologout shell vari?

 able). When a login shell terminates it sets the logout shell variable

 to `normal' or `automatic' as appropriate, then executes commands from

 the files /etc/csh.logout and ~/.logout. The shell may drop DTR on lo?

 gout if so compiled; see the version shell variable.

 The names of the system login and logout files vary from system to sys?

 tem for compatibility with different csh(1) variants; see FILES.

 Editing Page 4/113

 We first describe The command-line editor. The Completion and listing

 and Spelling correction sections describe two sets of functionality

 that are implemented as editor commands but which deserve their own

 treatment. Finally, Editor commands lists and describes the editor

 commands specific to the shell and their default bindings.

 The command-line editor (+)

 Command-line input can be edited using key sequences much like those

 used in emacs(1) or vi(1). The editor is active only when the edit

 shell variable is set, which it is by default in interactive shells.

 The bindkey builtin can display and change key bindings.

 emacs(1)-style key bindings are used by default (unless the shell was

 compiled otherwise; see the version shell variable), but bindkey can

 change the key bindings to vi(1)-style bindings en masse.

 The shell always binds the arrow keys (as defined in the TERMCAP envi?

 ronment variable) to

 down down-history

 up up-history

 left backward-char

 right forward-char

 unless doing so would alter another single-character binding. One can

 set the arrow key escape sequences to the empty string with settc to

 prevent these bindings. The ANSI/VT100 sequences for arrow keys are

 always bound.

 Other key bindings are, for the most part, what emacs(1) and vi(1)

 users would expect and can easily be displayed by bindkey, so there is

 no need to list them here. Likewise, bindkey can list the editor com?

 mands with a short description of each. Certain key bindings have dif?

 ferent behavior depending if emacs(1) or vi(1) style bindings are being

 used; see vimode for more information.

 Note that editor commands do not have the same notion of a ``word'' as

 does the shell. The editor delimits words with any non-alphanumeric

 characters not in the shell variable wordchars, while the shell recog?

 nizes only whitespace and some of the characters with special meanings Page 5/113

 to it, listed under Lexical structure.

 Completion and listing (+)

 The shell is often able to complete words when given a unique abbrevia?

 tion. Type part of a word (for example `ls /usr/lost') and hit the tab

 key to run the complete-word editor command. The shell completes the

 filename `/usr/lost' to `/usr/lost+found/', replacing the incomplete

 word with the complete word in the input buffer. (Note the terminal

 `/'; completion adds a `/' to the end of completed directories and a

 space to the end of other completed words, to speed typing and provide

 a visual indicator of successful completion. The addsuffix shell vari?

 able can be unset to prevent this.) If no match is found (perhaps

 `/usr/lost+found' doesn't exist), the terminal bell rings. If the word

 is already complete (perhaps there is a `/usr/lost' on your system, or

 perhaps you were thinking too far ahead and typed the whole thing) a

 `/' or space is added to the end if it isn't already there.

 Completion works anywhere in the line, not at just the end; completed

 text pushes the rest of the line to the right. Completion in the mid?

 dle of a word often results in leftover characters to the right of the

 cursor that need to be deleted.

 Commands and variables can be completed in much the same way. For ex?

 ample, typing `em[tab]' would complete `em' to `emacs' if emacs were

 the only command on your system beginning with `em'. Completion can

 find a command in any directory in path or if given a full pathname.

 Typing `echo $ar[tab]' would complete `$ar' to `$argv' if no other

 variable began with `ar'.

 The shell parses the input buffer to determine whether the word you

 want to complete should be completed as a filename, command or vari?

 able. The first word in the buffer and the first word following `;',

 `|', `|&', `&&' or `||' is considered to be a command. A word begin?

 ning with `$' is considered to be a variable. Anything else is a file?

 name. An empty line is `completed' as a filename.

 You can list the possible completions of a word at any time by typing

 `^D' to run the delete-char-or-list-or-eof editor command. The shell Page 6/113

 lists the possible completions using the ls-F builtin (q.v.) and re?

 prints the prompt and unfinished command line, for example:

 > ls /usr/l[^D]

 lbin/ lib/ local/ lost+found/

 > ls /usr/l

 If the autolist shell variable is set, the shell lists the remaining

 choices (if any) whenever completion fails:

 > set autolist

 > nm /usr/lib/libt[tab]

 libtermcap.a@ libtermlib.a@

 > nm /usr/lib/libterm

 If autolist is set to `ambiguous', choices are listed only when comple?

 tion fails and adds no new characters to the word being completed.

 A filename to be completed can contain variables, your own or others'

 home directories abbreviated with `~' (see Filename substitution) and

 directory stack entries abbreviated with `=' (see Directory stack sub?

 stitution). For example,

 > ls ~k[^D]

 kahn kas kellogg

 > ls ~ke[tab]

 > ls ~kellogg/

 or

 > set local = /usr/local

 > ls $lo[tab]

 > ls $local/[^D]

 bin/ etc/ lib/ man/ src/

 > ls $local/

 Note that variables can also be expanded explicitly with the expand-

 variables editor command.

 delete-char-or-list-or-eof lists at only the end of the line; in the

 middle of a line it deletes the character under the cursor and on an

 empty line it logs one out or, if ignoreeof is set, does nothing.

 `M-^D', bound to the editor command list-choices, lists completion pos? Page 7/113

 sibilities anywhere on a line, and list-choices (or any one of the re?

 lated editor commands that do or don't delete, list and/or log out,

 listed under delete-char-or-list-or-eof) can be bound to `^D' with the

 bindkey builtin command if so desired.

 The complete-word-fwd and complete-word-back editor commands (not bound

 to any keys by default) can be used to cycle up and down through the

 list of possible completions, replacing the current word with the next

 or previous word in the list.

 The shell variable fignore can be set to a list of suffixes to be ig?

 nored by completion. Consider the following:

 > ls

 Makefile condiments.h~ main.o side.c

 README main.c meal side.o

 condiments.h main.c~

 > set fignore = (.o \~)

 > emacs ma[^D]

 main.c main.c~ main.o

 > emacs ma[tab]

 > emacs main.c

 `main.c~' and `main.o' are ignored by completion (but not listing), be?

 cause they end in suffixes in fignore. Note that a `\' was needed in

 front of `~' to prevent it from being expanded to home as described un?

 der Filename substitution. fignore is ignored if only one completion

 is possible.

 If the complete shell variable is set to `enhance', completion 1) ig?

 nores case and 2) considers periods, hyphens and underscores (`.', `-'

 and `_') to be word separators and hyphens and underscores to be equiv?

 alent. If you had the following files

 comp.lang.c comp.lang.perl comp.std.c++

 comp.lang.c++ comp.std.c

 and typed `mail -f c.l.c[tab]', it would be completed to `mail -f

 comp.lang.c', and ^D would list `comp.lang.c' and `comp.lang.c++'.

 `mail -f c..c++[^D]' would list `comp.lang.c++' and `comp.std.c++'. Page 8/113

 Typing `rm a--file[^D]' in the following directory

 A_silly_file a-hyphenated-file another_silly_file

 would list all three files, because case is ignored and hyphens and un?

 derscores are equivalent. Periods, however, are not equivalent to hy?

 phens or underscores.

 If the complete shell variable is set to `Enhance', completion ignores

 case and differences between a hyphen and an underscore word separator

 only when the user types a lowercase character or a hyphen. Entering

 an uppercase character or an underscore will not match the correspond?

 ing lowercase character or hyphen word separator. Typing `rm

 a--file[^D]' in the directory of the previous example would still list

 all three files, but typing `rm A--file' would match only

 `A_silly_file' and typing `rm a__file[^D]' would match just

 `A_silly_file' and `another_silly_file' because the user explicitly

 used an uppercase or an underscore character.

 Completion and listing are affected by several other shell variables:

 recexact can be set to complete on the shortest possible unique match,

 even if more typing might result in a longer match:

 > ls

 fodder foo food foonly

 > set recexact

 > rm fo[tab]

 just beeps, because `fo' could expand to `fod' or `foo', but if we type

 another `o',

 > rm foo[tab]

 > rm foo

 the completion completes on `foo', even though `food' and `foonly' also

 match. autoexpand can be set to run the expand-history editor command

 before each completion attempt, autocorrect can be set to spelling-cor?

 rect the word to be completed (see Spelling correction) before each

 completion attempt and correct can be set to complete commands automat?

 ically after one hits `return'. matchbeep can be set to make comple?

 tion beep or not beep in a variety of situations, and nobeep can be set Page 9/113

 to never beep at all. nostat can be set to a list of directories

 and/or patterns that match directories to prevent the completion mecha?

 nism from stat(2)ing those directories. listmax and listmaxrows can be

 set to limit the number of items and rows (respectively) that are

 listed without asking first. recognize_only_executables can be set to

 make the shell list only executables when listing commands, but it is

 quite slow.

 Finally, the complete builtin command can be used to tell the shell how

 to complete words other than filenames, commands and variables. Com?

 pletion and listing do not work on glob-patterns (see Filename substi?

 tution), but the list-glob and expand-glob editor commands perform

 equivalent functions for glob-patterns.

 Spelling correction (+)

 The shell can sometimes correct the spelling of filenames, commands and

 variable names as well as completing and listing them.

 Individual words can be spelling-corrected with the spell-word editor

 command (usually bound to M-s and M-S) and the entire input buffer with

 spell-line (usually bound to M-$). The correct shell variable can be

 set to `cmd' to correct the command name or `all' to correct the entire

 line each time return is typed, and autocorrect can be set to correct

 the word to be completed before each completion attempt.

 When spelling correction is invoked in any of these ways and the shell

 thinks that any part of the command line is misspelled, it prompts with

 the corrected line:

 > set correct = cmd

 > lz /usr/bin

 CORRECT>ls /usr/bin (y|n|e|a)?

 One can answer `y' or space to execute the corrected line, `e' to leave

 the uncorrected command in the input buffer, `a' to abort the command

 as if `^C' had been hit, and anything else to execute the original line

 unchanged.

 Spelling correction recognizes user-defined completions (see the com?

 plete builtin command). If an input word in a position for which a Page 10/113

 completion is defined resembles a word in the completion list, spelling

 correction registers a misspelling and suggests the latter word as a

 correction. However, if the input word does not match any of the pos?

 sible completions for that position, spelling correction does not reg?

 ister a misspelling.

 Like completion, spelling correction works anywhere in the line, push?

 ing the rest of the line to the right and possibly leaving extra char?

 acters to the right of the cursor.

 Editor commands (+)

 `bindkey' lists key bindings and `bindkey -l' lists and briefly de?

 scribes editor commands. Only new or especially interesting editor

 commands are described here. See emacs(1) and vi(1) for descriptions

 of each editor's key bindings.

 The character or characters to which each command is bound by default

 is given in parentheses. `^character' means a control character and

 `M-character' a meta character, typed as escape-character on terminals

 without a meta key. Case counts, but commands that are bound to let?

 ters by default are bound to both lower- and uppercase letters for con?

 venience.

 backward-char (^B, left)

 Move back a character. Cursor behavior modified by vimode.

 backward-delete-word (M-^H, M-^?)

 Cut from beginning of current word to cursor - saved in cut

 buffer. Word boundary behavior modified by vimode.

 backward-word (M-b, M-B)

 Move to beginning of current word. Word boundary and cursor

 behavior modified by vimode.

 beginning-of-line (^A, home)

 Move to beginning of line. Cursor behavior modified by vimode.

 capitalize-word (M-c, M-C)

 Capitalize the characters from cursor to end of current word.

 Word boundary behavior modified by vimode.

 complete-word (tab) Page 11/113

 Completes a word as described under Completion and listing.

 complete-word-back (not bound)

 Like complete-word-fwd, but steps up from the end of the list.

 complete-word-fwd (not bound)

 Replaces the current word with the first word in the list of

 possible completions. May be repeated to step down through the

 list. At the end of the list, beeps and reverts to the incom?

 plete word.

 complete-word-raw (^X-tab)

 Like complete-word, but ignores user-defined completions.

 copy-prev-word (M-^_)

 Copies the previous word in the current line into the input

 buffer. See also insert-last-word. Word boundary behavior

 modified by vimode.

 dabbrev-expand (M-/)

 Expands the current word to the most recent preceding one for

 which the current is a leading substring, wrapping around the

 history list (once) if necessary. Repeating dabbrev-expand

 without any intervening typing changes to the next previous

 word etc., skipping identical matches much like history-search-

 backward does.

 delete-char (not bound)

 Deletes the character under the cursor. See also delete-char-

 or-list-or-eof. Cursor behavior modified by vimode.

 delete-char-or-eof (not bound)

 Does delete-char if there is a character under the cursor or

 end-of-file on an empty line. See also delete-char-or-list-or-

 eof. Cursor behavior modified by vimode.

 delete-char-or-list (not bound)

 Does delete-char if there is a character under the cursor or

 list-choices at the end of the line. See also delete-char-or-

 list-or-eof.

 delete-char-or-list-or-eof (^D) Page 12/113

 Does delete-char if there is a character under the cursor,

 list-choices at the end of the line or end-of-file on an empty

 line. See also those three commands, each of which does only a

 single action, and delete-char-or-eof, delete-char-or-list and

 list-or-eof, each of which does a different two out of the

 three.

 delete-word (M-d, M-D)

 Cut from cursor to end of current word - save in cut buffer.

 Word boundary behavior modified by vimode.

 down-history (down-arrow, ^N)

 Like up-history, but steps down, stopping at the original input

 line.

 downcase-word (M-l, M-L)

 Lowercase the characters from cursor to end of current word.

 Word boundary behavior modified by vimode.

 end-of-file (not bound)

 Signals an end of file, causing the shell to exit unless the

 ignoreeof shell variable (q.v.) is set to prevent this. See

 also delete-char-or-list-or-eof.

 end-of-line (^E, end)

 Move cursor to end of line. Cursor behavior modified by vi?

 mode.

 expand-history (M-space)

 Expands history substitutions in the current word. See History

 substitution. See also magic-space, toggle-literal-history and

 the autoexpand shell variable.

 expand-glob (^X-*)

 Expands the glob-pattern to the left of the cursor. See File?

 name substitution.

 expand-line (not bound)

 Like expand-history, but expands history substitutions in each

 word in the input buffer.

 expand-variables (^X-$) Page 13/113

 Expands the variable to the left of the cursor. See Variable

 substitution.

 forward-char (^F, right)

 Move forward one character. Cursor behavior modified by vi?

 mode.

 forward-word (M-f, M-F)

 Move forward to end of current word. Word boundary and cursor

 behavior modified by vimode.

 history-search-backward (M-p, M-P)

 Searches backwards through the history list for a command be?

 ginning with the current contents of the input buffer up to the

 cursor and copies it into the input buffer. The search string

 may be a glob-pattern (see Filename substitution) containing

 `*', `?', `[]' or `{}'. up-history and down-history will pro?

 ceed from the appropriate point in the history list. Emacs

 mode only. See also history-search-forward and i-search-back.

 history-search-forward (M-n, M-N)

 Like history-search-backward, but searches forward.

 i-search-back (not bound)

 Searches backward like history-search-backward, copies the

 first match into the input buffer with the cursor positioned at

 the end of the pattern, and prompts with `bck: ' and the first

 match. Additional characters may be typed to extend the

 search, i-search-back may be typed to continue searching with

 the same pattern, wrapping around the history list if neces?

 sary, (i-search-back must be bound to a single character for

 this to work) or one of the following special characters may be

 typed:

 ^W Appends the rest of the word under the cursor to

 the search pattern.

 delete (or any character bound to backward-delete-char)

 Undoes the effect of the last character typed and

 deletes a character from the search pattern if ap? Page 14/113

 propriate.

 ^G If the previous search was successful, aborts the

 entire search. If not, goes back to the last suc?

 cessful search.

 escape Ends the search, leaving the current line in the

 input buffer.

 Any other character not bound to self-insert-command terminates

 the search, leaving the current line in the input buffer, and

 is then interpreted as normal input. In particular, a carriage

 return causes the current line to be executed. See also i-

 search-fwd and history-search-backward. Word boundary behavior

 modified by vimode.

 i-search-fwd (not bound)

 Like i-search-back, but searches forward. Word boundary behav?

 ior modified by vimode.

 insert-last-word (M-_)

 Inserts the last word of the previous input line (`!$') into

 the input buffer. See also copy-prev-word.

 list-choices (M-^D)

 Lists completion possibilities as described under Completion

 and listing. See also delete-char-or-list-or-eof and list-

 choices-raw.

 list-choices-raw (^X-^D)

 Like list-choices, but ignores user-defined completions.

 list-glob (^X-g, ^X-G)

 Lists (via the ls-F builtin) matches to the glob-pattern (see

 Filename substitution) to the left of the cursor.

 list-or-eof (not bound)

 Does list-choices or end-of-file on an empty line. See also

 delete-char-or-list-or-eof.

 magic-space (not bound)

 Expands history substitutions in the current line, like expand-

 history, and inserts a space. magic-space is designed to be Page 15/113

 bound to the space bar, but is not bound by default.

 normalize-command (^X-?)

 Searches for the current word in PATH and, if it is found, re?

 places it with the full path to the executable. Special char?

 acters are quoted. Aliases are expanded and quoted but com?

 mands within aliases are not. This command is useful with com?

 mands that take commands as arguments, e.g., `dbx' and `sh -x'.

 normalize-path (^X-n, ^X-N)

 Expands the current word as described under the `expand' set?

 ting of the symlinks shell variable.

 overwrite-mode (unbound)

 Toggles between input and overwrite modes.

 run-fg-editor (M-^Z)

 Saves the current input line and looks for a stopped job where

 the file name portion of its first word is found in the editors

 shell variable. If editors is not set, then the file name por?

 tion of the EDITOR environment variable (`ed' if unset) and the

 VISUAL environment variable (`vi' if unset) will be used. If

 such a job is found, it is restarted as if `fg %job' had been

 typed. This is used to toggle back and forth between an editor

 and the shell easily. Some people bind this command to `^Z' so

 they can do this even more easily.

 run-help (M-h, M-H)

 Searches for documentation on the current command, using the

 same notion of `current command' as the completion routines,

 and prints it. There is no way to use a pager; run-help is de?

 signed for short help files. If the special alias helpcommand

 is defined, it is run with the command name as a sole argument.

 Else, documentation should be in a file named command.help,

 command.1, command.6, command.8 or command, which should be in

 one of the directories listed in the HPATH environment vari?

 able. If there is more than one help file only the first is

 printed. Page 16/113

 self-insert-command (text characters)

 In insert mode (the default), inserts the typed character into

 the input line after the character under the cursor. In over?

 write mode, replaces the character under the cursor with the

 typed character. The input mode is normally preserved between

 lines, but the inputmode shell variable can be set to `insert'

 or `overwrite' to put the editor in that mode at the beginning

 of each line. See also overwrite-mode.

 sequence-lead-in (arrow prefix, meta prefix, ^X)

 Indicates that the following characters are part of a multi-key

 sequence. Binding a command to a multi-key sequence really

 creates two bindings: the first character to sequence-lead-in

 and the whole sequence to the command. All sequences beginning

 with a character bound to sequence-lead-in are effectively

 bound to undefined-key unless bound to another command.

 spell-line (M-$)

 Attempts to correct the spelling of each word in the input buf?

 fer, like spell-word, but ignores words whose first character

 is one of `-', `!', `^' or `%', or which contain `\', `*' or

 `?', to avoid problems with switches, substitutions and the

 like. See Spelling correction.

 spell-word (M-s, M-S)

 Attempts to correct the spelling of the current word as de?

 scribed under Spelling correction. Checks each component of a

 word which appears to be a pathname.

 toggle-literal-history (M-r, M-R)

 Expands or `unexpands' history substitutions in the input buf?

 fer. See also expand-history and the autoexpand shell vari?

 able.

 undefined-key (any unbound key)

 Beeps.

 up-history (up-arrow, ^P)

 Copies the previous entry in the history list into the input Page 17/113

 buffer. If histlit is set, uses the literal form of the entry.

 May be repeated to step up through the history list, stopping

 at the top.

 upcase-word (M-u, M-U)

 Uppercase the characters from cursor to end of current word.

 Word boundary behavior modified by vimode.

 vi-beginning-of-next-word (not bound)

 Vi goto the beginning of next word. Word boundary and cursor

 behavior modified by vimode.

 vi-eword (not bound)

 Vi move to the end of the current word. Word boundary behavior

 modified by vimode.

 vi-search-back (?)

 Prompts with `?' for a search string (which may be a glob-pat?

 tern, as with history-search-backward), searches for it and

 copies it into the input buffer. The bell rings if no match is

 found. Hitting return ends the search and leaves the last

 match in the input buffer. Hitting escape ends the search and

 executes the match. vi mode only.

 vi-search-fwd (/)

 Like vi-search-back, but searches forward.

 which-command (M-?)

 Does a which (see the description of the builtin command) on

 the first word of the input buffer.

 yank-pop (M-y)

 When executed immediately after a yank or another yank-pop, re?

 places the yanked string with the next previous string from the

 killring. This also has the effect of rotating the killring,

 such that this string will be considered the most recently

 killed by a later yank command. Repeating yank-pop will cycle

 through the killring any number of times.

 Lexical structure

 The shell splits input lines into words at blanks and tabs. The spe? Page 18/113

 cial characters `&', `|', `;', `<', `>', `(', and `)' and the doubled

 characters `&&', `||', `<<' and `>>' are always separate words, whether

 or not they are surrounded by whitespace.

 When the shell's input is not a terminal, the character `#' is taken to

 begin a comment. Each `#' and the rest of the input line on which it

 appears is discarded before further parsing.

 A special character (including a blank or tab) may be prevented from

 having its special meaning, and possibly made part of another word, by

 preceding it with a backslash (`\') or enclosing it in single (`''),

 double (`"') or backward (``') quotes. When not otherwise quoted a

 newline preceded by a `\' is equivalent to a blank, but inside quotes

 this sequence results in a newline.

 Furthermore, all Substitutions (see below) except History substitution

 can be prevented by enclosing the strings (or parts of strings) in

 which they appear with single quotes or by quoting the crucial charac?

 ter(s) (e.g., `$' or ``' for Variable substitution or Command substitu?

 tion respectively) with `\'. (Alias substitution is no exception:

 quoting in any way any character of a word for which an alias has been

 defined prevents substitution of the alias. The usual way of quoting

 an alias is to precede it with a backslash.) History substitution is

 prevented by backslashes but not by single quotes. Strings quoted with

 double or backward quotes undergo Variable substitution and Command

 substitution, but other substitutions are prevented.

 Text inside single or double quotes becomes a single word (or part of

 one). Metacharacters in these strings, including blanks and tabs, do

 not form separate words. Only in one special case (see Command substi?

 tution below) can a double-quoted string yield parts of more than one

 word; single-quoted strings never do. Backward quotes are special:

 they signal Command substitution (q.v.), which may result in more than

 one word.

 Quoting complex strings, particularly strings which themselves contain

 quoting characters, can be confusing. Remember that quotes need not be

 used as they are in human writing! It may be easier to quote not an Page 19/113

 entire string, but only those parts of the string which need quoting,

 using different types of quoting to do so if appropriate.

 The backslash_quote shell variable (q.v.) can be set to make back?

 slashes always quote `\', `'', and `"'. (+) This may make complex

 quoting tasks easier, but it can cause syntax errors in csh(1) scripts.

 Substitutions

 We now describe the various transformations the shell performs on the

 input in the order in which they occur. We note in passing the data

 structures involved and the commands and variables which affect them.

 Remember that substitutions can be prevented by quoting as described

 under Lexical structure.

 History substitution

 Each command, or ``event'', input from the terminal is saved in the

 history list. The previous command is always saved, and the history

 shell variable can be set to a number to save that many commands. The

 histdup shell variable can be set to not save duplicate events or con?

 secutive duplicate events.

 Saved commands are numbered sequentially from 1 and stamped with the

 time. It is not usually necessary to use event numbers, but the cur?

 rent event number can be made part of the prompt by placing an `!' in

 the prompt shell variable.

 By default history entries are displayed by printing each parsed token

 separated by space; thus the redirection operator `>&!' will be dis?

 played as `> & !'.

 The shell actually saves history in expanded and literal (unexpanded)

 forms. If the histlit shell variable is set, commands that display and

 store history use the literal form.

 The history builtin command can print, store in a file, restore and

 clear the history list at any time, and the savehist and histfile shell

 variables can be set to store the history list automatically on logout

 and restore it on login.

 History substitutions introduce words from the history list into the

 input stream, making it easy to repeat commands, repeat arguments of a Page 20/113

 previous command in the current command, or fix spelling mistakes in

 the previous command with little typing and a high degree of confi?

 dence.

 History substitutions begin with the character `!'. They may begin

 anywhere in the input stream, but they do not nest. The `!' may be

 preceded by a `\' to prevent its special meaning; for convenience, a

 `!' is passed unchanged when it is followed by a blank, tab, newline,

 `=' or `('. History substitutions also occur when an input line begins

 with `^'. This special abbreviation will be described later. The

 characters used to signal history substitution (`!' and `^') can be

 changed by setting the histchars shell variable. Any input line which

 contains a history substitution is printed before it is executed.

 A history substitution may have an ``event specification'', which indi?

 cates the event from which words are to be taken, a ``word designa?

 tor'', which selects particular words from the chosen event, and/or a

 ``modifier'', which manipulates the selected words.

 An event specification can be

 n A number, referring to a particular event

 -n An offset, referring to the event n before the current

 event

 # The current event. This should be used carefully in

 csh(1), where there is no check for recursion. tcsh allows

 10 levels of recursion. (+)

 ! The previous event (equivalent to `-1')

 s The most recent event whose first word begins with the

 string s

 ?s? The most recent event which contains the string s. The

 second `?' can be omitted if it is immediately followed by

 a newline.

 For example, consider this bit of someone's history list:

 9 8:30 nroff -man wumpus.man

 10 8:31 cp wumpus.man wumpus.man.old

 11 8:36 vi wumpus.man Page 21/113

 12 8:37 diff wumpus.man.old wumpus.man

 The commands are shown with their event numbers and time stamps. The

 current event, which we haven't typed in yet, is event 13. `!11' and

 `!-2' refer to event 11. `!!' refers to the previous event, 12. `!!'

 can be abbreviated `!' if it is followed by `:' (`:' is described be?

 low). `!n' refers to event 9, which begins with `n'. `!?old?' also

 refers to event 12, which contains `old'. Without word designators or

 modifiers history references simply expand to the entire event, so we

 might type `!cp' to redo the copy command or `!!|more' if the `diff'

 output scrolled off the top of the screen.

 History references may be insulated from the surrounding text with

 braces if necessary. For example, `!vdoc' would look for a command be?

 ginning with `vdoc', and, in this example, not find one, but `!{v}doc'

 would expand unambiguously to `vi wumpus.mandoc'. Even in braces, his?

 tory substitutions do not nest.

 (+) While csh(1) expands, for example, `!3d' to event 3 with the letter

 `d' appended to it, tcsh expands it to the last event beginning with

 `3d'; only completely numeric arguments are treated as event numbers.

 This makes it possible to recall events beginning with numbers. To ex?

 pand `!3d' as in csh(1) say `!{3}d'.

 To select words from an event we can follow the event specification by

 a `:' and a designator for the desired words. The words of an input

 line are numbered from 0, the first (usually command) word being 0, the

 second word (first argument) being 1, etc. The basic word designators

 are:

 0 The first (command) word

 n The nth argument

 ^ The first argument, equivalent to `1'

 $ The last argument

 % The word matched by an ?s? search

 x-y A range of words

 -y Equivalent to `0-y'

 * Equivalent to `^-$', but returns nothing if the event con? Page 22/113

 tains only 1 word

 x* Equivalent to `x-$'

 x- Equivalent to `x*', but omitting the last word (`$')

 Selected words are inserted into the command line separated by single

 blanks. For example, the `diff' command in the previous example might

 have been typed as `diff !!:1.old !!:1' (using `:1' to select the first

 argument from the previous event) or `diff !-2:2 !-2:1' to select and

 swap the arguments from the `cp' command. If we didn't care about the

 order of the `diff' we might have said `diff !-2:1-2' or simply `diff

 !-2:*'. The `cp' command might have been written `cp wumpus.man

 !#:1.old', using `#' to refer to the current event. `!n:- hurkle.man'

 would reuse the first two words from the `nroff' command to say `nroff

 -man hurkle.man'.

 The `:' separating the event specification from the word designator can

 be omitted if the argument selector begins with a `^', `$', `*', `%' or

 `-'. For example, our `diff' command might have been `diff !!^.old

 !!^' or, equivalently, `diff !!$.old !!$'. However, if `!!' is abbre?

 viated `!', an argument selector beginning with `-' will be interpreted

 as an event specification.

 A history reference may have a word designator but no event specifica?

 tion. It then references the previous command. Continuing our `diff'

 example, we could have said simply `diff !^.old !^' or, to get the ar?

 guments in the opposite order, just `diff !*'.

 The word or words in a history reference can be edited, or ``modi?

 fied'', by following it with one or more modifiers, each preceded by a

 `:':

 h Remove a trailing pathname component, leaving the head.

 t Remove all leading pathname components, leaving the tail.

 r Remove a filename extension `.xxx', leaving the root name.

 e Remove all but the extension.

 u Uppercase the first lowercase letter.

 l Lowercase the first uppercase letter.

 s/l/r/ Substitute l for r. l is simply a string like r, not a Page 23/113

 regular expression as in the eponymous ed(1) command. Any

 character may be used as the delimiter in place of `/'; a

 `\' can be used to quote the delimiter inside l and r. The

 character `&' in the r is replaced by l; `\' also quotes

 `&'. If l is empty (``''), the l from a previous substitu?

 tion or the s from a previous search or event number in

 event specification is used. The trailing delimiter may be

 omitted if it is immediately followed by a newline.

 & Repeat the previous substitution.

 g Apply the following modifier once to each word.

 a (+) Apply the following modifier as many times as possible to a

 single word. `a' and `g' can be used together to apply a

 modifier globally. With the `s' modifier, only the pat?

 terns contained in the original word are substituted, not

 patterns that contain any substitution result.

 p Print the new command line but do not execute it.

 q Quote the substituted words, preventing further substitu?

 tions.

 Q Same as q but in addition preserve empty variables as a

 string containing a NUL. This is useful to preserve posi?

 tional arguments for example:

 > set args=('arg 1' '' 'arg 3')

 > tcsh -f -c 'echo ${#argv}' $args:gQ

 3

 x Like q, but break into words at blanks, tabs and newlines.

 Modifiers are applied to only the first modifiable word (unless `g' is

 used). It is an error for no word to be modifiable.

 For example, the `diff' command might have been written as `diff wum?

 pus.man.old !#^:r', using `:r' to remove `.old' from the first argument

 on the same line (`!#^'). We could say `echo hello out there', then

 `echo !*:u' to capitalize `hello', `echo !*:au' to say it out loud, or

 `echo !*:agu' to really shout. We might follow `mail -s "I forgot my

 password" rot' with `!:s/rot/root' to correct the spelling of `root' Page 24/113

 (but see Spelling correction for a different approach).

 There is a special abbreviation for substitutions. `^', when it is the

 first character on an input line, is equivalent to `!:s^'. Thus we

 might have said `^rot^root' to make the spelling correction in the pre?

 vious example. This is the only history substitution which does not

 explicitly begin with `!'.

 (+) In csh as such, only one modifier may be applied to each history or

 variable expansion. In tcsh, more than one may be used, for example

 % mv wumpus.man /usr/man/man1/wumpus.1

 % man !$:t:r

 man wumpus

 In csh, the result would be `wumpus.1:r'. A substitution followed by a

 colon may need to be insulated from it with braces:

 > mv a.out /usr/games/wumpus

 > setenv PATH !$:h:$PATH

 Bad ! modifier: $.

 > setenv PATH !{-2$:h}:$PATH

 setenv PATH /usr/games:/bin:/usr/bin:.

 The first attempt would succeed in csh but fails in tcsh, because tcsh

 expects another modifier after the second colon rather than `$'.

 Finally, history can be accessed through the editor as well as through

 the substitutions just described. The up- and down-history, history-

 search-backward and -forward, i-search-back and -fwd, vi-search-back

 and -fwd, copy-prev-word and insert-last-word editor commands search

 for events in the history list and copy them into the input buffer.

 The toggle-literal-history editor command switches between the expanded

 and literal forms of history lines in the input buffer. expand-history

 and expand-line expand history substitutions in the current word and in

 the entire input buffer respectively.

 Alias substitution

 The shell maintains a list of aliases which can be set, unset and

 printed by the alias and unalias commands. After a command line is

 parsed into simple commands (see Commands) the first word of each com? Page 25/113

 mand, left-to-right, is checked to see if it has an alias. If so, the

 first word is replaced by the alias. If the alias contains a history

 reference, it undergoes History substitution (q.v.) as though the orig?

 inal command were the previous input line. If the alias does not con?

 tain a history reference, the argument list is left untouched.

 Thus if the alias for `ls' were `ls -l' the command `ls /usr' would be?

 come `ls -l /usr', the argument list here being undisturbed. If the

 alias for `lookup' were `grep !^ /etc/passwd' then `lookup bill' would

 become `grep bill /etc/passwd'. Aliases can be used to introduce

 parser metasyntax. For example, `alias print 'pr \!* | lpr'' defines a

 ``command'' (`print') which pr(1)s its arguments to the line printer.

 Alias substitution is repeated until the first word of the command has

 no alias. If an alias substitution does not change the first word (as

 in the previous example) it is flagged to prevent a loop. Other loops

 are detected and cause an error.

 Some aliases are referred to by the shell; see Special aliases.

 Variable substitution

 The shell maintains a list of variables, each of which has as value a

 list of zero or more words. The values of shell variables can be dis?

 played and changed with the set and unset commands. The system main?

 tains its own list of ``environment'' variables. These can be dis?

 played and changed with printenv, setenv and unsetenv.

 (+) Variables may be made read-only with `set -r' (q.v.). Read-only

 variables may not be modified or unset; attempting to do so will cause

 an error. Once made read-only, a variable cannot be made writable, so

 `set -r' should be used with caution. Environment variables cannot be

 made read-only.

 Some variables are set by the shell or referred to by it. For in?

 stance, the argv variable is an image of the shell's argument list, and

 words of this variable's value are referred to in special ways. Some

 of the variables referred to by the shell are toggles; the shell does

 not care what their value is, only whether they are set or not. For

 instance, the verbose variable is a toggle which causes command input Page 26/113

 to be echoed. The -v command line option sets this variable. Special

 shell variables lists all variables which are referred to by the shell.

 Other operations treat variables numerically. The `@' command permits

 numeric calculations to be performed and the result assigned to a vari?

 able. Variable values are, however, always represented as (zero or

 more) strings. For the purposes of numeric operations, the null string

 is considered to be zero, and the second and subsequent words of multi-

 word values are ignored.

 After the input line is aliased and parsed, and before each command is

 executed, variable substitution is performed keyed by `$' characters.

 This expansion can be prevented by preceding the `$' with a `\' except

 within `"'s where it always occurs, and within `''s where it never oc?

 curs. Strings quoted by ``' are interpreted later (see Command substi?

 tution below) so `$' substitution does not occur there until later, if

 at all. A `$' is passed unchanged if followed by a blank, tab, or end-

 of-line.

 Input/output redirections are recognized before variable expansion, and

 are variable expanded separately. Otherwise, the command name and en?

 tire argument list are expanded together. It is thus possible for the

 first (command) word (to this point) to generate more than one word,

 the first of which becomes the command name, and the rest of which be?

 come arguments.

 Unless enclosed in `"' or given the `:q' modifier the results of vari?

 able substitution may eventually be command and filename substituted.

 Within `"', a variable whose value consists of multiple words expands

 to a (portion of a) single word, with the words of the variable's value

 separated by blanks. When the `:q' modifier is applied to a substitu?

 tion the variable will expand to multiple words with each word sepa?

 rated by a blank and quoted to prevent later command or filename sub?

 stitution.

 The following metasequences are provided for introducing variable val?

 ues into the shell input. Except as noted, it is an error to reference

 a variable which is not set. Page 27/113

 $name

 ${name} Substitutes the words of the value of variable name, each sepa?

 rated by a blank. Braces insulate name from following charac?

 ters which would otherwise be part of it. Shell variables have

 names consisting of letters and digits starting with a letter.

 The underscore character is considered a letter. If name is

 not a shell variable, but is set in the environment, then that

 value is returned (but some of the other forms given below are

 not available in this case).

 $name[selector]

 ${name[selector]}

 Substitutes only the selected words from the value of name.

 The selector is subjected to `$' substitution and may consist

 of a single number or two numbers separated by a `-'. The

 first word of a variable's value is numbered `1'. If the first

 number of a range is omitted it defaults to `1'. If the last

 member of a range is omitted it defaults to `$#name'. The se?

 lector `*' selects all words. It is not an error for a range

 to be empty if the second argument is omitted or in range.

 $0 Substitutes the name of the file from which command input is

 being read. An error occurs if the name is not known.

 $number

 ${number}

 Equivalent to `$argv[number]'.

 $* Equivalent to `$argv', which is equivalent to `$argv[*]'.

 The `:' modifiers described under History substitution, except for

 `:p', can be applied to the substitutions above. More than one may be

 used. (+) Braces may be needed to insulate a variable substitution

 from a literal colon just as with History substitution (q.v.); any mod?

 ifiers must appear within the braces.

 The following substitutions can not be modified with `:' modifiers.

 $?name

 ${?name} Page 28/113

 Substitutes the string `1' if name is set, `0' if it is not.

 $?0 Substitutes `1' if the current input filename is known, `0' if

 it is not. Always `0' in interactive shells.

 $#name

 ${#name}

 Substitutes the number of words in name.

 $# Equivalent to `$#argv'. (+)

 $%name

 ${%name}

 Substitutes the number of characters in name. (+)

 $%number

 ${%number}

 Substitutes the number of characters in $argv[number]. (+)

 $? Equivalent to `$status'. (+)

 $$ Substitutes the (decimal) process number of the (parent) shell.

 $! Substitutes the (decimal) process number of the last background

 process started by this shell. (+)

 $_ Substitutes the command line of the last command executed. (+)

 $< Substitutes a line from the standard input, with no further in?

 terpretation thereafter. It can be used to read from the key?

 board in a shell script. (+) While csh always quotes $<, as if

 it were equivalent to `$<:q', tcsh does not. Furthermore, when

 tcsh is waiting for a line to be typed the user may type an in?

 terrupt to interrupt the sequence into which the line is to be

 substituted, but csh does not allow this.

 The editor command expand-variables, normally bound to `^X-$', can be

 used to interactively expand individual variables.

 Command, filename and directory stack substitution

 The remaining substitutions are applied selectively to the arguments of

 builtin commands. This means that portions of expressions which are

 not evaluated are not subjected to these expansions. For commands

 which are not internal to the shell, the command name is substituted

 separately from the argument list. This occurs very late, after input- Page 29/113

 output redirection is performed, and in a child of the main shell.

 Command substitution

 Command substitution is indicated by a command enclosed in ``'. The

 output from such a command is broken into separate words at blanks,

 tabs and newlines, and null words are discarded. The output is vari?

 able and command substituted and put in place of the original string.

 Command substitutions inside double quotes (`"') retain blanks and

 tabs; only newlines force new words. The single final newline does not

 force a new word in any case. It is thus possible for a command sub?

 stitution to yield only part of a word, even if the command outputs a

 complete line.

 By default, the shell since version 6.12 replaces all newline and car?

 riage return characters in the command by spaces. If this is switched

 off by unsetting csubstnonl, newlines separate commands as usual.

 Filename substitution

 If a word contains any of the characters `*', `?', `[' or `{' or begins

 with the character `~' it is a candidate for filename substitution,

 also known as ``globbing''. This word is then regarded as a pattern

 (``glob-pattern''), and replaced with an alphabetically sorted list of

 file names which match the pattern.

 In matching filenames, the character `.' at the beginning of a filename

 or immediately following a `/', as well as the character `/' must be

 matched explicitly (unless either globdot or globstar or both are

 set(+)). The character `*' matches any string of characters, including

 the null string. The character `?' matches any single character. The

 sequence `[...]' matches any one of the characters enclosed. Within

 `[...]', a pair of characters separated by `-' matches any character

 lexically between the two.

 (+) Some glob-patterns can be negated: The sequence `[^...]' matches

 any single character not specified by the characters and/or ranges of

 characters in the braces.

 An entire glob-pattern can also be negated with `^':

 > echo * Page 30/113

 bang crash crunch ouch

 > echo ^cr*

 bang ouch

 Glob-patterns which do not use `?', `*', or `[]' or which use `{}' or

 `~' (below) are not negated correctly.

 The metanotation `a{b,c,d}e' is a shorthand for `abe ace ade'. Left-

 to-right order is preserved: `/usr/source/s1/{oldls,ls}.c' expands to

 `/usr/source/s1/oldls.c /usr/source/s1/ls.c'. The results of matches

 are sorted separately at a low level to preserve this order:

 `../{memo,*box}' might expand to `../memo ../box ../mbox'. (Note that

 `memo' was not sorted with the results of matching `*box'.) It is not

 an error when this construct expands to files which do not exist, but

 it is possible to get an error from a command to which the expanded

 list is passed. This construct may be nested. As a special case the

 words `{', `}' and `{}' are passed undisturbed.

 The character `~' at the beginning of a filename refers to home direc?

 tories. Standing alone, i.e., `~', it expands to the invoker's home

 directory as reflected in the value of the home shell variable. When

 followed by a name consisting of letters, digits and `-' characters the

 shell searches for a user with that name and substitutes their home di?

 rectory; thus `~ken' might expand to `/usr/ken' and `~ken/chmach' to

 `/usr/ken/chmach'. If the character `~' is followed by a character

 other than a letter or `/' or appears elsewhere than at the beginning

 of a word, it is left undisturbed. A command like `setenv MANPATH

 /usr/man:/usr/local/man:~/lib/man' does not, therefore, do home direc?

 tory substitution as one might hope.

 It is an error for a glob-pattern containing `*', `?', `[' or `~', with

 or without `^', not to match any files. However, only one pattern in a

 list of glob-patterns must match a file (so that, e.g., `rm *.a *.c

 *.o' would fail only if there were no files in the current directory

 ending in `.a', `.c', or `.o'), and if the nonomatch shell variable is

 set a pattern (or list of patterns) which matches nothing is left un?

 changed rather than causing an error. Page 31/113

 The globstar shell variable can be set to allow `**' or `***' as a file

 glob pattern that matches any string of characters including `/', re?

 cursively traversing any existing sub-directories. For example, `ls

 **.c' will list all the .c files in the current directory tree. If

 used by itself, it will match zero or more sub-directories (e.g. `ls

 /usr/include/**/time.h' will list any file named `time.h' in the

 /usr/include directory tree; `ls /usr/include/**time.h' will match any

 file in the /usr/include directory tree ending in `time.h'; and `ls

 /usr/include/**time**.h' will match any .h file with `time' either in a

 subdirectory name or in the filename itself). To prevent problems with

 recursion, the `**' glob-pattern will not descend into a symbolic link

 containing a directory. To override this, use `***' (+)

 The noglob shell variable can be set to prevent filename substitution,

 and the expand-glob editor command, normally bound to `^X-*', can be

 used to interactively expand individual filename substitutions.

 Directory stack substitution (+)

 The directory stack is a list of directories, numbered from zero, used

 by the pushd, popd and dirs builtin commands (q.v.). dirs can print,

 store in a file, restore and clear the directory stack at any time, and

 the savedirs and dirsfile shell variables can be set to store the di?

 rectory stack automatically on logout and restore it on login. The

 dirstack shell variable can be examined to see the directory stack and

 set to put arbitrary directories into the directory stack.

 The character `=' followed by one or more digits expands to an entry in

 the directory stack. The special case `=-' expands to the last direc?

 tory in the stack. For example,

 > dirs -v

 0 /usr/bin

 1 /usr/spool/uucp

 2 /usr/accts/sys

 > echo =1

 /usr/spool/uucp

 > echo =0/calendar Page 32/113

 /usr/bin/calendar

 > echo =-

 /usr/accts/sys

 The noglob and nonomatch shell variables and the expand-glob editor

 command apply to directory stack as well as filename substitutions.

 Other substitutions (+)

 There are several more transformations involving filenames, not

 strictly related to the above but mentioned here for completeness. Any

 filename may be expanded to a full path when the symlinks variable

 (q.v.) is set to `expand'. Quoting prevents this expansion, and the

 normalize-path editor command does it on demand. The normalize-command

 editor command expands commands in PATH into full paths on demand. Fi?

 nally, cd and pushd interpret `-' as the old working directory (equiva?

 lent to the shell variable owd). This is not a substitution at all,

 but an abbreviation recognized by only those commands. Nonetheless, it

 too can be prevented by quoting.

 Commands

 The next three sections describe how the shell executes commands and

 deals with their input and output.

 Simple commands, pipelines and sequences

 A simple command is a sequence of words, the first of which specifies

 the command to be executed. A series of simple commands joined by `|'

 characters forms a pipeline. The output of each command in a pipeline

 is connected to the input of the next.

 Simple commands and pipelines may be joined into sequences with `;',

 and will be executed sequentially. Commands and pipelines can also be

 joined into sequences with `||' or `&&', indicating, as in the C lan?

 guage, that the second is to be executed only if the first fails or

 succeeds respectively.

 A simple command, pipeline or sequence may be placed in parentheses,

 `()', to form a simple command, which may in turn be a component of a

 pipeline or sequence. A command, pipeline or sequence can be executed

 without waiting for it to terminate by following it with an `&'. Page 33/113

 Builtin and non-builtin command execution

 Builtin commands are executed within the shell. If any component of a

 pipeline except the last is a builtin command, the pipeline is executed

 in a subshell.

 Parenthesized commands are always executed in a subshell.

 (cd; pwd); pwd

 thus prints the home directory, leaving you where you were (printing

 this after the home directory), while

 cd; pwd

 leaves you in the home directory. Parenthesized commands are most of?

 ten used to prevent cd from affecting the current shell.

 When a command to be executed is found not to be a builtin command the

 shell attempts to execute the command via execve(2). Each word in the

 variable path names a directory in which the shell will look for the

 command. If the shell is not given a -f option, the shell hashes the

 names in these directories into an internal table so that it will try

 an execve(2) in only a directory where there is a possibility that the

 command resides there. This greatly speeds command location when a

 large number of directories are present in the search path. This hash?

 ing mechanism is not used:

 1. If hashing is turned explicitly off via unhash.

 2. If the shell was given a -f argument.

 3. For each directory component of path which does not begin with a

 `/'.

 4. If the command contains a `/'.

 In the above four cases the shell concatenates each component of the

 path vector with the given command name to form a path name of a file

 which it then attempts to execute it. If execution is successful, the

 search stops.

 If the file has execute permissions but is not an executable to the

 system (i.e., it is neither an executable binary nor a script that

 specifies its interpreter), then it is assumed to be a file containing

 shell commands and a new shell is spawned to read it. The shell spe? Page 34/113

 cial alias may be set to specify an interpreter other than the shell

 itself.

 On systems which do not understand the `#!' script interpreter conven?

 tion the shell may be compiled to emulate it; see the version shell

 variable. If so, the shell checks the first line of the file to see if

 it is of the form `#!interpreter arg ...'. If it is, the shell starts

 interpreter with the given args and feeds the file to it on standard

 input.

 Input/output

 The standard input and standard output of a command may be redirected

 with the following syntax:

 < name Open file name (which is first variable, command and filename

 expanded) as the standard input.

 << word Read the shell input up to a line which is identical to word.

 word is not subjected to variable, filename or command substi?

 tution, and each input line is compared to word before any sub?

 stitutions are done on this input line. Unless a quoting `\',

 `"', `' or ``' appears in word variable and command substitu?

 tion is performed on the intervening lines, allowing `\' to

 quote `$', `\' and ``'. Commands which are substituted have

 all blanks, tabs, and newlines preserved, except for the final

 newline which is dropped. The resultant text is placed in an

 anonymous temporary file which is given to the command as stan?

 dard input.

 > name

 >! name

 >& name

 >&! name

 The file name is used as standard output. If the file does not

 exist then it is created; if the file exists, it is truncated,

 its previous contents being lost.

 If the shell variable noclobber is set, then the file must not

 exist or be a character special file (e.g., a terminal or Page 35/113

 `/dev/null') or an error results. This helps prevent acciden?

 tal destruction of files. In this case the `!' forms can be

 used to suppress this check. If notempty is given in noclob?

 ber, `>' is allowed on empty files; if ask is set, an in?

 teracive confirmation is presented, rather than an error.

 The forms involving `&' route the diagnostic output into the

 specified file as well as the standard output. name is ex?

 panded in the same way as `<' input filenames are.

 >> name

 >>& name

 >>! name

 >>&! name

 Like `>', but appends output to the end of name. If the shell

 variable noclobber is set, then it is an error for the file not

 to exist, unless one of the `!' forms is given.

 A command receives the environment in which the shell was invoked as

 modified by the input-output parameters and the presence of the command

 in a pipeline. Thus, unlike some previous shells, commands run from a

 file of shell commands have no access to the text of the commands by

 default; rather they receive the original standard input of the shell.

 The `<<' mechanism should be used to present inline data. This permits

 shell command scripts to function as components of pipelines and allows

 the shell to block read its input. Note that the default standard in?

 put for a command run detached is not the empty file /dev/null, but the

 original standard input of the shell. If this is a terminal and if the

 process attempts to read from the terminal, then the process will block

 and the user will be notified (see Jobs).

 Diagnostic output may be directed through a pipe with the standard out?

 put. Simply use the form `|&' rather than just `|'.

 The shell cannot presently redirect diagnostic output without also

 redirecting standard output, but `(command > output-file) >& error-

 file' is often an acceptable workaround. Either output-file or error-

 file may be `/dev/tty' to send output to the terminal. Page 36/113

 Features

 Having described how the shell accepts, parses and executes command

 lines, we now turn to a variety of its useful features.

 Control flow

 The shell contains a number of commands which can be used to regulate

 the flow of control in command files (shell scripts) and (in limited

 but useful ways) from terminal input. These commands all operate by

 forcing the shell to reread or skip in its input and, due to the imple?

 mentation, restrict the placement of some of the commands.

 The foreach, switch, and while statements, as well as the if-then-else

 form of the if statement, require that the major keywords appear in a

 single simple command on an input line as shown below.

 If the shell's input is not seekable, the shell buffers up input when?

 ever a loop is being read and performs seeks in this internal buffer to

 accomplish the rereading implied by the loop. (To the extent that this

 allows, backward gotos will succeed on non-seekable inputs.)

 Expressions

 The if, while and exit builtin commands use expressions with a common

 syntax. The expressions can include any of the operators described in

 the next three sections. Note that the @ builtin command (q.v.) has

 its own separate syntax.

 Logical, arithmetical and comparison operators

 These operators are similar to those of C and have the same precedence.

 They include

 || && | ^ & == != =~ !~ <= >=

 < > << >> + - * / % ! ~ ()

 Here the precedence increases to the right, `==' `!=' `=~' and `!~',

 `<=' `>=' `<' and `>', `<<' and `>>', `+' and `-', `*' `/' and `%' be?

 ing, in groups, at the same level. The `==' `!=' `=~' and `!~' opera?

 tors compare their arguments as strings; all others operate on numbers.

 The operators `=~' and `!~' are like `!=' and `==' except that the

 right hand side is a glob-pattern (see Filename substitution) against

 which the left hand operand is matched. This reduces the need for use Page 37/113

 of the switch builtin command in shell scripts when all that is really

 needed is pattern matching.

 Null or missing arguments are considered `0'. The results of all ex?

 pressions are strings, which represent decimal numbers. It is impor?

 tant to note that no two components of an expression can appear in the

 same word; except when adjacent to components of expressions which are

 syntactically significant to the parser (`&' `|' `<' `>' `(' `)') they

 should be surrounded by spaces.

 Command exit status

 Commands can be executed in expressions and their exit status returned

 by enclosing them in braces (`{}'). Remember that the braces should be

 separated from the words of the command by spaces. Command executions

 succeed, returning true, i.e., `1', if the command exits with status 0,

 otherwise they fail, returning false, i.e., `0'. If more detailed sta?

 tus information is required then the command should be executed outside

 of an expression and the status shell variable examined.

 File inquiry operators

 Some of these operators perform true/false tests on files and related

 objects. They are of the form -op file, where op is one of

 r Read access

 w Write access

 x Execute access

 X Executable in the path or shell builtin, e.g., `-X ls' and `-X

 ls-F' are generally true, but `-X /bin/ls' is not (+)

 e Existence

 o Ownership

 z Zero size

 s Non-zero size (+)

 f Plain file

 d Directory

 l Symbolic link (+) *

 b Block special file (+)

 c Character special file (+) Page 38/113

 p Named pipe (fifo) (+) *

 S Socket special file (+) *

 u Set-user-ID bit is set (+)

 g Set-group-ID bit is set (+)

 k Sticky bit is set (+)

 t file (which must be a digit) is an open file descriptor for a

 terminal device (+)

 R Has been migrated (Convex only) (+)

 L Applies subsequent operators in a multiple-operator test to a

 symbolic link rather than to the file to which the link points

 (+) *

 file is command and filename expanded and then tested to see if it has

 the specified relationship to the real user. If file does not exist or

 is inaccessible or, for the operators indicated by `*', if the speci?

 fied file type does not exist on the current system, then all inquiries

 return false, i.e., `0'.

 These operators may be combined for conciseness: `-xy file' is equiva?

 lent to `-x file && -y file'. (+) For example, `-fx' is true (returns

 `1') for plain executable files, but not for directories.

 L may be used in a multiple-operator test to apply subsequent operators

 to a symbolic link rather than to the file to which the link points.

 For example, `-lLo' is true for links owned by the invoking user. Lr,

 Lw and Lx are always true for links and false for non-links. L has a

 different meaning when it is the last operator in a multiple-operator

 test; see below.

 It is possible but not useful, and sometimes misleading, to combine op?

 erators which expect file to be a file with operators which do not

 (e.g., X and t). Following L with a non-file operator can lead to par?

 ticularly strange results.

 Other operators return other information, i.e., not just `0' or `1'.

 (+) They have the same format as before; op may be one of

 A Last file access time, as the number of seconds since the

 epoch Page 39/113

 A: Like A, but in timestamp format, e.g., `Fri May 14 16:36:10

 1993'

 M Last file modification time

 M: Like M, but in timestamp format

 C Last inode modification time

 C: Like C, but in timestamp format

 D Device number

 I Inode number

 F Composite file identifier, in the form device:inode

 L The name of the file pointed to by a symbolic link

 N Number of (hard) links

 P Permissions, in octal, without leading zero

 P: Like P, with leading zero

 Pmode Equivalent to `-P file & mode', e.g., `-P22 file' returns

 `22' if file is writable by group and other, `20' if by

 group only, and `0' if by neither

 Pmode: Like Pmode, with leading zero

 U Numeric userid

 U: Username, or the numeric userid if the username is unknown

 G Numeric groupid

 G: Groupname, or the numeric groupid if the groupname is un?

 known

 Z Size, in bytes

 Only one of these operators may appear in a multiple-operator test, and

 it must be the last. Note that L has a different meaning at the end of

 and elsewhere in a multiple-operator test. Because `0' is a valid re?

 turn value for many of these operators, they do not return `0' when

 they fail: most return `-1', and F returns `:'.

 If the shell is compiled with POSIX defined (see the version shell

 variable), the result of a file inquiry is based on the permission bits

 of the file and not on the result of the access(2) system call. For

 example, if one tests a file with -w whose permissions would ordinarily

 allow writing but which is on a file system mounted read-only, the test Page 40/113

 will succeed in a POSIX shell but fail in a non-POSIX shell.

 File inquiry operators can also be evaluated with the filetest builtin

 command (q.v.) (+).

 Jobs

 The shell associates a job with each pipeline. It keeps a table of

 current jobs, printed by the jobs command, and assigns them small inte?

 ger numbers. When a job is started asynchronously with `&', the shell

 prints a line which looks like

 [1] 1234

 indicating that the job which was started asynchronously was job number

 1 and had one (top-level) process, whose process id was 1234.

 If you are running a job and wish to do something else you may hit the

 suspend key (usually `^Z'), which sends a STOP signal to the current

 job. The shell will then normally indicate that the job has been `Sus?

 pended' and print another prompt. If the listjobs shell variable is

 set, all jobs will be listed like the jobs builtin command; if it is

 set to `long' the listing will be in long format, like `jobs -l'. You

 can then manipulate the state of the suspended job. You can put it in

 the ``background'' with the bg command or run some other commands and

 eventually bring the job back into the ``foreground'' with fg. (See

 also the run-fg-editor editor command.) A `^Z' takes effect immedi?

 ately and is like an interrupt in that pending output and unread input

 are discarded when it is typed. The wait builtin command causes the

 shell to wait for all background jobs to complete.

 The `^]' key sends a delayed suspend signal, which does not generate a

 STOP signal until a program attempts to read(2) it, to the current job.

 This can usefully be typed ahead when you have prepared some commands

 for a job which you wish to stop after it has read them. The `^Y' key

 performs this function in csh(1); in tcsh, `^Y' is an editing command.

 (+)

 A job being run in the background stops if it tries to read from the

 terminal. Background jobs are normally allowed to produce output, but

 this can be disabled by giving the command `stty tostop'. If you set Page 41/113

 this tty option, then background jobs will stop when they try to pro?

 duce output like they do when they try to read input.

 There are several ways to refer to jobs in the shell. The character

 `%' introduces a job name. If you wish to refer to job number 1, you

 can name it as `%1'. Just naming a job brings it to the foreground;

 thus `%1' is a synonym for `fg %1', bringing job 1 back into the fore?

 ground. Similarly, saying `%1 &' resumes job 1 in the background, just

 like `bg %1'. A job can also be named by an unambiguous prefix of the

 string typed in to start it: `%ex' would normally restart a suspended

 ex(1) job, if there were only one suspended job whose name began with

 the string `ex'. It is also possible to say `%?string' to specify a

 job whose text contains string, if there is only one such job.

 The shell maintains a notion of the current and previous jobs. In out?

 put pertaining to jobs, the current job is marked with a `+' and the

 previous job with a `-'. The abbreviations `%+', `%', and (by analogy

 with the syntax of the history mechanism) `%%' all refer to the current

 job, and `%-' refers to the previous job.

 The job control mechanism requires that the stty(1) option `new' be set

 on some systems. It is an artifact from a `new' implementation of the

 tty driver which allows generation of interrupt characters from the

 keyboard to tell jobs to stop. See stty(1) and the setty builtin com?

 mand for details on setting options in the new tty driver.

 Status reporting

 The shell learns immediately whenever a process changes state. It nor?

 mally informs you whenever a job becomes blocked so that no further

 progress is possible, but only right before it prints a prompt. This

 is done so that it does not otherwise disturb your work. If, however,

 you set the shell variable notify, the shell will notify you immedi?

 ately of changes of status in background jobs. There is also a shell

 command notify which marks a single process so that its status changes

 will be immediately reported. By default notify marks the current

 process; simply say `notify' after starting a background job to mark

 it. Page 42/113

 When you try to leave the shell while jobs are stopped, you will be

 warned that `There are suspended jobs.' You may use the jobs command to

 see what they are. If you do this or immediately try to exit again,

 the shell will not warn you a second time, and the suspended jobs will

 be terminated.

 Automatic, periodic and timed events (+)

 There are various ways to run commands and take other actions automati?

 cally at various times in the ``life cycle'' of the shell. They are

 summarized here, and described in detail under the appropriate Builtin

 commands, Special shell variables and Special aliases.

 The sched builtin command puts commands in a scheduled-event list, to

 be executed by the shell at a given time.

 The beepcmd, cwdcmd, periodic, precmd, postcmd, and jobcmd Special

 aliases can be set, respectively, to execute commands when the shell

 wants to ring the bell, when the working directory changes, every tpe?

 riod minutes, before each prompt, before each command gets executed,

 after each command gets executed, and when a job is started or is

 brought into the foreground.

 The autologout shell variable can be set to log out or lock the shell

 after a given number of minutes of inactivity.

 The mail shell variable can be set to check for new mail periodically.

 The printexitvalue shell variable can be set to print the exit status

 of commands which exit with a status other than zero.

 The rmstar shell variable can be set to ask the user, when `rm *' is

 typed, if that is really what was meant.

 The time shell variable can be set to execute the time builtin command

 after the completion of any process that takes more than a given number

 of CPU seconds.

 The watch and who shell variables can be set to report when selected

 users log in or out, and the log builtin command reports on those users

 at any time.

 Native Language System support (+)

 The shell is eight bit clean (if so compiled; see the version shell Page 43/113

 variable) and thus supports character sets needing this capability.

 NLS support differs depending on whether or not the shell was compiled

 to use the system's NLS (again, see version). In either case, 7-bit

 ASCII is the default character code (e.g., the classification of which

 characters are printable) and sorting, and changing the LANG or

 LC_CTYPE environment variables causes a check for possible changes in

 these respects.

 When using the system's NLS, the setlocale(3) function is called to de?

 termine appropriate character code/classification and sorting (e.g., a

 'en_CA.UTF-8' would yield "UTF-8" as a character code). This function

 typically examines the LANG and LC_CTYPE environment variables; refer

 to the system documentation for further details. When not using the

 system's NLS, the shell simulates it by assuming that the ISO 8859-1

 character set is used whenever either of the LANG and LC_CTYPE vari?

 ables are set, regardless of their values. Sorting is not affected for

 the simulated NLS.

 In addition, with both real and simulated NLS, all printable characters

 in the range \200-\377, i.e., those that have M-char bindings, are au?

 tomatically rebound to self-insert-command. The corresponding binding

 for the escape-char sequence, if any, is left alone. These characters

 are not rebound if the NOREBIND environment variable is set. This may

 be useful for the simulated NLS or a primitive real NLS which assumes

 full ISO 8859-1. Otherwise, all M-char bindings in the range \240-\377

 are effectively undone. Explicitly rebinding the relevant keys with

 bindkey is of course still possible.

 Unknown characters (i.e., those that are neither printable nor control

 characters) are printed in the format \nnn. If the tty is not in 8 bit

 mode, other 8 bit characters are printed by converting them to ASCII

 and using standout mode. The shell never changes the 7/8 bit mode of

 the tty and tracks user-initiated changes of 7/8 bit mode. NLS users

 (or, for that matter, those who want to use a meta key) may need to ex?

 plicitly set the tty in 8 bit mode through the appropriate stty(1) com?

 mand in, e.g., the ~/.login file. Page 44/113

 OS variant support (+)

 A number of new builtin commands are provided to support features in

 particular operating systems. All are described in detail in the

 Builtin commands section.

 On systems that support TCF (aix-ibm370, aix-ps2), getspath and

 setspath get and set the system execution path, getxvers and setxvers

 get and set the experimental version prefix and migrate migrates pro?

 cesses between sites. The jobs builtin prints the site on which each

 job is executing.

 Under BS2000, bs2cmd executes commands of the underlying BS2000/OSD op?

 erating system.

 Under Domain/OS, inlib adds shared libraries to the current environ?

 ment, rootnode changes the rootnode and ver changes the systype.

 Under Mach, setpath is equivalent to Mach's setpath(1).

 Under Masscomp/RTU and Harris CX/UX, universe sets the universe.

 Under Harris CX/UX, ucb or att runs a command under the specified uni?

 verse.

 Under Convex/OS, warp prints or sets the universe.

 The VENDOR, OSTYPE and MACHTYPE environment variables indicate respec?

 tively the vendor, operating system and machine type (microprocessor

 class or machine model) of the system on which the shell thinks it is

 running. These are particularly useful when sharing one's home direc?

 tory between several types of machines; one can, for example,

 set path = (~/bin.$MACHTYPE /usr/ucb /bin /usr/bin .)

 in one's ~/.login and put executables compiled for each machine in the

 appropriate directory.

 The version shell variable indicates what options were chosen when the

 shell was compiled.

 Note also the newgrp builtin, the afsuser and echo_style shell vari?

 ables and the system-dependent locations of the shell's input files

 (see FILES).

 Signal handling

 Login shells ignore interrupts when reading the file ~/.logout. The Page 45/113

 shell ignores quit signals unless started with -q. Login shells catch

 the terminate signal, but non-login shells inherit the terminate behav?

 ior from their parents. Other signals have the values which the shell

 inherited from its parent.

 In shell scripts, the shell's handling of interrupt and terminate sig?

 nals can be controlled with onintr, and its handling of hangups can be

 controlled with hup and nohup.

 The shell exits on a hangup (see also the logout shell variable). By

 default, the shell's children do too, but the shell does not send them

 a hangup when it exits. hup arranges for the shell to send a hangup to

 a child when it exits, and nohup sets a child to ignore hangups.

 Terminal management (+)

 The shell uses three different sets of terminal (``tty'') modes:

 `edit', used when editing, `quote', used when quoting literal charac?

 ters, and `execute', used when executing commands. The shell holds

 some settings in each mode constant, so commands which leave the tty in

 a confused state do not interfere with the shell. The shell also

 matches changes in the speed and padding of the tty. The list of tty

 modes that are kept constant can be examined and modified with the

 setty builtin. Note that although the editor uses CBREAK mode (or its

 equivalent), it takes typed-ahead characters anyway.

 The echotc, settc and telltc commands can be used to manipulate and de?

 bug terminal capabilities from the command line.

 On systems that support SIGWINCH or SIGWINDOW, the shell adapts to win?

 dow resizing automatically and adjusts the environment variables LINES

 and COLUMNS if set. If the environment variable TERMCAP contains li#

 and co# fields, the shell adjusts them to reflect the new window size.

REFERENCE

 The next sections of this manual describe all of the available Builtin

 commands, Special aliases and Special shell variables.

 Builtin commands

 %job A synonym for the fg builtin command.

 %job & A synonym for the bg builtin command. Page 46/113

 : Does nothing, successfully.

 @

 @ name = expr

 @ name[index] = expr

 @ name++|--

 @ name[index]++|--

 The first form prints the values of all shell variables.

 The second form assigns the value of expr to name. The third

 form assigns the value of expr to the index'th component of

 name; both name and its index'th component must already exist.

 expr may contain the operators `*', `+', etc., as in C. If

 expr contains `<', `>', `&' or `' then at least that part of

 expr must be placed within `()'. Note that the syntax of expr

 has nothing to do with that described under Expressions.

 The fourth and fifth forms increment (`++') or decrement (`--')

 name or its index'th component.

 The space between `@' and name is required. The spaces between

 name and `=' and between `=' and expr are optional. Components

 of expr must be separated by spaces.

 alias [name [wordlist]]

 Without arguments, prints all aliases. With name, prints the

 alias for name. With name and wordlist, assigns wordlist as

 the alias of name. wordlist is command and filename substi?

 tuted. name may not be `alias' or `unalias'. See also the un?

 alias builtin command.

 alloc Shows the amount of dynamic memory acquired, broken down into

 used and free memory. With an argument shows the number of

 free and used blocks in each size category. The categories

 start at size 8 and double at each step. This command's output

 may vary across system types, because systems other than the

 VAX may use a different memory allocator.

 bg [%job ...]

 Puts the specified jobs (or, without arguments, the current Page 47/113

 job) into the background, continuing each if it is stopped.

 job may be a number, a string, `', `%', `+' or `-' as described

 under Jobs.

 bindkey [-l|-d|-e|-v|-u] (+)

 bindkey [-a] [-b] [-k] [-r] [--] key (+)

 bindkey [-a] [-b] [-k] [-c|-s] [--] key command (+)

 Without options, the first form lists all bound keys and the

 editor command to which each is bound, the second form lists

 the editor command to which key is bound and the third form

 binds the editor command command to key. Options include:

 -l Lists all editor commands and a short description of each.

 -d Binds all keys to the standard bindings for the default ed?

 itor, as per -e and -v below.

 -e Binds all keys to emacs(1)-style bindings. Unsets vimode.

 -v Binds all keys to vi(1)-style bindings. Sets vimode.

 -a Lists or changes key-bindings in the alternative key map.

 This is the key map used in vimode command mode.

 -b key is interpreted as a control character written ^charac?

 ter (e.g., `^A') or C-character (e.g., `C-A'), a meta char?

 acter written M-character (e.g., `M-A'), a function key

 written F-string (e.g., `F-string'), or an extended prefix

 key written X-character (e.g., `X-A').

 -k key is interpreted as a symbolic arrow key name, which may

 be one of `down', `up', `left' or `right'.

 -r Removes key's binding. Be careful: `bindkey -r' does not

 bind key to self-insert-command (q.v.), it unbinds key com?

 pletely.

 -c command is interpreted as a builtin or external command in?

 stead of an editor command.

 -s command is taken as a literal string and treated as termi?

 nal input when key is typed. Bound keys in command are

 themselves reinterpreted, and this continues for ten levels

 of interpretation. Page 48/113

 -- Forces a break from option processing, so the next word is

 taken as key even if it begins with '-'.

 -u (or any invalid option)

 Prints a usage message.

 key may be a single character or a string. If a command is

 bound to a string, the first character of the string is bound

 to sequence-lead-in and the entire string is bound to the com?

 mand.

 Control characters in key can be literal (they can be typed by

 preceding them with the editor command quoted-insert, normally

 bound to `^V') or written caret-character style, e.g., `^A'.

 Delete is written `^?' (caret-question mark). key and command

 can contain backslashed escape sequences (in the style of Sys?

 tem V echo(1)) as follows:

 \a Bell

 \b Backspace

 \e Escape

 \f Form feed

 \n Newline

 \r Carriage return

 \t Horizontal tab

 \v Vertical tab

 \nnn The ASCII character corresponding to the octal num?

 ber nnn

 `\' nullifies the special meaning of the following character,

 if it has any, notably `\' and `^'.

 bs2cmd bs2000-command (+)

 Passes bs2000-command to the BS2000 command interpreter for ex?

 ecution. Only non-interactive commands can be executed, and it

 is not possible to execute any command that would overlay the

 image of the current process, like /EXECUTE or /CALL-PROCEDURE.

 (BS2000 only)

 break Causes execution to resume after the end of the nearest enclos? Page 49/113

 ing foreach or while. The remaining commands on the current

 line are executed. Multi-level breaks are thus possible by

 writing them all on one line.

 breaksw Causes a break from a switch, resuming after the endsw.

 builtins (+)

 Prints the names of all builtin commands.

 bye (+) A synonym for the logout builtin command. Available only if

 the shell was so compiled; see the version shell variable.

 case label:

 A label in a switch statement as discussed below.

 cd [-p] [-l] [-n|-v] [I--] [name]

 If a directory name is given, changes the shell's working di?

 rectory to name. If not, changes to home, unless the cdtohome

 variable is not set, in which case a name is required. If name

 is `-' it is interpreted as the previous working directory (see

 Other substitutions). (+) If name is not a subdirectory of the

 current directory (and does not begin with `/', `./' or `../'),

 each component of the variable cdpath is checked to see if it

 has a subdirectory name. Finally, if all else fails but name

 is a shell variable whose value begins with `/' or '.', then

 this is tried to see if it is a directory, and the -p option is

 implied.

 With -p, prints the final directory stack, just like dirs. The

 -l, -n and -v flags have the same effect on cd as on dirs, and

 they imply -p. (+) Using -- forces a break from option pro?

 cessing so the next word is taken as the directory name even if

 it begins with '-'. (+)

 See also the implicitcd and cdtohome shell variables.

 chdir A synonym for the cd builtin command.

 complete [command [word/pattern/list[:select]/[[suffix]/] ...]] (+)

 Without arguments, lists all completions. With command, lists

 completions for command. With command and word etc., defines

 completions. Page 50/113

 command may be a full command name or a glob-pattern (see File?

 name substitution). It can begin with `-' to indicate that

 completion should be used only when command is ambiguous.

 word specifies which word relative to the current word is to be

 completed, and may be one of the following:

 c Current-word completion. pattern is a glob-pattern

 which must match the beginning of the current word on

 the command line. pattern is ignored when completing

 the current word.

 C Like c, but includes pattern when completing the cur?

 rent word.

 n Next-word completion. pattern is a glob-pattern which

 must match the beginning of the previous word on the

 command line.

 N Like n, but must match the beginning of the word two

 before the current word.

 p Position-dependent completion. pattern is a numeric

 range, with the same syntax used to index shell vari?

 ables, which must include the current word.

 list, the list of possible completions, may be one of the fol?

 lowing:

 a Aliases

 b Bindings (editor commands)

 c Commands (builtin or external commands)

 C External commands which begin with the supplied

 path prefix

 d Directories

 D Directories which begin with the supplied path pre?

 fix

 e Environment variables

 f Filenames

 F Filenames which begin with the supplied path prefix

 g Groupnames Page 51/113

 j Jobs

 l Limits

 n Nothing

 s Shell variables

 S Signals

 t Plain (``text'') files

 T Plain (``text'') files which begin with the sup?

 plied path prefix

 v Any variables

 u Usernames

 x Like n, but prints select when list-choices is

 used.

 X Completions

 $var Words from the variable var

 (...) Words from the given list

 `...` Words from the output of command

 select is an optional glob-pattern. If given, words from only

 list that match select are considered and the fignore shell

 variable is ignored. The last three types of completion may

 not have a select pattern, and x uses select as an explanatory

 message when the list-choices editor command is used.

 suffix is a single character to be appended to a successful

 completion. If null, no character is appended. If omitted (in

 which case the fourth delimiter can also be omitted), a slash

 is appended to directories and a space to other words.

 command invoked from `...` version has additional environment

 variable set, the variable name is COMMAND_LINE and contains

 (as its name indicates) contents of the current (already typed

 in) command line. One can examine and use contents of the

 COMMAND_LINE variable in her custom script to build more so?

 phisticated completions (see completion for svn(1) included in

 this package).

 Now for some examples. Some commands take only directories as Page 52/113

 arguments, so there's no point completing plain files.

 > complete cd 'p/1/d/'

 completes only the first word following `cd' (`p/1') with a di?

 rectory. p-type completion can also be used to narrow down

 command completion:

 > co[^D]

 complete compress

 > complete -co* 'p/0/(compress)/'

 > co[^D]

 > compress

 This completion completes commands (words in position 0, `p/0')

 which begin with `co' (thus matching `co*') to `compress' (the

 only word in the list). The leading `-' indicates that this

 completion is to be used with only ambiguous commands.

 > complete find 'n/-user/u/'

 is an example of n-type completion. Any word following `find'

 and immediately following `-user' is completed from the list of

 users.

 > complete cc 'c/-I/d/'

 demonstrates c-type completion. Any word following `cc' and

 beginning with `-I' is completed as a directory. `-I' is not

 taken as part of the directory because we used lowercase c.

 Different lists are useful with different commands.

 > complete alias 'p/1/a/'

 > complete man 'p/*/c/'

 > complete set 'p/1/s/'

 > complete true 'p/1/x:Truth has no options./'

 These complete words following `alias' with aliases, `man' with

 commands, and `set' with shell variables. `true' doesn't have

 any options, so x does nothing when completion is attempted and

 prints `Truth has no options.' when completion choices are

 listed.

 Note that the man example, and several other examples below, Page 53/113

 could just as well have used 'c/*' or 'n/*' as 'p/*'.

 Words can be completed from a variable evaluated at completion

 time,

 > complete ftp 'p/1/$hostnames/'

 > set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu)

 > ftp [^D]

 rtfm.mit.edu tesla.ee.cornell.edu

 > ftp [^C]

 > set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu

 uunet.uu.net)

 > ftp [^D]

 rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net

 or from a command run at completion time:

 > complete kill 'p/*/`ps | awk \{print\ \$1\}`/'

 > kill -9 [^D]

 23113 23377 23380 23406 23429 23529 23530 PID

 Note that the complete command does not itself quote its argu?

 ments, so the braces, space and `$' in `{print $1}' must be

 quoted explicitly.

 One command can have multiple completions:

 > complete dbx 'p/2/(core)/' 'p/*/c/'

 completes the second argument to `dbx' with the word `core' and

 all other arguments with commands. Note that the positional

 completion is specified before the next-word completion. Be?

 cause completions are evaluated from left to right, if the

 next-word completion were specified first it would always match

 and the positional completion would never be executed. This is

 a common mistake when defining a completion.

 The select pattern is useful when a command takes files with

 only particular forms as arguments. For example,

 > complete cc 'p/*/f:*.[cao]/'

 completes `cc' arguments to files ending in only `.c', `.a', or

 `.o'. select can also exclude files, using negation of a glob- Page 54/113

 pattern as described under Filename substitution. One might

 use

 > complete rm 'p/*/f:^*.{c,h,cc,C,tex,1,man,l,y}/'

 to exclude precious source code from `rm' completion. Of

 course, one could still type excluded names manually or over?

 ride the completion mechanism using the complete-word-raw or

 list-choices-raw editor commands (q.v.).

 The `C', `D', `F' and `T' lists are like `c', `d', `f' and `t'

 respectively, but they use the select argument in a different

 way: to restrict completion to files beginning with a particu?

 lar path prefix. For example, the Elm mail program uses `=' as

 an abbreviation for one's mail directory. One might use

 > complete elm c@=@F:$HOME/Mail/@

 to complete `elm -f =' as if it were `elm -f ~/Mail/'. Note

 that we used `@' instead of `/' to avoid confusion with the se?

 lect argument, and we used `$HOME' instead of `~' because home

 directory substitution works at only the beginning of a word.

 suffix is used to add a nonstandard suffix (not space or `/'

 for directories) to completed words.

 > complete finger 'c/*@/$hostnames/' 'p/1/u/@'

 completes arguments to `finger' from the list of users, appends

 an `@', and then completes after the `@' from the `hostnames'

 variable. Note again the order in which the completions are

 specified.

 Finally, here's a complex example for inspiration:

 > complete find \

 'n/-name/f/' 'n/-newer/f/' 'n/-{,n}cpio/f/' \

 ?n/-exec/c/' 'n/-ok/c/' 'n/-user/u/' \

 'n/-group/g/' 'n/-fstype/(nfs 4.2)/' \

 'n/-type/(b c d f l p s)/' \

 ?c/-/(name newer cpio ncpio exec ok user \

 group fstype type atime ctime depth inum \

 ls mtime nogroup nouser perm print prune \ Page 55/113

 size xdev)/' \

 'p/*/d/'

 This completes words following `-name', `-newer', `-cpio' or

 `ncpio' (note the pattern which matches both) to files, words

 following `-exec' or `-ok' to commands, words following `user'

 and `group' to users and groups respectively and words follow?

 ing `-fstype' or `-type' to members of the given lists. It

 also completes the switches themselves from the given list

 (note the use of c-type completion) and completes anything not

 otherwise completed to a directory. Whew.

 Remember that programmed completions are ignored if the word

 being completed is a tilde substitution (beginning with `~') or

 a variable (beginning with `$'). See also the uncomplete

 builtin command.

 continue

 Continues execution of the nearest enclosing while or foreach.

 The rest of the commands on the current line are executed.

 default:

 Labels the default case in a switch statement. It should come

 after all case labels.

 dirs [-l] [-n|-v]

 dirs -S|-L [filename] (+)

 dirs -c (+)

 The first form prints the directory stack. The top of the

 stack is at the left and the first directory in the stack is

 the current directory. With -l, `~' or `~name' in the output

 is expanded explicitly to home or the pathname of the home di?

 rectory for user name. (+) With -n, entries are wrapped before

 they reach the edge of the screen. (+) With -v, entries are

 printed one per line, preceded by their stack positions. (+)

 If more than one of -n or -v is given, -v takes precedence. -p

 is accepted but does nothing.

 With -S, the second form saves the directory stack to filename Page 56/113

 as a series of cd and pushd commands. With -L, the shell

 sources filename, which is presumably a directory stack file

 saved by the -S option or the savedirs mechanism. In either

 case, dirsfile is used if filename is not given and ~/.cshdirs

 is used if dirsfile is unset.

 Note that login shells do the equivalent of `dirs -L' on

 startup and, if savedirs is set, `dirs -S' before exiting. Be?

 cause only ~/.tcshrc is normally sourced before ~/.cshdirs,

 dirsfile should be set in ~/.tcshrc rather than ~/.login.

 The last form clears the directory stack.

 echo [-n] word ...

 Writes each word to the shell's standard output, separated by

 spaces and terminated with a newline. The echo_style shell

 variable may be set to emulate (or not) the flags and escape

 sequences of the BSD and/or System V versions of echo; see

 echo(1).

 echotc [-sv] arg ... (+)

 Exercises the terminal capabilities (see termcap(5)) in args.

 For example, 'echotc home' sends the cursor to the home posi?

 tion, 'echotc cm 3 10' sends it to column 3 and row 10, and

 'echotc ts 0; echo "This is a test."; echotc fs' prints "This

 is a test." in the status line.

 If arg is 'baud', 'cols', 'lines', 'meta' or 'tabs', prints the

 value of that capability ("yes" or "no" indicating that the

 terminal does or does not have that capability). One might use

 this to make the output from a shell script less verbose on

 slow terminals, or limit command output to the number of lines

 on the screen:

 > set history=`echotc lines`

 > @ history--

 Termcap strings may contain wildcards which will not echo cor?

 rectly. One should use double quotes when setting a shell

 variable to a terminal capability string, as in the following Page 57/113

 example that places the date in the status line:

 > set tosl="`echotc ts 0`"

 > set frsl="`echotc fs`"

 > echo -n "$tosl";date; echo -n "$frsl"

 With -s, nonexistent capabilities return the empty string

 rather than causing an error. With -v, messages are verbose.

 else

 end

 endif

 endsw See the description of the foreach, if, switch, and while

 statements below.

 eval arg ...

 Treats the arguments as input to the shell and executes the re?

 sulting command(s) in the context of the current shell. This

 is usually used to execute commands generated as the result of

 command or variable substitution, because parsing occurs before

 these substitutions. See tset(1) for a sample use of eval.

 exec command

 Executes the specified command in place of the current shell.

 exit [expr]

 The shell exits either with the value of the specified expr (an

 expression, as described under Expressions) or, without expr,

 with the value 0.

 fg [%job ...]

 Brings the specified jobs (or, without arguments, the current

 job) into the foreground, continuing each if it is stopped.

 job may be a number, a string, `', `%', `+' or `-' as described

 under Jobs. See also the run-fg-editor editor command.

 filetest -op file ... (+)

 Applies op (which is a file inquiry operator as described under

 File inquiry operators) to each file and returns the results as

 a space-separated list.

 foreach name (wordlist) Page 58/113

 ...

 end Successively sets the variable name to each member of wordlist

 and executes the sequence of commands between this command and

 the matching end. (Both foreach and end must appear alone on

 separate lines.) The builtin command continue may be used to

 continue the loop prematurely and the builtin command break to

 terminate it prematurely. When this command is read from the

 terminal, the loop is read once prompting with `foreach? ' (or

 prompt2) before any statements in the loop are executed. If

 you make a mistake typing in a loop at the terminal you can rub

 it out.

 getspath (+)

 Prints the system execution path. (TCF only)

 getxvers (+)

 Prints the experimental version prefix. (TCF only)

 glob wordlist

 Like echo, but the `-n' parameter is not recognized and words

 are delimited by null characters in the output. Useful for

 programs which wish to use the shell to filename expand a list

 of words.

 goto word

 word is filename and command-substituted to yield a string of

 the form `label'. The shell rewinds its input as much as pos?

 sible, searches for a line of the form `label:', possibly pre?

 ceded by blanks or tabs, and continues execution after that

 line.

 hashstat

 Prints a statistics line indicating how effective the internal

 hash table has been at locating commands (and avoiding exec's).

 An exec is attempted for each component of the path where the

 hash function indicates a possible hit, and in each component

 which does not begin with a `/'.

 On machines without vfork(2), prints only the number and size Page 59/113

 of hash buckets.

 history [-hTr] [n]

 history -S|-L|-M [filename] (+)

 history -c (+)

 The first form prints the history event list. If n is given

 only the n most recent events are printed or saved. With -h,

 the history list is printed without leading numbers. If -T is

 specified, timestamps are printed also in comment form. (This

 can be used to produce files suitable for loading with 'history

 -L' or 'source -h'.) With -r, the order of printing is most

 recent first rather than oldest first.

 With -S, the second form saves the history list to filename.

 If the first word of the savehist shell variable is set to a

 number, at most that many lines are saved. If the second word

 of savehist is set to `merge', the history list is merged with

 the existing history file instead of replacing it (if there is

 one) and sorted by time stamp. (+) Merging is intended for an

 environment like the X Window System with several shells in si?

 multaneous use. If the second word of savehist is `merge' and

 the third word is set to `lock', the history file update will

 be serialized with other shell sessions that would possibly

 like to merge history at exactly the same time.

 With -L, the shell appends filename, which is presumably a his?

 tory list saved by the -S option or the savehist mechanism, to

 the history list. -M is like -L, but the contents of filename

 are merged into the history list and sorted by timestamp. In

 either case, histfile is used if filename is not given and

 ~/.history is used if histfile is unset. `history -L' is ex?

 actly like 'source -h' except that it does not require a file?

 name.

 Note that login shells do the equivalent of `history -L' on

 startup and, if savehist is set, `history -S' before exiting.

 Because only ~/.tcshrc is normally sourced before ~/.history, Page 60/113

 histfile should be set in ~/.tcshrc rather than ~/.login.

 If histlit is set, the first and second forms print and save

 the literal (unexpanded) form of the history list.

 The last form clears the history list.

 hup [command] (+)

 With command, runs command such that it will exit on a hangup

 signal and arranges for the shell to send it a hangup signal

 when the shell exits. Note that commands may set their own re?

 sponse to hangups, overriding hup. Without an argument, causes

 the non-interactive shell only to exit on a hangup for the re?

 mainder of the script. See also Signal handling and the nohup

 builtin command.

 if (expr) command

 If expr (an expression, as described under Expressions) evalu?

 ates true, then command is executed. Variable substitution on

 command happens early, at the same time it does for the rest of

 the if command. command must be a simple command, not an

 alias, a pipeline, a command list or a parenthesized command

 list, but it may have arguments. Input/output redirection oc?

 curs even if expr is false and command is thus not executed;

 this is a bug.

 if (expr) then

 ...

 else if (expr2) then

 ...

 else

 ...

 endif If the specified expr is true then the commands to the first

 else are executed; otherwise if expr2 is true then the commands

 to the second else are executed, etc. Any number of else-if

 pairs are possible; only one endif is needed. The else part is

 likewise optional. (The words else and endif must appear at

 the beginning of input lines; the if must appear alone on its Page 61/113

 input line or after an else.)

 inlib shared-library ... (+)

 Adds each shared-library to the current environment. There is

 no way to remove a shared library. (Domain/OS only)

 jobs [-l]

 Lists the active jobs. With -l, lists process IDs in addition

 to the normal information. On TCF systems, prints the site on

 which each job is executing.

 kill [-s signal] %job|pid ...

 kill -l The first and second forms sends the specified signal (or, if

 none is given, the TERM (terminate) signal) to the specified

 jobs or processes. job may be a number, a string, `', `%', `+'

 or `-' as described under Jobs. Signals are either given by

 number or by name (as given in /usr/include/signal.h, stripped

 of the prefix `SIG'). There is no default job; saying just

 `kill' does not send a signal to the current job. If the sig?

 nal being sent is TERM (terminate) or HUP (hangup), then the

 job or process is sent a CONT (continue) signal as well. The

 third form lists the signal names.

 limit [-h] [resource [maximum-use]]

 Limits the consumption by the current process and each process

 it creates to not individually exceed maximum-use on the speci?

 fied resource. If no maximum-use is given, then the current

 limit is printed; if no resource is given, then all limitations

 are given. If the -h flag is given, the hard limits are used

 instead of the current limits. The hard limits impose a ceil?

 ing on the values of the current limits. Only the super-user

 may raise the hard limits, but a user may lower or raise the

 current limits within the legal range.

 Controllable resources currently include (if supported by the

 OS):

 cputime

 the maximum number of cpu-seconds to be used by each Page 62/113

 process

 filesize

 the largest single file which can be created

 datasize

 the maximum growth of the data+stack region via sbrk(2)

 beyond the end of the program text

 stacksize

 the maximum size of the automatically-extended stack re?

 gion

 coredumpsize

 the size of the largest core dump that will be created

 memoryuse

 the maximum amount of physical memory a process may have

 allocated to it at a given time

 NOTE: Changing this value has no effect. Support has

 been removed from Linux kernel v2.6 and newer.

 vmemoryuse

 the maximum amount of virtual memory a process may have

 allocated to it at a given time (address space)

 vmemoryuse

 the maximum amount of virtual memory a process may have

 allocated to it at a given time

 heapsize

 the maximum amount of memory a process may allocate per

 brk() system call

 descriptors or openfiles

 the maximum number of open files for this process

 pseudoterminals

 the maximum number of pseudo-terminals for this user

 kqueues

 the maximum number of kqueues allocated for this process

 concurrency

 the maximum number of threads for this process Page 63/113

 memorylocked

 the maximum size which a process may lock into memory

 using mlock(2)

 maxproc

 the maximum number of simultaneous processes for this

 user id

 maxthread

 the maximum number of simultaneous threads (lightweight

 processes) for this user id

 threads

 the maximum number of threads for this process

 sbsize the maximum size of socket buffer usage for this user

 swapsize

 the maximum amount of swap space reserved or used for

 this user

 maxlocks

 the maximum number of locks for this user

 posixlocks

 the maximum number of POSIX advisory locks for this user

 maxsignal

 the maximum number of pending signals for this user

 maxmessage

 the maximum number of bytes in POSIX mqueues for this

 user

 maxnice

 the maximum nice priority the user is allowed to raise

 mapped from [19...-20] to [0...39] for this user

 maxrtprio

 the maximum realtime priority for this user maxrttime

 the timeout for RT tasks in microseconds for this user.

 maximum-use may be given as a (floating point or integer) num?

 ber followed by a scale factor. For all limits other than

 cputime the default scale is `k' or `kilobytes' (1024 bytes); a Page 64/113

 scale factor of `m' or `megabytes' or `g' or `gigabytes' may

 also be used. For cputime the default scaling is `seconds',

 while `m' for minutes or `h' for hours, or a time of the form

 `mm:ss' giving minutes and seconds may be used.

 If maximum-use is `unlimited', then the limitation on the

 specified resource is removed (this is equivalent to the un?

 limit builtin command).

 For both resource names and scale factors, unambiguous prefixes

 of the names suffice.

 log (+) Prints the watch shell variable and reports on each user indi?

 cated in watch who is logged in, regardless of when they last

 logged in. See also watchlog.

 login Terminates a login shell, replacing it with an instance of

 /bin/login. This is one way to log off, included for compati?

 bility with sh(1).

 logout Terminates a login shell. Especially useful if ignoreeof is

 set.

 ls-F [-switch ...] [file ...] (+)

 Lists files like `ls -F', but much faster. It identifies each

 type of special file in the listing with a special character:

 / Directory

 * Executable

 # Block device

 % Character device

 | Named pipe (systems with named pipes only)

 = Socket (systems with sockets only)

 @ Symbolic link (systems with symbolic links only)

 + Hidden directory (AIX only) or context dependent (HP/UX

 only)

 : Network special (HP/UX only)

 If the listlinks shell variable is set, symbolic links are

 identified in more detail (on only systems that have them, of

 course): Page 65/113

 @ Symbolic link to a non-directory

 > Symbolic link to a directory

 & Symbolic link to nowhere

 listlinks also slows down ls-F and causes partitions holding

 files pointed to by symbolic links to be mounted.

 If the listflags shell variable is set to `x', `a' or `A', or

 any combination thereof (e.g., `xA'), they are used as flags to

 ls-F, making it act like `ls -xF', `ls -Fa', `ls -FA' or a com?

 bination (e.g., `ls -FxA'). On machines where `ls -C' is not

 the default, ls-F acts like `ls -CF', unless listflags contains

 an `x', in which case it acts like `ls -xF'. ls-F passes its

 arguments to ls(1) if it is given any switches, so `alias ls

 ls-F' generally does the right thing.

 The ls-F builtin can list files using different colors depend?

 ing on the filetype or extension. See the color shell variable

 and the LS_COLORS environment variable.

 migrate [-site] pid|%jobid ... (+)

 migrate -site (+)

 The first form migrates the process or job to the site speci?

 fied or the default site determined by the system path. The

 second form is equivalent to `migrate -site $$': it migrates

 the current process to the specified site. Migrating the shell

 itself can cause unexpected behavior, because the shell does

 not like to lose its tty. (TCF only)

 newgrp [-] [group] (+)

 Equivalent to `exec newgrp'; see newgrp(1). Available only if

 the shell was so compiled; see the version shell variable.

 nice [+number] [command]

 Sets the scheduling priority for the shell to number, or, with?

 out number, to 4. With command, runs command at the appropri?

 ate priority. The greater the number, the less cpu the process

 gets. The super-user may specify negative priority by using

 `nice -number ...'. Command is always executed in a sub-shell, Page 66/113

 and the restrictions placed on commands in simple if statements

 apply.

 nohup [command]

 With command, runs command such that it will ignore hangup sig?

 nals. Note that commands may set their own response to

 hangups, overriding nohup. Without an argument, causes the

 non-interactive shell only to ignore hangups for the remainder

 of the script. See also Signal handling and the hup builtin

 command.

 notify [%job ...]

 Causes the shell to notify the user asynchronously when the

 status of any of the specified jobs (or, without %job, the cur?

 rent job) changes, instead of waiting until the next prompt as

 is usual. job may be a number, a string, `', `%', `+' or `-'

 as described under Jobs. See also the notify shell variable.

 onintr [-|label]

 Controls the action of the shell on interrupts. Without argu?

 ments, restores the default action of the shell on interrupts,

 which is to terminate shell scripts or to return to the termi?

 nal command input level. With `-', causes all interrupts to be

 ignored. With label, causes the shell to execute a `goto la?

 bel' when an interrupt is received or a child process termi?

 nates because it was interrupted.

 onintr is ignored if the shell is running detached and in sys?

 tem startup files (see FILES), where interrupts are disabled

 anyway.

 popd [-p] [-l] [-n|-v] [+n]

 Without arguments, pops the directory stack and returns to the

 new top directory. With a number `+n', discards the n'th entry

 in the stack.

 Finally, all forms of popd print the final directory stack,

 just like dirs. The pushdsilent shell variable can be set to

 prevent this and the -p flag can be given to override pushdsi? Page 67/113

 lent. The -l, -n and -v flags have the same effect on popd as

 on dirs. (+)

 printenv [name] (+)

 Prints the names and values of all environment variables or,

 with name, the value of the environment variable name.

 pushd [-p] [-l] [-n|-v] [name|+n]

 Without arguments, exchanges the top two elements of the direc?

 tory stack. If pushdtohome is set, pushd without arguments

 does `pushd ~', like cd. (+) With name, pushes the current

 working directory onto the directory stack and changes to name.

 If name is `-' it is interpreted as the previous working direc?

 tory (see Filename substitution). (+) If dunique is set, pushd

 removes any instances of name from the stack before pushing it

 onto the stack. (+) With a number `+n', rotates the nth ele?

 ment of the directory stack around to be the top element and

 changes to it. If dextract is set, however, `pushd +n' ex?

 tracts the nth directory, pushes it onto the top of the stack

 and changes to it. (+)

 Finally, all forms of pushd print the final directory stack,

 just like dirs. The pushdsilent shell variable can be set to

 prevent this and the -p flag can be given to override pushdsi?

 lent. The -l, -n and -v flags have the same effect on pushd as

 on dirs. (+)

 rehash Causes the internal hash table of the contents of the directo?

 ries in the path variable to be recomputed. This is needed if

 the autorehash shell variable is not set and new commands are

 added to directories in path while you are logged in. With au?

 torehash, a new command will be found automatically, except in

 the special case where another command of the same name which

 is located in a different directory already exists in the hash

 table. Also flushes the cache of home directories built by

 tilde expansion.

 repeat count command Page 68/113

 The specified command, which is subject to the same restric?

 tions as the command in the one line if statement above, is ex?

 ecuted count times. I/O redirections occur exactly once, even

 if count is 0.

 rootnode //nodename (+)

 Changes the rootnode to //nodename, so that `/' will be inter?

 preted as `//nodename'. (Domain/OS only)

 sched (+)

 sched [+]hh:mm command (+)

 sched -n (+)

 The first form prints the scheduled-event list. The sched

 shell variable may be set to define the format in which the

 scheduled-event list is printed. The second form adds command

 to the scheduled-event list. For example,

 > sched 11:00 echo It\'s eleven o\'clock.

 causes the shell to echo `It's eleven o'clock.' at 11 AM. The

 time may be in 12-hour AM/PM format

 > sched 5pm set prompt='[%h] It\'s after 5; go home: >'

 or may be relative to the current time:

 > sched +2:15 /usr/lib/uucp/uucico -r1 -sother

 A relative time specification may not use AM/PM format. The

 third form removes item n from the event list:

 > sched

 1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

 2 Wed Apr 4 17:00 set prompt=[%h] It's after 5; go

 home: >

 > sched -2

 > sched

 1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

 A command in the scheduled-event list is executed just before

 the first prompt is printed after the time when the command is

 scheduled. It is possible to miss the exact time when the com?

 mand is to be run, but an overdue command will execute at the Page 69/113

 next prompt. A command which comes due while the shell is

 waiting for user input is executed immediately. However, nor?

 mal operation of an already-running command will not be inter?

 rupted so that a scheduled-event list element may be run.

 This mechanism is similar to, but not the same as, the at(1)

 command on some Unix systems. Its major disadvantage is that

 it may not run a command at exactly the specified time. Its

 major advantage is that because sched runs directly from the

 shell, it has access to shell variables and other structures.

 This provides a mechanism for changing one's working environ?

 ment based on the time of day.

 set

 set name ...

 set name=word ...

 set [-r] [-f|-l] name=(wordlist) ... (+)

 set name[index]=word ...

 set -r (+)

 set -r name ... (+)

 set -r name=word ... (+)

 The first form of the command prints the value of all shell

 variables. Variables which contain more than a single word

 print as a parenthesized word list. The second form sets name

 to the null string. The third form sets name to the single

 word. The fourth form sets name to the list of words in

 wordlist. In all cases the value is command and filename ex?

 panded. If -r is specified, the value is set read-only. If -f

 or -l are specified, set only unique words keeping their order.

 -f prefers the first occurrence of a word, and -l the last.

 The fifth form sets the index'th component of name to word;

 this component must already exist. The sixth form lists only

 the names of all shell variables that are read-only. The sev?

 enth form makes name read-only, whether or not it has a value.

 The eighth form is the same as the third form, but make name Page 70/113

 read-only at the same time.

 These arguments can be repeated to set and/or make read-only

 multiple variables in a single set command. Note, however,

 that variable expansion happens for all arguments before any

 setting occurs. Note also that `=' can be adjacent to both

 name and word or separated from both by whitespace, but cannot

 be adjacent to only one or the other. See also the unset

 builtin command.

 setenv [name [value]]

 Without arguments, prints the names and values of all environ?

 ment variables. Given name, sets the environment variable name

 to value or, without value, to the null string.

 setpath path (+)

 Equivalent to setpath(1). (Mach only)

 setspath LOCAL|site|cpu ... (+)

 Sets the system execution path. (TCF only)

 settc cap value (+)

 Tells the shell to believe that the terminal capability cap (as

 defined in termcap(5)) has the value value. No sanity checking

 is done. Concept terminal users may have to `settc xn no' to

 get proper wrapping at the rightmost column.

 setty [-d|-q|-x] [-a] [[+|-]mode] (+)

 Controls which tty modes (see Terminal management) the shell

 does not allow to change. -d, -q or -x tells setty to act on

 the `edit', `quote' or `execute' set of tty modes respectively;

 without -d, -q or -x, `execute' is used.

 Without other arguments, setty lists the modes in the chosen

 set which are fixed on (`+mode') or off (`-mode'). The avail?

 able modes, and thus the display, vary from system to system.

 With -a, lists all tty modes in the chosen set whether or not

 they are fixed. With +mode, -mode or mode, fixes mode on or

 off or removes control from mode in the chosen set. For exam?

 ple, `setty +echok echoe' fixes `echok' mode on and allows com? Page 71/113

 mands to turn `echoe' mode on or off, both when the shell is

 executing commands.

 setxvers [string] (+)

 Set the experimental version prefix to string, or removes it if

 string is omitted. (TCF only)

 shift [variable]

 Without arguments, discards argv[1] and shifts the members of

 argv to the left. It is an error for argv not to be set or to

 have less than one word as value. With variable, performs the

 same function on variable.

 source [-h] name [args ...]

 The shell reads and executes commands from name. The commands

 are not placed on the history list. If any args are given,

 they are placed in argv. (+) source commands may be nested; if

 they are nested too deeply the shell may run out of file de?

 scriptors. An error in a source at any level terminates all

 nested source commands. With -h, commands are placed on the

 history list instead of being executed, much like `history -L'.

 stop %job|pid ...

 Stops the specified jobs or processes which are executing in

 the background. job may be a number, a string, `', `%', `+' or

 `-' as described under Jobs. There is no default job; saying

 just `stop' does not stop the current job.

 suspend Causes the shell to stop in its tracks, much as if it had been

 sent a stop signal with ^Z. This is most often used to stop

 shells started by su(1).

 switch (string)

 case str1:

 ...

 breaksw

 ...

 default:

 ... Page 72/113

 breaksw

 endsw Each case label is successively matched, against the specified

 string which is first command and filename expanded. The file

 metacharacters `*', `?' and `[...]' may be used in the case

 labels, which are variable expanded. If none of the labels

 match before a `default' label is found, then the execution be?

 gins after the default label. Each case label and the default

 label must appear at the beginning of a line. The command

 breaksw causes execution to continue after the endsw. Other?

 wise control may fall through case labels and default labels as

 in C. If no label matches and there is no default, execution

 continues after the endsw.

 telltc (+)

 Lists the values of all terminal capabilities (see termcap(5)).

 termname [terminal type] (+)

 Tests if terminal type (or the current value of TERM if no ter?

 minal type is given) has an entry in the hosts termcap(5) or

 terminfo(5) database. Prints the terminal type to stdout and

 returns 0 if an entry is present otherwise returns 1.

 time [command]

 Executes command (which must be a simple command, not an alias,

 a pipeline, a command list or a parenthesized command list) and

 prints a time summary as described under the time variable. If

 necessary, an extra shell is created to print the time statis?

 tic when the command completes. Without command, prints a time

 summary for the current shell and its children.

 umask [value]

 Sets the file creation mask to value, which is given in octal.

 Common values for the mask are 002, giving all access to the

 group and read and execute access to others, and 022, giving

 read and execute access to the group and others. Without

 value, prints the current file creation mask.

 unalias pattern Page 73/113

 Removes all aliases whose names match pattern. `unalias *'

 thus removes all aliases. It is not an error for nothing to be

 unaliased.

 uncomplete pattern (+)

 Removes all completions whose names match pattern. `uncomplete

 *' thus removes all completions. It is not an error for noth?

 ing to be uncompleted.

 unhash Disables use of the internal hash table to speed location of

 executed programs.

 universe universe (+)

 Sets the universe to universe. (Masscomp/RTU only)

 unlimit [-hf] [resource]

 Removes the limitation on resource or, if no resource is speci?

 fied, all resource limitations. With -h, the corresponding

 hard limits are removed. Only the super-user may do this.

 Note that unlimit may not exit successful, since most systems

 do not allow descriptors to be unlimited. With -f errors are

 ignored.

 unset pattern

 Removes all variables whose names match pattern, unless they

 are read-only. `unset *' thus removes all variables unless

 they are read-only; this is a bad idea. It is not an error for

 nothing to be unset.

 unsetenv pattern

 Removes all environment variables whose names match pattern.

 `unsetenv *' thus removes all environment variables; this is a

 bad idea. It is not an error for nothing to be unsetenved.

 ver [systype [command]] (+)

 Without arguments, prints SYSTYPE. With systype, sets SYSTYPE

 to systype. With systype and command, executes command under

 systype. systype may be `bsd4.3' or `sys5.3'. (Domain/OS

 only)

 wait The shell waits for all background jobs. If the shell is in? Page 74/113

 teractive, an interrupt will disrupt the wait and cause the

 shell to print the names and job numbers of all outstanding

 jobs.

 warp universe (+)

 Sets the universe to universe. (Convex/OS only)

 watchlog (+)

 An alternate name for the log builtin command (q.v.). Avail?

 able only if the shell was so compiled; see the version shell

 variable.

 where command (+)

 Reports all known instances of command, including aliases,

 builtins and executables in path.

 which command (+)

 Displays the command that will be executed by the shell after

 substitutions, path searching, etc. The builtin command is

 just like which(1), but it correctly reports tcsh aliases and

 builtins and is 10 to 100 times faster. See also the which-

 command editor command.

 while (expr)

 ...

 end Executes the commands between the while and the matching end

 while expr (an expression, as described under Expressions)

 evaluates non-zero. while and end must appear alone on their

 input lines. break and continue may be used to terminate or

 continue the loop prematurely. If the input is a terminal, the

 user is prompted the first time through the loop as with fore?

 ach.

 Special aliases (+)

 If set, each of these aliases executes automatically at the indicated

 time. They are all initially undefined.

 beepcmd Runs when the shell wants to ring the terminal bell.

 cwdcmd Runs after every change of working directory. For example, if

 the user is working on an X window system using xterm(1) and a Page 75/113

 re-parenting window manager that supports title bars such as

 twm(1) and does

 > alias cwdcmd 'echo -n "^[]2;${HOST}:$cwd ^G"'

 then the shell will change the title of the running xterm(1) to

 be the name of the host, a colon, and the full current working

 directory. A fancier way to do that is

 > alias cwdcmd 'echo -n

 "^[]2;${HOST}:$cwd^G^[]1;${HOST}^G"'

 This will put the hostname and working directory on the title

 bar but only the hostname in the icon manager menu.

 Note that putting a cd, pushd or popd in cwdcmd may cause an

 infinite loop. It is the author's opinion that anyone doing so

 will get what they deserve.

 jobcmd Runs before each command gets executed, or when the command

 changes state. This is similar to postcmd, but it does not

 print builtins.

 > alias jobcmd 'echo -n "^[]2\;\!#:q^G"'

 then executing vi foo.c will put the command string in the

 xterm title bar.

 helpcommand

 Invoked by the run-help editor command. The command name for

 which help is sought is passed as sole argument. For example,

 if one does

 > alias helpcommand '\!:1 --help'

 then the help display of the command itself will be invoked,

 using the GNU help calling convention. Currently there is no

 easy way to account for various calling conventions (e.g., the

 customary Unix `-h'), except by using a table of many commands.

 periodic

 Runs every tperiod minutes. This provides a convenient means

 for checking on common but infrequent changes such as new mail.

 For example, if one does

 > set tperiod = 30 Page 76/113

 > alias periodic checknews

 then the checknews(1) program runs every 30 minutes. If peri?

 odic is set but tperiod is unset or set to 0, periodic behaves

 like precmd.

 precmd Runs just before each prompt is printed. For example, if one

 does

 > alias precmd date

 then date(1) runs just before the shell prompts for each com?

 mand. There are no limits on what precmd can be set to do, but

 discretion should be used.

 postcmd Runs before each command gets executed.

 > alias postcmd 'echo -n "^[]2\;\!#:q^G"'

 then executing vi foo.c will put the command string in the

 xterm title bar.

 shell Specifies the interpreter for executable scripts which do not

 themselves specify an interpreter. The first word should be a

 full path name to the desired interpreter (e.g., `/bin/csh' or

 `/usr/local/bin/tcsh').

 Special shell variables

 The variables described in this section have special meaning to the

 shell.

 The shell sets addsuffix, argv, autologout, csubstnonl, command,

 echo_style, edit, gid, group, home, loginsh, oid, path, prompt,

 prompt2, prompt3, shell, shlvl, tcsh, term, tty, uid, user and version

 at startup; they do not change thereafter unless changed by the user.

 The shell updates cwd, dirstack, owd and status when necessary, and

 sets logout on logout.

 The shell synchronizes group, home, path, shlvl, term and user with the

 environment variables of the same names: whenever the environment vari?

 able changes the shell changes the corresponding shell variable to

 match (unless the shell variable is read-only) and vice versa. Note

 that although cwd and PWD have identical meanings, they are not syn?

 chronized in this manner, and that the shell automatically converts be? Page 77/113

 tween the different formats of path and PATH.

 addsuffix (+)

 If set, filename completion adds `/' to the end of directories

 and a space to the end of normal files when they are matched

 exactly. Set by default.

 afsuser (+)

 If set, autologout's autolock feature uses its value instead of

 the local username for kerberos authentication.

 ampm (+)

 If set, all times are shown in 12-hour AM/PM format.

 anyerror (+)

 This variable selects what is propagated to the value of the

 status variable. For more information see the description of

 the status variable below.

 argv The arguments to the shell. Positional parameters are taken

 from argv, i.e., `$1' is replaced by `$argv[1]', etc. Set by

 default, but usually empty in interactive shells.

 autocorrect (+)

 If set, the spell-word editor command is invoked automatically

 before each completion attempt.

 autoexpand (+)

 If set, the expand-history editor command is invoked automati?

 cally before each completion attempt. If this is set to only?

 history, then only history will be expanded and a second com?

 pletion will expand filenames.

 autolist (+)

 If set, possibilities are listed after an ambiguous completion.

 If set to `ambiguous', possibilities are listed only when no

 new characters are added by completion.

 autologout (+)

 The first word is the number of minutes of inactivity before

 automatic logout. The optional second word is the number of

 minutes of inactivity before automatic locking. When the shell Page 78/113

 automatically logs out, it prints `auto-logout', sets the vari?

 able logout to `automatic' and exits. When the shell automati?

 cally locks, the user is required to enter his password to con?

 tinue working. Five incorrect attempts result in automatic lo?

 gout. Set to `60' (automatic logout after 60 minutes, and no

 locking) by default in login and superuser shells, but not if

 the shell thinks it is running under a window system (i.e., the

 DISPLAY environment variable is set), the tty is a pseudo-tty

 (pty) or the shell was not so compiled (see the version shell

 variable). Unset or set to `0' to disable automatic logout.

 See also the afsuser and logout shell variables.

 autorehash (+)

 If set, the internal hash table of the contents of the directo?

 ries in the path variable will be recomputed if a command is

 not found in the hash table. In addition, the list of avail?

 able commands will be rebuilt for each command completion or

 spelling correction attempt if set to `complete' or `correct'

 respectively; if set to `always', this will be done for both

 cases.

 backslash_quote (+)

 If set, backslashes (`\') always quote `\', `'', and `"'. This

 may make complex quoting tasks easier, but it can cause syntax

 errors in csh(1) scripts.

 catalog The file name of the message catalog. If set, tcsh use

 `tcsh.${catalog}' as a message catalog instead of default

 `tcsh'.

 cdpath A list of directories in which cd should search for subdirecto?

 ries if they aren't found in the current directory.

 cdtohome (+)

 If not set, cd requires a directory name, and will not go to

 the home directory if it's omitted. This is set by default.

 color If set, it enables color display for the builtin ls-F and it

 passes --color=auto to ls. Alternatively, it can be set to Page 79/113

 only ls-F or only ls to enable color to only one command. Set?

 ting it to nothing is equivalent to setting it to (ls-F ls).

 colorcat

 If set, it enables color escape sequence for NLS message files.

 And display colorful NLS messages.

 command (+)

 If set, the command which was passed to the shell with the -c

 flag (q.v.).

 compat_expr (+)

 If set, the shell will evaluate expressions right to left, like

 the original csh.

 complete (+)

 If set to `igncase', the completion becomes case insensitive.

 If set to `enhance', completion ignores case and considers hy?

 phens and underscores to be equivalent; it will also treat pe?

 riods, hyphens and underscores (`.', `-' and `_') as word sepa?

 rators. If set to `Enhance', completion matches uppercase and

 underscore characters explicitly and matches lowercase and hy?

 phens in a case-insensitive manner; it will treat periods, hy?

 phens and underscores as word separators.

 continue (+)

 If set to a list of commands, the shell will continue the

 listed commands, instead of starting a new one.

 continue_args (+)

 Same as continue, but the shell will execute:

 echo `pwd` $argv > ~/.<cmd>_pause; %<cmd>

 correct (+)

 If set to `cmd', commands are automatically spelling-corrected.

 If set to `complete', commands are automatically completed. If

 set to `all', the entire command line is corrected.

 csubstnonl (+)

 If set, newlines and carriage returns in command substitution

 are replaced by spaces. Set by default. Page 80/113

 cwd The full pathname of the current directory. See also the

 dirstack and owd shell variables.

 dextract (+)

 If set, `pushd +n' extracts the nth directory from the direc?

 tory stack rather than rotating it to the top.

 dirsfile (+)

 The default location in which `dirs -S' and `dirs -L' look for

 a history file. If unset, ~/.cshdirs is used. Because only

 ~/.tcshrc is normally sourced before ~/.cshdirs, dirsfile

 should be set in ~/.tcshrc rather than ~/.login.

 dirstack (+)

 An array of all the directories on the directory stack.

 `$dirstack[1]' is the current working directory, `$dirstack[2]'

 the first directory on the stack, etc. Note that the current

 working directory is `$dirstack[1]' but `=0' in directory stack

 substitutions, etc. One can change the stack arbitrarily by

 setting dirstack, but the first element (the current working

 directory) is always correct. See also the cwd and owd shell

 variables.

 dspmbyte (+)

 Has an effect iff 'dspm' is listed as part of the version shell

 variable. If set to `euc', it enables display and editing EUC-

 kanji(Japanese) code. If set to `sjis', it enables display and

 editing Shift-JIS(Japanese) code. If set to `big5', it enables

 display and editing Big5(Chinese) code. If set to `utf8', it

 enables display and editing Utf8(Unicode) code. If set to the

 following format, it enables display and editing of original

 multi-byte code format:

 > set dspmbyte = 0000....(256 bytes)....0000

 The table requires just 256 bytes. Each character of 256 char?

 acters corresponds (from left to right) to the ASCII codes

 0x00, 0x01, ... 0xff. Each character is set to number 0,1,2

 and 3. Each number has the following meaning: Page 81/113

 0 ... not used for multi-byte characters.

 1 ... used for the first byte of a multi-byte character.

 2 ... used for the second byte of a multi-byte character.

 3 ... used for both the first byte and second byte of a

 multi-byte character.

 Example:

 If set to `001322', the first character (means 0x00 of the

 ASCII code) and second character (means 0x01 of ASCII code) are

 set to `0'. Then, it is not used for multi-byte characters.

 The 3rd character (0x02) is set to '1', indicating that it is

 used for the first byte of a multi-byte character. The 4th

 character(0x03) is set '3'. It is used for both the first byte

 and the second byte of a multi-byte character. The 5th and 6th

 characters (0x04,0x05) are set to '2', indicating that they are

 used for the second byte of a multi-byte character.

 The GNU fileutils version of ls cannot display multi-byte file?

 names without the -N (--literal) option. If you are using

 this version, set the second word of dspmbyte to "ls". If not,

 for example, "ls-F -l" cannot display multi-byte filenames.

 Note:

 This variable can only be used if KANJI and DSPMBYTE has been

 defined at compile time.

 dunique (+)

 If set, pushd removes any instances of name from the stack be?

 fore pushing it onto the stack.

 echo If set, each command with its arguments is echoed just before

 it is executed. For non-builtin commands all expansions occur

 before echoing. Builtin commands are echoed before command and

 filename substitution, because these substitutions are then

 done selectively. Set by the -x command line option.

 echo_style (+)

 The style of the echo builtin. May be set to

 bsd Don't echo a newline if the first argument is `-n'; the Page 82/113

 default for csh.

 sysv Recognize backslashed escape sequences in echo strings.

 both Recognize both the `-n' flag and backslashed escape se?

 quences; the default for tcsh.

 none Recognize neither.

 Set by default to the local system default. The BSD and System

 V options are described in the echo(1) man pages on the appro?

 priate systems.

 edit (+)

 If set, the command-line editor is used. Set by default in in?

 teractive shells.

 editors (+)

 A list of command names for the run-fg-editor editor command to

 match. If not set, the EDITOR (`ed' if unset) and VISUAL (`vi'

 if unset) environment variables will be used instead.

 ellipsis (+)

 If set, the `%c'/`%.' and `%C' prompt sequences (see the prompt

 shell variable) indicate skipped directories with an ellipsis

 (`...') instead of `/<skipped>'.

 euid (+)

 The user's effective user ID.

 euser (+)

 The first matching passwd entry name corresponding to the ef?

 fective user ID.

 fignore (+)

 Lists file name suffixes to be ignored by completion.

 filec In tcsh, completion is always used and this variable is ignored

 by default. If edit is unset, then the traditional csh comple?

 tion is used. If set in csh, filename completion is used.

 gid (+) The user's real group ID.

 globdot (+)

 If set, wild-card glob patterns will match files and directo?

 ries beginning with `.' except for `.' and `..' Page 83/113

 globstar (+)

 If set, the `**' and `***' file glob patterns will match any

 string of characters including `/' traversing any existing sub-

 directories. (e.g. `ls **.c' will list all the .c files in

 the current directory tree). If used by itself, it will match

 zero or more sub-directories (e.g. `ls /usr/include/**/time.h'

 will list any file named `time.h' in the /usr/include directory

 tree; whereas `ls /usr/include/**time.h' will match any file in

 the /usr/include directory tree ending in `time.h'). To pre?

 vent problems with recursion, the `**' glob-pattern will not

 descend into a symbolic link containing a directory. To over?

 ride this, use `***'

 group (+)

 The user's group name.

 highlight

 If set, the incremental search match (in i-search-back and i-

 search-fwd) and the region between the mark and the cursor are

 highlighted in reverse video.

 Highlighting requires more frequent terminal writes, which in?

 troduces extra overhead. If you care about terminal perfor?

 mance, you may want to leave this unset.

 histchars

 A string value determining the characters used in History sub?

 stitution (q.v.). The first character of its value is used as

 the history substitution character, replacing the default char?

 acter `!'. The second character of its value replaces the

 character `^' in quick substitutions.

 histdup (+)

 Controls handling of duplicate entries in the history list. If

 set to `all' only unique history events are entered in the his?

 tory list. If set to `prev' and the last history event is the

 same as the current command, then the current command is not

 entered in the history. If set to `erase' and the same event Page 84/113

 is found in the history list, that old event gets erased and

 the current one gets inserted. Note that the `prev' and `all'

 options renumber history events so there are no gaps.

 histfile (+)

 The default location in which `history -S' and `history -L'

 look for a history file. If unset, ~/.history is used. hist?

 file is useful when sharing the same home directory between

 different machines, or when saving separate histories on dif?

 ferent terminals. Because only ~/.tcshrc is normally sourced

 before ~/.history, histfile should be set in ~/.tcshrc rather

 than ~/.login.

 histlit (+)

 If set, builtin and editor commands and the savehist mechanism

 use the literal (unexpanded) form of lines in the history list.

 See also the toggle-literal-history editor command.

 history The first word indicates the number of history events to save.

 The optional second word (+) indicates the format in which his?

 tory is printed; if not given, `%h\t%T\t%R\n' is used. The

 format sequences are described below under prompt; note the

 variable meaning of `%R'. Set to `100' by default.

 home Initialized to the home directory of the invoker. The filename

 expansion of `~' refers to this variable.

 ignoreeof

 If set to the empty string or `0' and the input device is a

 terminal, the end-of-file command (usually generated by the

 user by typing `^D' on an empty line) causes the shell to print

 `Use "exit" to leave tcsh.' instead of exiting. This prevents

 the shell from accidentally being killed. Historically this

 setting exited after 26 successive EOF's to avoid infinite

 loops. If set to a number n, the shell ignores n - 1 consecu?

 tive end-of-files and exits on the nth. (+) If unset, `1' is

 used, i.e., the shell exits on a single `^D'.

 implicitcd (+) Page 85/113

 If set, the shell treats a directory name typed as a command as

 though it were a request to change to that directory. If set

 to verbose, the change of directory is echoed to the standard

 output. This behavior is inhibited in non-interactive shell

 scripts, or for command strings with more than one word.

 Changing directory takes precedence over executing a like-named

 command, but it is done after alias substitutions. Tilde and

 variable expansions work as expected.

 inputmode (+)

 If set to `insert' or `overwrite', puts the editor into that

 input mode at the beginning of each line.

 killdup (+)

 Controls handling of duplicate entries in the kill ring. If

 set to `all' only unique strings are entered in the kill ring.

 If set to `prev' and the last killed string is the same as the

 current killed string, then the current string is not entered

 in the ring. If set to `erase' and the same string is found in

 the kill ring, the old string is erased and the current one is

 inserted.

 killring (+)

 Indicates the number of killed strings to keep in memory. Set

 to `30' by default. If unset or set to less than `2', the

 shell will only keep the most recently killed string. Strings

 are put in the killring by the editor commands that delete

 (kill) strings of text, e.g. backward-delete-word, kill-line,

 etc, as well as the copy-region-as-kill command. The yank edi?

 tor command will yank the most recently killed string into the

 command-line, while yank-pop (see Editor commands) can be used

 to yank earlier killed strings.

 listflags (+)

 If set to `x', `a' or `A', or any combination thereof (e.g.,

 `xA'), they are used as flags to ls-F, making it act like `ls

 -xF', `ls -Fa', `ls -FA' or a combination (e.g., `ls -FxA'): Page 86/113

 `a' shows all files (even if they start with a `.'), `A' shows

 all files but `.' and `..', and `x' sorts across instead of

 down. If the second word of listflags is set, it is used as

 the path to `ls(1)'.

 listjobs (+)

 If set, all jobs are listed when a job is suspended. If set to

 `long', the listing is in long format.

 listlinks (+)

 If set, the ls-F builtin command shows the type of file to

 which each symbolic link points.

 listmax (+)

 The maximum number of items which the list-choices editor com?

 mand will list without asking first.

 listmaxrows (+)

 The maximum number of rows of items which the list-choices edi?

 tor command will list without asking first.

 loginsh (+)

 Set by the shell if it is a login shell. Setting or unsetting

 it within a shell has no effect. See also shlvl.

 logout (+)

 Set by the shell to `normal' before a normal logout, `auto?

 matic' before an automatic logout, and `hangup' if the shell

 was killed by a hangup signal (see Signal handling). See also

 the autologout shell variable.

 mail A list of files and directories to check for incoming mail, op?

 tionally preceded by a numeric word. Before each prompt, if 10

 minutes have passed since the last check, the shell checks each

 file and says `You have new mail.' (or, if mail contains multi?

 ple files, `You have new mail in name.') if the filesize is

 greater than zero in size and has a modification time greater

 than its access time.

 If you are in a login shell, then no mail file is reported un?

 less it has been modified after the time the shell has started Page 87/113

 up, to prevent redundant notifications. Most login programs

 will tell you whether or not you have mail when you log in.

 If a file specified in mail is a directory, the shell will

 count each file within that directory as a separate message,

 and will report `You have n mails.' or `You have n mails in

 name.' as appropriate. This functionality is provided primar?

 ily for those systems which store mail in this manner, such as

 the Andrew Mail System.

 If the first word of mail is numeric it is taken as a different

 mail checking interval, in seconds.

 Under very rare circumstances, the shell may report `You have

 mail.' instead of `You have new mail.'

 matchbeep (+)

 If set to `never', completion never beeps. If set to `no?

 match', it beeps only when there is no match. If set to `am?

 biguous', it beeps when there are multiple matches. If set to

 `notunique', it beeps when there is one exact and other longer

 matches. If unset, `ambiguous' is used.

 nobeep (+)

 If set, beeping is completely disabled. See also visiblebell.

 noclobber

 If set, restrictions are placed on output redirection to insure

 that files are not accidentally destroyed and that `>>' redi?

 rections refer to existing files, as described in the In?

 put/output section.

 noding If set, disable the printing of `DING!' in the prompt time

 specifiers at the change of hour.

 noglob If set, Filename substitution and Directory stack substitution

 (q.v.) are inhibited. This is most useful in shell scripts

 which do not deal with filenames, or after a list of filenames

 has been obtained and further expansions are not desirable.

 nokanji (+)

 If set and the shell supports Kanji (see the version shell Page 88/113

 variable), it is disabled so that the meta key can be used.

 nonomatch

 If set, a Filename substitution or Directory stack substitution

 (q.v.) which does not match any existing files is left un?

 touched rather than causing an error. It is still an error for

 the substitution to be malformed, e.g., `echo [' still gives an

 error.

 nostat (+)

 A list of directories (or glob-patterns which match directo?

 ries; see Filename substitution) that should not be stat(2)ed

 during a completion operation. This is usually used to exclude

 directories which take too much time to stat(2), for example

 /afs.

 notify If set, the shell announces job completions asynchronously.

 The default is to present job completions just before printing

 a prompt.

 oid (+) The user's real organization ID. (Domain/OS only)

 owd (+) The old working directory, equivalent to the `-' used by cd and

 pushd. See also the cwd and dirstack shell variables.

 padhour If set, enable the printing of padding '0' for hours, in 24 and

 12 hour formats. E.G.: 07:45:42 vs. 7:45:42.

 parseoctal

 To retain compatibily with older versions numeric variables

 starting with 0 are not interpreted as octal. Setting this

 variable enables proper octal parsing.

 path A list of directories in which to look for executable commands.

 A null word specifies the current directory. If there is no

 path variable then only full path names will execute. path is

 set by the shell at startup from the PATH environment variable

 or, if PATH does not exist, to a system-dependent default some?

 thing like `(/usr/local/bin /usr/bsd /bin /usr/bin .)'. The

 shell may put `.' first or last in path or omit it entirely de?

 pending on how it was compiled; see the version shell variable. Page 89/113

 A shell which is given neither the -c nor the -t option hashes

 the contents of the directories in path after reading ~/.tcshrc

 and each time path is reset. If one adds a new command to a

 directory in path while the shell is active, one may need to do

 a rehash for the shell to find it.

 printexitvalue (+)

 If set and an interactive program exits with a non-zero status,

 the shell prints `Exit status'.

 prompt The string which is printed before reading each command from

 the terminal. prompt may include any of the following format?

 ting sequences (+), which are replaced by the given informa?

 tion:

 %/ The current working directory.

 %~ The current working directory, but with one's home direc?

 tory represented by `~' and other users' home directories

 represented by `~user' as per Filename substitution.

 `~user' substitution happens only if the shell has already

 used `~user' in a pathname in the current session.

 %c[[0]n], %.[[0]n]

 The trailing component of the current working directory, or

 n trailing components if a digit n is given. If n begins

 with `0', the number of skipped components precede the

 trailing component(s) in the format `/<skipped>trailing'.

 If the ellipsis shell variable is set, skipped components

 are represented by an ellipsis so the whole becomes

 `...trailing'. `~' substitution is done as in `%~' above,

 but the `~' component is ignored when counting trailing

 components.

 %C Like %c, but without `~' substitution.

 %h, %!, !

 The current history event number.

 %M The full hostname.

 %m The hostname up to the first `.'. Page 90/113

 %S (%s)

 Start (stop) standout mode.

 %B (%b)

 Start (stop) boldfacing mode.

 %U (%u)

 Start (stop) underline mode.

 %t, %@

 The time of day in 12-hour AM/PM format.

 %T Like `%t', but in 24-hour format (but see the ampm shell

 variable).

 %p The `precise' time of day in 12-hour AM/PM format, with

 seconds.

 %P Like `%p', but in 24-hour format (but see the ampm shell

 variable).

 \c c is parsed as in bindkey.

 ^c c is parsed as in bindkey.

 %% A single `%'.

 %n The user name.

 %N The effective user name.

 %j The number of jobs.

 %d The weekday in `Day' format.

 %D The day in `dd' format.

 %w The month in `Mon' format.

 %W The month in `mm' format.

 %y The year in `yy' format.

 %Y The year in `yyyy' format.

 %l The shell's tty.

 %L Clears from the end of the prompt to end of the display or

 the end of the line.

 %$ Expands the shell or environment variable name immediately

 after the `$'.

 %# `>' (or the first character of the promptchars shell vari?

 able) for normal users, `#' (or the second character of Page 91/113

 promptchars) for the superuser.

 %{string%}

 Includes string as a literal escape sequence. It should be

 used only to change terminal attributes and should not move

 the cursor location. This cannot be the last sequence in

 prompt.

 %? The return code of the command executed just before the

 prompt.

 %R In prompt2, the status of the parser. In prompt3, the cor?

 rected string. In history, the history string.

 `%B', `%S', `%U' and `%{string%}' are available in only eight-

 bit-clean shells; see the version shell variable.

 The bold, standout and underline sequences are often used to

 distinguish a superuser shell. For example,

 > set prompt = "%m [%h] %B[%@]%b [%/] you rang? "

 tut [37] [2:54pm] [/usr/accts/sys] you rang? _

 If `%t', `%@', `%T', `%p', or `%P' is used, and noding is not

 set, then print `DING!' on the change of hour (i.e, `:00' min?

 utes) instead of the actual time.

 Set by default to `%# ' in interactive shells.

 prompt2 (+)

 The string with which to prompt in while and foreach loops and

 after lines ending in `\'. The same format sequences may be

 used as in prompt (q.v.); note the variable meaning of `%R'.

 Set by default to `%R? ' in interactive shells.

 prompt3 (+)

 The string with which to prompt when confirming automatic

 spelling correction. The same format sequences may be used as

 in prompt (q.v.); note the variable meaning of `%R'. Set by

 default to `CORRECT>%R (y|n|e|a)? ' in interactive shells.

 promptchars (+)

 If set (to a two-character string), the `%#' formatting se?

 quence in the prompt shell variable is replaced with the first Page 92/113

 character for normal users and the second character for the su?

 peruser.

 pushdtohome (+)

 If set, pushd without arguments does `pushd ~', like cd.

 pushdsilent (+)

 If set, pushd and popd do not print the directory stack.

 recexact (+)

 If set, completion completes on an exact match even if a longer

 match is possible.

 recognize_only_executables (+)

 If set, command listing displays only files in the path that

 are executable. Slow.

 rmstar (+)

 If set, the user is prompted before `rm *' is executed.

 rprompt (+)

 The string to print on the right-hand side of the screen (after

 the command input) when the prompt is being displayed on the

 left. It recognizes the same formatting characters as prompt.

 It will automatically disappear and reappear as necessary, to

 ensure that command input isn't obscured, and will appear only

 if the prompt, command input, and itself will fit together on

 the first line. If edit isn't set, then rprompt will be

 printed after the prompt and before the command input.

 savedirs (+)

 If set, the shell does `dirs -S' before exiting. If the first

 word is set to a number, at most that many directory stack en?

 tries are saved.

 savehist

 If set, the shell does `history -S' before exiting. If the

 first word is set to a number, at most that many lines are

 saved. (The number should be less than or equal to the number

 history entries; if it is set to greater than the number of

 history settings, only history entries will be saved) If the Page 93/113

 second word is set to `merge', the history list is merged with

 the existing history file instead of replacing it (if there is

 one) and sorted by time stamp and the most recent events are

 retained. If the second word of savehist is `merge' and the

 third word is set to `lock', the history file update will be

 serialized with other shell sessions that would possibly like

 to merge history at exactly the same time. (+)

 sched (+)

 The format in which the sched builtin command prints scheduled

 events; if not given, `%h\t%T\t%R\n' is used. The format se?

 quences are described above under prompt; note the variable

 meaning of `%R'.

 shell The file in which the shell resides. This is used in forking

 shells to interpret files which have execute bits set, but

 which are not executable by the system. (See the description

 of Builtin and non-builtin command execution.) Initialized to

 the (system-dependent) home of the shell.

 shlvl (+)

 The number of nested shells. Reset to 1 in login shells. See

 also loginsh.

 status The exit status from the last command or backquote expansion,

 or any command in a pipeline is propagated to status. (This is

 also the default csh behavior.) This default does not match

 what POSIX mandates (to return the status of the last command

 only). To match the POSIX behavior, you need to unset anyerror.

 If the anyerror variable is unset, the exit status of a pipe?

 line is determined only from the last command in the pipeline,

 and the exit status of a backquote expansion is not propagated

 to status.

 If a command terminated abnormally, then 0200 is added to the

 status. Builtin commands which fail return exit status `1',

 all other builtin commands return status `0'.

 symlinks (+) Page 94/113

 Can be set to several different values to control symbolic link

 (`symlink') resolution:

 If set to `chase', whenever the current directory changes to a

 directory containing a symbolic link, it is expanded to the

 real name of the directory to which the link points. This does

 not work for the user's home directory; this is a bug.

 If set to `ignore', the shell tries to construct a current di?

 rectory relative to the current directory before the link was

 crossed. This means that cding through a symbolic link and

 then `cd ..'ing returns one to the original directory. This

 affects only builtin commands and filename completion.

 If set to `expand', the shell tries to fix symbolic links by

 actually expanding arguments which look like path names. This

 affects any command, not just builtins. Unfortunately, this

 does not work for hard-to-recognize filenames, such as those

 embedded in command options. Expansion may be prevented by

 quoting. While this setting is usually the most convenient, it

 is sometimes misleading and sometimes confusing when it fails

 to recognize an argument which should be expanded. A compro?

 mise is to use `ignore' and use the editor command normalize-

 path (bound by default to ^X-n) when necessary.

 Some examples are in order. First, let's set up some play di?

 rectories:

 > cd /tmp

 > mkdir from from/src to

 > ln -s from/src to/dst

 Here's the behavior with symlinks unset,

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/from

 here's the behavior with symlinks set to `chase',

 > cd /tmp/to/dst; echo $cwd Page 95/113

 /tmp/from/src

 > cd ..; echo $cwd

 /tmp/from

 here's the behavior with symlinks set to `ignore',

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/to

 and here's the behavior with symlinks set to `expand'.

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ..; echo $cwd

 /tmp/to

 > cd /tmp/to/dst; echo $cwd

 /tmp/to/dst

 > cd ".."; echo $cwd

 /tmp/from

 > /bin/echo ..

 /tmp/to

 > /bin/echo ".."

 ..

 Note that `expand' expansion 1) works just like `ignore' for

 builtins like cd, 2) is prevented by quoting, and 3) happens

 before filenames are passed to non-builtin commands.

 tcsh (+)

 The version number of the shell in the format `R.VV.PP', where

 `R' is the major release number, `VV' the current version and

 `PP' the patchlevel.

 term The terminal type. Usually set in ~/.login as described under

 Startup and shutdown.

 time If set to a number, then the time builtin (q.v.) executes auto?

 matically after each command which takes more than that many

 CPU seconds. If there is a second word, it is used as a format Page 96/113

 string for the output of the time builtin. (u) The following

 sequences may be used in the format string:

 %U The time the process spent in user mode in cpu seconds.

 %S The time the process spent in kernel mode in cpu seconds.

 %E The elapsed (wall clock) time in seconds.

 %P The CPU percentage computed as (%U + %S) / %E.

 %W Number of times the process was swapped.

 %X The average amount in (shared) text space used in Kbytes.

 %D The average amount in (unshared) data/stack space used in

 Kbytes.

 %K The total space used (%X + %D) in Kbytes.

 %M The maximum memory the process had in use at any time in

 Kbytes.

 %F The number of major page faults (page needed to be brought

 from disk).

 %R The number of minor page faults.

 %I The number of input operations.

 %O The number of output operations.

 %r The number of socket messages received.

 %s The number of socket messages sent.

 %k The number of signals received.

 %w The number of voluntary context switches (waits).

 %c The number of involuntary context switches.

 Only the first four sequences are supported on systems without

 BSD resource limit functions. The default time format is `%Uu

 %Ss %E %P %X+%Dk %I+%Oio %Fpf+%Ww' for systems that support re?

 source usage reporting and `%Uu %Ss %E %P' for systems that do

 not.

 Under Sequent's DYNIX/ptx, %X, %D, %K, %r and %s are not avail?

 able, but the following additional sequences are:

 %Y The number of system calls performed.

 %Z The number of pages which are zero-filled on demand.

 %i The number of times a process's resident set size was in? Page 97/113

 creased by the kernel.

 %d The number of times a process's resident set size was de?

 creased by the kernel.

 %l The number of read system calls performed.

 %m The number of write system calls performed.

 %p The number of reads from raw disk devices.

 %q The number of writes to raw disk devices.

 and the default time format is `%Uu %Ss %E %P %I+%Oio

 %Fpf+%Ww'. Note that the CPU percentage can be higher than

 100% on multi-processors.

 tperiod (+)

 The period, in minutes, between executions of the periodic spe?

 cial alias.

 tty (+) The name of the tty, or empty if not attached to one.

 uid (+) The user's real user ID.

 user The user's login name.

 verbose If set, causes the words of each command to be printed, after

 history substitution (if any). Set by the -v command line op?

 tion.

 version (+)

 The version ID stamp. It contains the shell's version number

 (see tcsh), origin, release date, vendor, operating system and

 machine (see VENDOR, OSTYPE and MACHTYPE) and a comma-separated

 list of options which were set at compile time. Options which

 are set by default in the distribution are noted.

 8b The shell is eight bit clean; default

 7b The shell is not eight bit clean

 wide The shell is multibyte encoding clean (like UTF-8)

 nls The system's NLS is used; default for systems with NLS

 lf Login shells execute /etc/csh.login before instead of af?

 ter /etc/csh.cshrc and ~/.login before instead of after

 ~/.tcshrc and ~/.history.

 dl `.' is put last in path for security; default Page 98/113

 nd `.' is omitted from path for security

 vi vi(1)-style editing is the default rather than

 emacs(1)-style

 dtr Login shells drop DTR when exiting

 bye bye is a synonym for logout and log is an alternate name

 for watchlog

 al autologout is enabled; default

 kan Kanji is used if appropriate according to locale set?

 tings, unless the nokanji shell variable is set

 sm The system's malloc(3) is used

 hb The `#!<program> <args>' convention is emulated when exe?

 cuting shell scripts

 ng The newgrp builtin is available

 rh The shell attempts to set the REMOTEHOST environment

 variable

 afs The shell verifies your password with the kerberos server

 if local authentication fails. The afsuser shell vari?

 able or the AFSUSER environment variable override your

 local username if set.

 An administrator may enter additional strings to indicate dif?

 ferences in the local version.

 vimode (+)

 If unset, various key bindings change behavior to be more

 emacs(1)-style: word boundaries are determined by wordchars

 versus other characters.

 If set, various key bindings change behavior to be more

 vi(1)-style: word boundaries are determined by wordchars versus

 whitespace versus other characters; cursor behavior depends

 upon current vi mode (command, delete, insert, replace).

 This variable is unset by bindkey -e and set by bindkey -v.

 vimode may be explicitly set or unset by the user after those

 bindkey operations if required.

 visiblebell (+) Page 99/113

 If set, a screen flash is used rather than the audible bell.

 See also nobeep.

 watch (+)

 A list of user/terminal pairs to watch for logins and logouts.

 If either the user is `any' all terminals are watched for the

 given user and vice versa. Setting watch to `(any any)'

 watches all users and terminals. For example,

 set watch = (george ttyd1 any console $user any)

 reports activity of the user `george' on ttyd1, any user on the

 console, and oneself (or a trespasser) on any terminal.

 Logins and logouts are checked every 10 minutes by default, but

 the first word of watch can be set to a number to check every

 so many minutes. For example,

 set watch = (1 any any)

 reports any login/logout once every minute. For the impatient,

 the log builtin command triggers a watch report at any time.

 All current logins are reported (as with the log builtin) when

 watch is first set.

 The who shell variable controls the format of watch reports.

 who (+) The format string for watch messages. The following sequences

 are replaced by the given information:

 %n The name of the user who logged in/out.

 %a The observed action, i.e., `logged on', `logged off' or

 `replaced olduser on'.

 %l The terminal (tty) on which the user logged in/out.

 %M The full hostname of the remote host, or `local' if the lo?

 gin/logout was from the local host.

 %m The hostname of the remote host up to the first `.'. The

 full name is printed if it is an IP address or an X Window

 System display.

 %M and %m are available on only systems that store the remote

 hostname in /etc/utmp. If unset, `%n has %a %l from %m.' is

 used, or `%n has %a %l.' on systems which don't store the re? Page 100/113

 mote hostname.

 wordchars (+)

 A list of non-alphanumeric characters to be considered part of

 a word by the forward-word, backward-word etc., editor com?

 mands. If unset, the default value is determined based on the

 state of vimode: if vimode is unset, `*?_-.[]~=' is used as the

 default; if vimode is set, `_' is used as the default.

ENVIRONMENT

 AFSUSER (+)

 Equivalent to the afsuser shell variable.

 COLUMNS The number of columns in the terminal. See Terminal manage?

 ment.

 DISPLAY Used by X Window System (see X(1)). If set, the shell does not

 set autologout (q.v.).

 EDITOR The pathname to a default editor. Used by the run-fg-editor

 editor command if the the editors shell variable is unset. See

 also the VISUAL environment variable.

 GROUP (+)

 Equivalent to the group shell variable.

 HOME Equivalent to the home shell variable.

 HOST (+)

 Initialized to the name of the machine on which the shell is

 running, as determined by the gethostname(2) system call.

 HOSTTYPE (+)

 Initialized to the type of machine on which the shell is run?

 ning, as determined at compile time. This variable is obsolete

 and will be removed in a future version.

 HPATH (+)

 A colon-separated list of directories in which the run-help ed?

 itor command looks for command documentation.

 LANG Gives the preferred character environment. See Native Language

 System support.

 LC_CTYPE Page 101/113

 If set, only ctype character handling is changed. See Native

 Language System support.

 LINES The number of lines in the terminal. See Terminal management.

 LS_COLORS

 The format of this variable is reminiscent of the termcap(5)

 file format; a colon-separated list of expressions of the form

 "xx=string", where "xx" is a two-character variable name. The

 variables with their associated defaults are:

 no 0 Normal (non-filename) text

 fi 0 Regular file

 di 01;34 Directory

 ln 01;36 Symbolic link

 pi 33 Named pipe (FIFO)

 so 01;35 Socket

 do 01;35 Door

 bd 01;33 Block device

 cd 01;32 Character device

 ex 01;32 Executable file

 mi (none) Missing file (defaults to fi)

 or (none) Orphaned symbolic link (defaults to ln)

 lc ^[[Left code

 rc m Right code

 ec (none) End code (replaces lc+no+rc)

 You need to include only the variables you want to change from

 the default.

 File names can also be colorized based on filename extension.

 This is specified in the LS_COLORS variable using the syntax

 "*ext=string". For example, using ISO 6429 codes, to color all

 C-language source files blue you would specify "*.c=34". This

 would color all files ending in .c in blue (34) color.

 Control characters can be written either in C-style-escaped no?

 tation, or in stty-like ^-notation. The C-style notation adds

 ^[for Escape, _ for a normal space character, and ? for Page 102/113

 Delete. In addition, the ^[escape character can be used to

 override the default interpretation of ^[, ^, : and =.

 Each file will be written as <lc> <color-code> <rc> <filename>

 <ec>. If the <ec> code is undefined, the sequence <lc> <no>

 <rc> will be used instead. This is generally more convenient

 to use, but less general. The left, right and end codes are

 provided so you don't have to type common parts over and over

 again and to support weird terminals; you will generally not

 need to change them at all unless your terminal does not use

 ISO 6429 color sequences but a different system.

 If your terminal does use ISO 6429 color codes, you can compose

 the type codes (i.e., all except the lc, rc, and ec codes) from

 numerical commands separated by semicolons. The most common

 commands are:

 0 to restore default color

 1 for brighter colors

 4 for underlined text

 5 for flashing text

 30 for black foreground

 31 for red foreground

 32 for green foreground

 33 for yellow (or brown) foreground

 34 for blue foreground

 35 for purple foreground

 36 for cyan foreground

 37 for white (or gray) foreground

 40 for black background

 41 for red background

 42 for green background

 43 for yellow (or brown) background

 44 for blue background

 45 for purple background

 46 for cyan background Page 103/113

 47 for white (or gray) background

 Not all commands will work on all systems or display devices.

 A few terminal programs do not recognize the default end code

 properly. If all text gets colorized after you do a directory

 listing, try changing the no and fi codes from 0 to the numeri?

 cal codes for your standard fore- and background colors.

 MACHTYPE (+)

 The machine type (microprocessor class or machine model), as

 determined at compile time.

 NOREBIND (+)

 If set, printable characters are not rebound to self-insert-

 command. See Native Language System support.

 OSTYPE (+)

 The operating system, as determined at compile time.

 PATH A colon-separated list of directories in which to look for exe?

 cutables. Equivalent to the path shell variable, but in a dif?

 ferent format.

 PWD (+) Equivalent to the cwd shell variable, but not synchronized to

 it; updated only after an actual directory change.

 REMOTEHOST (+)

 The host from which the user has logged in remotely, if this is

 the case and the shell is able to determine it. Set only if

 the shell was so compiled; see the version shell variable.

 SHLVL (+)

 Equivalent to the shlvl shell variable.

 SYSTYPE (+)

 The current system type. (Domain/OS only)

 TERM Equivalent to the term shell variable.

 TERMCAP The terminal capability string. See Terminal management.

 USER Equivalent to the user shell variable.

 VENDOR (+)

 The vendor, as determined at compile time.

 VISUAL The pathname to a default full-screen editor. Used by the run- Page 104/113

 fg-editor editor command if the the editors shell variable is

 unset. See also the EDITOR environment variable.

FILES

 /etc/csh.cshrc Read first by every shell. ConvexOS, Stellix and Intel

 use /etc/cshrc and NeXTs use /etc/cshrc.std. A/UX,

 AMIX, Cray and IRIX have no equivalent in csh(1), but

 read this file in tcsh anyway. Solaris 2.x does not

 have it either, but tcsh reads /etc/.cshrc. (+)

 /etc/csh.login Read by login shells after /etc/csh.cshrc. ConvexOS,

 Stellix and Intel use /etc/login, NeXTs use /etc/lo?

 gin.std, Solaris 2.x uses /etc/.login and A/UX, AMIX,

 Cray and IRIX use /etc/cshrc.

 ~/.tcshrc (+) Read by every shell after /etc/csh.cshrc or its equiva?

 lent.

 ~/.cshrc Read by every shell, if ~/.tcshrc doesn't exist, after

 /etc/csh.cshrc or its equivalent. This manual uses

 `~/.tcshrc' to mean `~/.tcshrc or, if ~/.tcshrc is not

 found, ~/.cshrc'.

 ~/.history Read by login shells after ~/.tcshrc if savehist is

 set, but see also histfile.

 ~/.login Read by login shells after ~/.tcshrc or ~/.history.

 The shell may be compiled to read ~/.login before in?

 stead of after ~/.tcshrc and ~/.history; see the ver?

 sion shell variable.

 ~/.cshdirs (+) Read by login shells after ~/.login if savedirs is set,

 but see also dirsfile.

 /etc/csh.logout Read by login shells at logout. ConvexOS, Stellix and

 Intel use /etc/logout and NeXTs use /etc/logout.std.

 A/UX, AMIX, Cray and IRIX have no equivalent in csh(1),

 but read this file in tcsh anyway. Solaris 2.x does

 not have it either, but tcsh reads /etc/.logout. (+)

 ~/.logout Read by login shells at logout after /etc/csh.logout or

 its equivalent. Page 105/113

 /bin/sh Used to interpret shell scripts not starting with a

 `#'.

 /tmp/sh* Temporary file for `<<'.

 /etc/passwd Source of home directories for `~name' substitutions.

 The order in which startup files are read may differ if the shell was

 so compiled; see Startup and shutdown and the version shell variable.

NEW FEATURES (+)

 This manual describes tcsh as a single entity, but experienced csh(1)

 users will want to pay special attention to tcsh's new features.

 A command-line editor, which supports emacs(1)-style or vi(1)-style key

 bindings. See The command-line editor and Editor commands.

 Programmable, interactive word completion and listing. See Completion

 and listing and the complete and uncomplete builtin commands.

 Spelling correction (q.v.) of filenames, commands and variables.

 Editor commands (q.v.) which perform other useful functions in the mid?

 dle of typed commands, including documentation lookup (run-help), quick

 editor restarting (run-fg-editor) and command resolution (which-com?

 mand).

 An enhanced history mechanism. Events in the history list are time-

 stamped. See also the history command and its associated shell vari?

 ables, the previously undocumented `#' event specifier and new modi?

 fiers under History substitution, the *-history, history-search-*, i-

 search-*, vi-search-* and toggle-literal-history editor commands and

 the histlit shell variable.

 Enhanced directory parsing and directory stack handling. See the cd,

 pushd, popd and dirs commands and their associated shell variables, the

 description of Directory stack substitution, the dirstack, owd and sym?

 links shell variables and the normalize-command and normalize-path edi?

 tor commands.

 Negation in glob-patterns. See Filename substitution.

 New File inquiry operators (q.v.) and a filetest builtin which uses

 them.

 A variety of Automatic, periodic and timed events (q.v.) including Page 106/113

 scheduled events, special aliases, automatic logout and terminal lock?

 ing, command timing and watching for logins and logouts.

 Support for the Native Language System (see Native Language System sup?

 port), OS variant features (see OS variant support and the echo_style

 shell variable) and system-dependent file locations (see FILES).

 Extensive terminal-management capabilities. See Terminal management.

 New builtin commands including builtins, hup, ls-F, newgrp, printenv,

 which and where (q.v.).

 New variables that make useful information easily available to the

 shell. See the gid, loginsh, oid, shlvl, tcsh, tty, uid and version

 shell variables and the HOST, REMOTEHOST, VENDOR, OSTYPE and MACHTYPE

 environment variables.

 A new syntax for including useful information in the prompt string (see

 prompt), and special prompts for loops and spelling correction (see

 prompt2 and prompt3).

 Read-only variables. See Variable substitution.

BUGS

 When a suspended command is restarted, the shell prints the directory

 it started in if this is different from the current directory. This

 can be misleading (i.e., wrong) as the job may have changed directories

 internally.

 Shell builtin functions are not stoppable/restartable. Command se?

 quences of the form `a ; b ; c' are also not handled gracefully when

 stopping is attempted. If you suspend `b', the shell will then immedi?

 ately execute `c'. This is especially noticeable if this expansion re?

 sults from an alias. It suffices to place the sequence of commands in

 ()'s to force it to a subshell, i.e., `(a ; b ; c)'.

 Control over tty output after processes are started is primitive; per?

 haps this will inspire someone to work on a good virtual terminal in?

 terface. In a virtual terminal interface much more interesting things

 could be done with output control.

 Alias substitution is most often used to clumsily simulate shell proce?

 dures; shell procedures should be provided rather than aliases. Page 107/113

 Control structures should be parsed rather than being recognized as

 built-in commands. This would allow control commands to be placed any?

 where, to be combined with `|', and to be used with `&' and `;' meta?

 syntax.

 foreach doesn't ignore here documents when looking for its end.

 It should be possible to use the `:' modifiers on the output of command

 substitutions.

 The screen update for lines longer than the screen width is very poor

 if the terminal cannot move the cursor up (i.e., terminal type `dumb').

 HPATH and NOREBIND don't need to be environment variables.

 Glob-patterns which do not use `?', `*' or `[]' or which use `{}' or

 `~' are not negated correctly.

 The single-command form of if does output redirection even if the ex?

 pression is false and the command is not executed.

 ls-F includes file identification characters when sorting filenames and

 does not handle control characters in filenames well. It cannot be in?

 terrupted.

 Command substitution supports multiple commands and conditions, but not

 cycles or backward gotos.

 Report bugs at https://bugs.astron.com/, preferably with fixes. If you

 want to help maintain and test tcsh, add yourself to the mailing list

 in https://mailman.astron.com/.

THE T IN TCSH

 In 1964, DEC produced the PDP-6. The PDP-10 was a later re-implementa?

 tion. It was re-christened the DECsystem-10 in 1970 or so when DEC

 brought out the second model, the KI10.

 TENEX was created at Bolt, Beranek & Newman (a Cambridge, Massachusetts

 think tank) in 1972 as an experiment in demand-paged virtual memory op?

 erating systems. They built a new pager for the DEC PDP-10 and created

 the OS to go with it. It was extremely successful in academia.

 In 1975, DEC brought out a new model of the PDP-10, the KL10; they in?

 tended to have only a version of TENEX, which they had licensed from

 BBN, for the new box. They called their version TOPS-20 (their capi? Page 108/113

 talization is trademarked). A lot of TOPS-10 users (`The OPerating

 System for PDP-10') objected; thus DEC found themselves supporting two

 incompatible systems on the same hardware--but then there were 6 on the

 PDP-11!

 TENEX, and TOPS-20 to version 3, had command completion via a user-

 code-level subroutine library called ULTCMD. With version 3, DEC moved

 all that capability and more into the monitor (`kernel' for you Unix

 types), accessed by the COMND% JSYS (`Jump to SYStem' instruction, the

 supervisor call mechanism [are my IBM roots also showing?]).

 The creator of tcsh was impressed by this feature and several others of

 TENEX and TOPS-20, and created a version of csh which mimicked them.

LIMITATIONS

 The system limits argument lists to ARG_MAX characters.

 The number of arguments to a command which involves filename expansion

 is limited to 1/6th the number of characters allowed in an argument

 list.

 Command substitutions may substitute no more characters than are al?

 lowed in an argument list.

 To detect looping, the shell restricts the number of alias substitu?

 tions on a single line to 20.

SEE ALSO

 csh(1), emacs(1), ls(1), newgrp(1), sh(1), setpath(1), stty(1), su(1),

 tset(1), vi(1), x(1), access(2), execve(2), fork(2), killpg(2),

 pipe(2), setrlimit(2), sigvec(2), stat(2), umask(2), vfork(2), wait(2),

 malloc(3), setlocale(3), tty(4), a.out(5), termcap(5), environ(7),

 termio(7), Introduction to the C Shell

VERSION

 This manual documents tcsh 6.22.03 (Astron) 2020-11-18.

AUTHORS

 William Joy

 Original author of csh(1)

 J.E. Kulp, IIASA, Laxenburg, Austria

 Job control and directory stack features Page 109/113

 Ken Greer, HP Labs, 1981

 File name completion

 Mike Ellis, Fairchild, 1983

 Command name recognition/completion

 Paul Placeway, Ohio State CIS Dept., 1983-1993

 Command line editor, prompt routines, new glob syntax and numerous

 fixes and speedups

 Karl Kleinpaste, CCI 1983-4

 Special aliases, directory stack extraction stuff, login/logout

 watch, scheduled events, and the idea of the new prompt format

 Rayan Zachariassen, University of Toronto, 1984

 ls-F and which builtins and numerous bug fixes, modifications and

 speedups

 Chris Kingsley, Caltech

 Fast storage allocator routines

 Chris Grevstad, TRW, 1987

 Incorporated 4.3BSD csh into tcsh

 Christos S. Zoulas, Cornell U. EE Dept., 1987-94

 Ports to HPUX, SVR2 and SVR3, a SysV version of getwd.c,

 SHORT_STRINGS support and a new version of sh.glob.c

 James J Dempsey, BBN, and Paul Placeway, OSU, 1988

 A/UX port

 Daniel Long, NNSC, 1988

 wordchars

 Patrick Wolfe, Kuck and Associates, Inc., 1988

 vi mode cleanup

 David C Lawrence, Rensselaer Polytechnic Institute, 1989

 autolist and ambiguous completion listing

 Alec Wolman, DEC, 1989

 Newlines in the prompt

 Matt Landau, BBN, 1989

 ~/.tcshrc

 Ray Moody, Purdue Physics, 1989 Page 110/113

 Magic space bar history expansion

 Mordechai ????, Intel, 1989

 printprompt() fixes and additions

 Kazuhiro Honda, Dept. of Computer Science, Keio University, 1989

 Automatic spelling correction and prompt3

 Per Hedeland, Ellemtel, Sweden, 1990-

 Various bugfixes, improvements and manual updates

 Hans J. Albertsson (Sun Sweden)

 ampm, settc and telltc

 Michael Bloom

 Interrupt handling fixes

 Michael Fine, Digital Equipment Corp

 Extended key support

 Eric Schnoebelen, Convex, 1990

 Convex support, lots of csh bug fixes, save and restore of directory

 stack

 Ron Flax, Apple, 1990

 A/UX 2.0 (re)port

 Dan Oscarsson, LTH Sweden, 1990

 NLS support and simulated NLS support for non NLS sites, fixes

 Johan Widen, SICS Sweden, 1990

 shlvl, Mach support, correct-line, 8-bit printing

 Matt Day, Sanyo Icon, 1990

 POSIX termio support, SysV limit fixes

 Jaap Vermeulen, Sequent, 1990-91

 Vi mode fixes, expand-line, window change fixes, Symmetry port

 Martin Boyer, Institut de recherche d'Hydro-Quebec, 1991

 autolist beeping options, modified the history search to search for

 the whole string from the beginning of the line to the cursor.

 Scott Krotz, Motorola, 1991

 Minix port

 David Dawes, Sydney U. Australia, Physics Dept., 1991

 SVR4 job control fixes Page 111/113

 Jose Sousa, Interactive Systems Corp., 1991

 Extended vi fixes and vi delete command

 Marc Horowitz, MIT, 1991

 ANSIfication fixes, new exec hashing code, imake fixes, where

 Bruce Sterling Woodcock, sterling@netcom.com, 1991-1995

 ETA and Pyramid port, Makefile and lint fixes, ignoreeof=n addition,

 and various other portability changes and bug fixes

 Jeff Fink, 1992

 complete-word-fwd and complete-word-back

 Harry C. Pulley, 1992

 Coherent port

 Andy Phillips, Mullard Space Science Lab U.K., 1992

 VMS-POSIX port

 Beto Appleton, IBM Corp., 1992

 Walking process group fixes, csh bug fixes, POSIX file tests, POSIX

 SIGHUP

 Scott Bolte, Cray Computer Corp., 1992

 CSOS port

 Kaveh R. Ghazi, Rutgers University, 1992

 Tek, m88k, Titan and Masscomp ports and fixes. Added autoconf sup?

 port.

 Mark Linderman, Cornell University, 1992

 OS/2 port

 Mika Liljeberg, liljeber@kruuna.Helsinki.FI, 1992

 Linux port

 Tim P. Starrin, NASA Langley Research Center Operations, 1993

 Read-only variables

 Dave Schweisguth, Yale University, 1993-4

 New man page and tcsh.man2html

 Larry Schwimmer, Stanford University, 1993

 AFS and HESIOD patches

 Luke Mewburn, RMIT University, 1994-6

 Enhanced directory printing in prompt, added ellipsis and rprompt. Page 112/113

 Edward Hutchins, Silicon Graphics Inc., 1996

 Added implicit cd.

 Martin Kraemer, 1997

 Ported to Siemens Nixdorf EBCDIC machine

 Amol Deshpande, Microsoft, 1997

 Ported to WIN32 (Windows/95 and Windows/NT); wrote all the missing

 library and message catalog code to interface to Windows.

 Taga Nayuta, 1998

 Color ls additions.

THANKS TO

 Bryan Dunlap, Clayton Elwell, Karl Kleinpaste, Bob Manson, Steve Romig,

 Diana Smetters, Bob Sutterfield, Mark Verber, Elizabeth Zwicky and all

 the other people at Ohio State for suggestions and encouragement

 All the people on the net, for putting up with, reporting bugs in, and

 suggesting new additions to each and every version

 Richard M. Alderson III, for writing the `T in tcsh' section

Astron 6.22.03 11 Nov 2020 TCSH(1)

Page 113/113

