
Rocky Enterprise Linux 9.2 Manual Pages on command 'crypttab.5'

$ man crypttab.5

CRYPTTAB(5) crypttab CRYPTTAB(5)

NAME

 crypttab - Configuration for encrypted block devices

SYNOPSIS

 /etc/crypttab

DESCRIPTION

 The /etc/crypttab file describes encrypted block devices that are set

 up during system boot.

 Empty lines and lines starting with the "#" character are ignored. Each

 of the remaining lines describes one encrypted block device. Fields are

 delimited by white space.

 Each line is in the form

 volume-name encrypted-device key-file options

 The first two fields are mandatory, the remaining two are optional.

 Setting up encrypted block devices using this file supports four

 encryption modes: LUKS, TrueCrypt, BitLocker and plain. See

 cryptsetup(8) for more information about each mode. When no mode is

 specified in the options field and the block device contains a LUKS Page 1/18

 signature, it is opened as a LUKS device; otherwise, it is assumed to

 be in raw dm-crypt (plain mode) format.

 The four fields of /etc/crypttab are defined as follows:

 1. The first field contains the name of the resulting volume with

 decrypted data; its block device is set up below /dev/mapper/.

 2. The second field contains a path to the underlying block device or

 file, or a specification of a block device via "UUID=" followed by

 the UUID.

 3. The third field specifies an absolute path to a file with the

 encryption key. Optionally, the path may be followed by ":" and an

 /etc/fstab style device specification (e.g. starting with "LABEL="

 or similar); in which case the path is taken relative to the

 specified device's file system root. If the field is not present or

 is "none" or "-", a key file named after the volume to unlock (i.e.

 the first column of the line), suffixed with .key is automatically

 loaded from the /etc/cryptsetup-keys.d/ and /run/cryptsetup-keys.d/

 directories, if present. Otherwise, the password has to be manually

 entered during system boot. For swap encryption, /dev/urandom may

 be used as key file, resulting in a randomized key.

 If the specified key file path refers to an AF_UNIX stream socket

 in the file system, the key is acquired by connecting to the socket

 and reading it from the connection. This allows the implementation

 of a service to provide key information dynamically, at the moment

 when it is needed. For details see below.

 4. The fourth field, if present, is a comma-delimited list of options.

 The supported options are listed below.

KEY ACQUISITION

 Six different mechanisms for acquiring the decryption key or passphrase

 unlocking the encrypted volume are supported. Specifically:

 1. Most prominently, the user may be queried interactively during

 volume activation (i.e. typically at boot), asking them to type in

 the necessary passphrases.

 2. The (unencrypted) key may be read from a file on disk, possibly on Page 2/18

 removable media. The third field of each line encodes the location,

 for details see above.

 3. The (unencrypted) key may be requested from another service, by

 specifying an AF_UNIX file system socket in place of a key file in

 the third field. For details see above and below.

 4. The key may be acquired via a PKCS#11 compatible hardware security

 token or smartcard. In this case an encrypted key is stored on

 disk/removable media, acquired via AF_UNIX, or stored in the LUKS2

 JSON token metadata header. The encrypted key is then decrypted by

 the PKCS#11 token with an RSA key stored on it, and then used to

 unlock the encrypted volume. Use the pkcs11-uri= option described

 below to use this mechanism.

 5. Similarly, the key may be acquired via a FIDO2 compatible hardware

 security token (which must implement the "hmac-secret" extension).

 In this case a key generated randomly during enrollment is stored

 on disk/removable media, acquired via AF_UNIX, or stored in the

 LUKS2 JSON token metadata header. The random key is hashed via a

 keyed hash function (HMAC) on the FIDO2 token, using a secret key

 stored on the token that never leaves it. The resulting hash value

 is then used as key to unlock the encrypted volume. Use the

 fido2-device= option described below to use this mechanism.

 6. Similarly, the key may be acquired via a TPM2 security chip. In

 this case a (during enrollment) randomly generated key ? encrypted

 by an asymmetric key derived from the TPM2 chip's seed key ? is

 stored on disk/removable media, acquired via AF_UNIX, or stored in

 the LUKS2 JSON token metadata header. Use the tpm2-device= option

 described below to use this mechanism.

 For the latter five mechanisms the source for the key material used for

 unlocking the volume is primarily configured in the third field of each

 /etc/crypttab line, but may also configured in /etc/cryptsetup-keys.d/

 and /run/cryptsetup-keys.d/ (see above) or in the LUKS2 JSON token

 header (in case of the latter three). Use the systemd-cryptenroll(1)

 tool to enroll PKCS#11, FIDO2 and TPM2 devices in LUKS2 volumes. Page 3/18

SUPPORTED OPTIONS

 The following options may be used in the fourth field of each line:

 cipher=

 Specifies the cipher to use. See cryptsetup(8) for possible values

 and the default value of this option. A cipher with unpredictable

 IV values, such as "aes-cbc-essiv:sha256", is recommended. Embedded

 commas in the cipher specification need to be escaped by preceding

 them with a backslash, see example below.

 discard

 Allow discard requests to be passed through the encrypted block

 device. This improves performance on SSD storage but has security

 implications.

 hash=

 Specifies the hash to use for password hashing. See cryptsetup(8)

 for possible values and the default value of this option.

 header=

 Use a detached (separated) metadata device or file where the LUKS

 header is stored. This option is only relevant for LUKS devices.

 See cryptsetup(8) for possible values and the default value of this

 option.

 Optionally, the path may be followed by ":" and an /etc/fstab

 device specification (e.g. starting with "UUID=" or similar); in

 which case, the path is relative to the device file system root.

 The device gets mounted automatically for LUKS device activation

 duration only.

 keyfile-offset=

 Specifies the number of bytes to skip at the start of the key file.

 See cryptsetup(8) for possible values and the default value of this

 option.

 keyfile-size=

 Specifies the maximum number of bytes to read from the key file.

 See cryptsetup(8) for possible values and the default value of this

 option. This option is ignored in plain encryption mode, as the key Page 4/18

 file size is then given by the key size.

 keyfile-erase

 If enabled, the specified key file is erased after the volume is

 activated or when activation fails. This is in particular useful

 when the key file is only acquired transiently before activation

 (e.g. via a file in /run/, generated by a service running before

 activation), and shall be removed after use. Defaults to off.

 key-slot=

 Specifies the key slot to compare the passphrase or key against. If

 the key slot does not match the given passphrase or key, but

 another would, the setup of the device will fail regardless. This

 option implies luks. See cryptsetup(8) for possible values. The

 default is to try all key slots in sequential order.

 keyfile-timeout=

 Specifies the timeout for the device on which the key file resides

 or the device used as the key file, and falls back to a password if

 it could not be accessed. See systemd-cryptsetup-generator(8) for

 key files on external devices.

 luks

 Force LUKS mode. When this mode is used, the following options are

 ignored since they are provided by the LUKS header on the device:

 cipher=, hash=, size=.

 bitlk

 Decrypt BitLocker drive. Encryption parameters are deduced by

 cryptsetup from BitLocker header.

 _netdev

 Marks this cryptsetup device as requiring network. It will be

 started after the network is available, similarly to

 systemd.mount(5) units marked with _netdev. The service unit to set

 up this device will be ordered between remote-fs-pre.target and

 remote-cryptsetup.target, instead of cryptsetup-pre.target and

 cryptsetup.target.

 Hint: if this device is used for a mount point that is specified in Page 5/18

 fstab(5), the _netdev option should also be used for the mount

 point. Otherwise, a dependency loop might be created where the

 mount point will be pulled in by local-fs.target, while the service

 to configure the network is usually only started after the local

 file system has been mounted.

 noauto

 This device will not be added to cryptsetup.target. This means that

 it will not be automatically unlocked on boot, unless something

 else pulls it in. In particular, if the device is used for a mount

 point, it'll be unlocked automatically during boot, unless the

 mount point itself is also disabled with noauto.

 nofail

 This device will not be a hard dependency of cryptsetup.target.

 It'll still be pulled in and started, but the system will not wait

 for the device to show up and be unlocked, and boot will not fail

 if this is unsuccessful. Note that other units that depend on the

 unlocked device may still fail. In particular, if the device is

 used for a mount point, the mount point itself also needs to have

 the nofail option, or the boot will fail if the device is not

 unlocked successfully.

 offset=

 Start offset in the backend device, in 512-byte sectors. This

 option is only relevant for plain devices.

 plain

 Force plain encryption mode.

 read-only, readonly

 Set up the encrypted block device in read-only mode.

 same-cpu-crypt

 Perform encryption using the same CPU that IO was submitted on. The

 default is to use an unbound workqueue so that encryption work is

 automatically balanced between available CPUs.

 This requires kernel 4.0 or newer.

 submit-from-crypt-cpus Page 6/18

 Disable offloading writes to a separate thread after encryption.

 There are some situations where offloading write requests from the

 encryption threads to a dedicated thread degrades performance

 significantly. The default is to offload write requests to a

 dedicated thread because it benefits the CFQ scheduler to have

 writes submitted using the same context.

 This requires kernel 4.0 or newer.

 no-read-workqueue

 Bypass dm-crypt internal workqueue and process read requests

 synchronously. The default is to queue these requests and process

 them asynchronously.

 This requires kernel 5.9 or newer.

 no-write-workqueue

 Bypass dm-crypt internal workqueue and process write requests

 synchronously. The default is to queue these requests and process

 them asynchronously.

 This requires kernel 5.9 or newer.

 skip=

 How many 512-byte sectors of the encrypted data to skip at the

 beginning. This is different from the offset= option with respect

 to the sector numbers used in initialization vector (IV)

 calculation. Using offset= will shift the IV calculation by the

 same negative amount. Hence, if offset=n is given, sector n will

 get a sector number of 0 for the IV calculation. Using skip= causes

 sector n to also be the first sector of the mapped device, but with

 its number for IV generation being n.

 This option is only relevant for plain devices.

 size=

 Specifies the key size in bits. See cryptsetup(8) for possible

 values and the default value of this option.

 sector-size=

 Specifies the sector size in bytes. See cryptsetup(8) for possible

 values and the default value of this option. Page 7/18

 swap

 The encrypted block device will be used as a swap device, and will

 be formatted accordingly after setting up the encrypted block

 device, with mkswap(8). This option implies plain.

 WARNING: Using the swap option will destroy the contents of the

 named partition during every boot, so make sure the underlying

 block device is specified correctly.

 tcrypt

 Use TrueCrypt encryption mode. When this mode is used, the

 following options are ignored since they are provided by the

 TrueCrypt header on the device or do not apply: cipher=, hash=,

 keyfile-offset=, keyfile-size=, size=.

 When this mode is used, the passphrase is read from the key file

 given in the third field. Only the first line of this file is read,

 excluding the new line character.

 Note that the TrueCrypt format uses both passphrase and key files

 to derive a password for the volume. Therefore, the passphrase and

 all key files need to be provided. Use tcrypt-keyfile= to provide

 the absolute path to all key files. When using an empty passphrase

 in combination with one or more key files, use "/dev/null" as the

 password file in the third field.

 tcrypt-hidden

 Use the hidden TrueCrypt volume. This option implies tcrypt.

 This will map the hidden volume that is inside of the volume

 provided in the second field. Please note that there is no

 protection for the hidden volume if the outer volume is mounted

 instead. See cryptsetup(8) for more information on this limitation.

 tcrypt-keyfile=

 Specifies the absolute path to a key file to use for a TrueCrypt

 volume. This implies tcrypt and can be used more than once to

 provide several key files.

 See the entry for tcrypt on the behavior of the passphrase and key

 files when using TrueCrypt encryption mode. Page 8/18

 tcrypt-system

 Use TrueCrypt in system encryption mode. This option implies

 tcrypt.

 tcrypt-veracrypt

 Check for a VeraCrypt volume. VeraCrypt is a fork of TrueCrypt that

 is mostly compatible, but uses different, stronger key derivation

 algorithms that cannot be detected without this flag. Enabling this

 option could substantially slow down unlocking, because VeraCrypt's

 key derivation takes much longer than TrueCrypt's. This option

 implies tcrypt.

 timeout=

 Specifies the timeout for querying for a password. If no unit is

 specified, seconds is used. Supported units are s, ms, us, min, h,

 d. A timeout of 0 waits indefinitely (which is the default).

 tmp=

 The encrypted block device will be prepared for using it as /tmp/;

 it will be formatted using mkfs(8). Takes a file system type as

 argument, such as "ext4", "xfs" or "btrfs". If no argument is

 specified defaults to "ext4". This option implies plain.

 WARNING: Using the tmp option will destroy the contents of the

 named partition during every boot, so make sure the underlying

 block device is specified correctly.

 tries=

 Specifies the maximum number of times the user is queried for a

 password. The default is 3. If set to 0, the user is queried for a

 password indefinitely.

 headless=

 Takes a boolean argument, defaults to false. If true, never query

 interactively for the password/PIN. Useful for headless systems.

 verify

 If the encryption password is read from console, it has to be

 entered twice to prevent typos.

 password-echo=yes|no|masked Page 9/18

 Controls whether to echo passwords or security token PINs that are

 read from console. Takes a boolean or the special string "masked".

 The default is password-echo=masked.

 If enabled, the typed characters are echoed literally. If disabled,

 the typed characters are not echoed in any form, the user will not

 get feedback on their input. If set to "masked", an asterisk ("*")

 is echoed for each character typed. Regardless of which mode is

 chosen, if the user hits the tabulator key ("?") at any time, or

 the backspace key ("?") before any other data has been entered,

 then echo is turned off.

 pkcs11-uri=

 Takes either the special value "auto" or an RFC7512 PKCS#11 URI[1]

 pointing to a private RSA key which is used to decrypt the

 encrypted key specified in the third column of the line. This is

 useful for unlocking encrypted volumes through PKCS#11 compatible

 security tokens or smartcards. See below for an example how to set

 up this mechanism for unlocking a LUKS2 volume with a YubiKey

 security token.

 If specified as "auto" the volume must be of type LUKS2 and must

 carry PKCS#11 security token metadata in its LUKS2 JSON token

 section. In this mode the URI and the encrypted key are

 automatically read from the LUKS2 JSON token header. Use systemd-

 cryptenroll(1) as simple tool for enrolling PKCS#11 security tokens

 or smartcards in a way compatible with "auto". In this mode the

 third column of the line should remain empty (that is, specified as

 "-").

 The specified URI can refer directly to a private RSA key stored on

 a token or alternatively just to a slot or token, in which case a

 search for a suitable private RSA key will be performed. In this

 case if multiple suitable objects are found the token is refused.

 The encrypted key configured in the third column of the line is

 passed as is (i.e. in binary form, unprocessed) to RSA decryption.

 The resulting decrypted key is then Base64 encoded before it is Page 10/18

 used to unlock the LUKS volume.

 Use systemd-cryptenroll --pkcs11-token-uri=list to list all

 suitable PKCS#11 security tokens currently plugged in, along with

 their URIs.

 Note that many newer security tokens that may be used as PKCS#11

 security token typically also implement the newer and simpler FIDO2

 standard. Consider using fido2-device= (described below) to enroll

 it via FIDO2 instead. Note that a security token enrolled via

 PKCS#11 cannot be used to unlock the volume via FIDO2, unless also

 enrolled via FIDO2, and vice versa.

 fido2-device=

 Takes either the special value "auto" or the path to a "hidraw"

 device node (e.g. /dev/hidraw1) referring to a FIDO2 security

 token that implements the "hmac-secret" extension (most current

 hardware security tokens do). See below for an example how to set

 up this mechanism for unlocking an encrypted volume with a FIDO2

 security token.

 If specified as "auto" the FIDO2 token device is automatically

 discovered, as it is plugged in.

 FIDO2 volume unlocking requires a client ID hash (CID) to be

 configured via fido2-cid= (see below) and a key to pass to the

 security token's HMAC functionality (configured in the line's third

 column) to operate. If not configured and the volume is of type

 LUKS2, the CID and the key are read from LUKS2 JSON token metadata

 instead. Use systemd-cryptenroll(1) as simple tool for enrolling

 FIDO2 security tokens, compatible with this automatic mode, which

 is only available for LUKS2 volumes.

 Use systemd-cryptenroll --fido2-device=list to list all suitable

 FIDO2 security tokens currently plugged in, along with their device

 nodes.

 This option implements the following mechanism: the configured key

 is hashed via they HMAC keyed hash function the FIDO2 device

 implements, keyed by a secret key embedded on the device. The Page 11/18

 resulting hash value is Base64 encoded and used to unlock the LUKS2

 volume. As it should not be possible to extract the secret from the

 hardware token, it should not be possible to retrieve the hashed

 key given the configured key ? without possessing the hardware

 token.

 Note that many security tokens that implement FIDO2 also implement

 PKCS#11, suitable for unlocking volumes via the pkcs11-uri= option

 described above. Typically the newer, simpler FIDO2 standard is

 preferable.

 fido2-cid=

 Takes a Base64 encoded FIDO2 client ID to use for the FIDO2 unlock

 operation. If specified, but fido2-device= is not,

 fido2-device=auto is implied. If fido2-device= is used but

 fido2-cid= is not, the volume must be of LUKS2 type, and the CID is

 read from the LUKS2 JSON token header. Use systemd-cryptenroll(1)

 for enrolling a FIDO2 token in the LUKS2 header compatible with

 this automatic mode.

 fido2-rp=

 Takes a string, configuring the FIDO2 Relying Party (rp) for the

 FIDO2 unlock operation. If not specified "io.systemd.cryptsetup" is

 used, except if the LUKS2 JSON token header contains a different

 value. It should normally not be necessary to override this.

 tpm2-device=

 Takes either the special value "auto" or the path to a device node

 (e.g. /dev/tpmrm0) referring to a TPM2 security chip. See below

 for an example how to set up this mechanism for unlocking an

 encrypted volume with a TPM2 chip.

 Use tpm2-pcrs= (see below) to configure the set of TPM2 PCRs to

 bind the volume unlocking to. Use systemd-cryptenroll(1) as simple

 tool for enrolling TPM2 security chips in LUKS2 volumes.

 If specified as "auto" the TPM2 device is automatically discovered.

 Use systemd-cryptenroll --tpm2-device=list to list all suitable

 TPM2 devices currently available, along with their device nodes. Page 12/18

 This option implements the following mechanism: when enrolling a

 TPM2 device via systemd-cryptenroll on a LUKS2 volume, a randomized

 key unlocking the volume is generated on the host and loaded into

 the TPM2 chip where it is encrypted with an asymmetric "primary"

 key pair derived from the TPM2's internal "seed" key. Neither the

 seed key nor the primary key are permitted to ever leave the TPM2

 chip ? however, the now encrypted randomized key may. It is saved

 in the LUKS2 volume JSON token header. When unlocking the encrypted

 volume, the primary key pair is generated on the TPM2 chip again

 (which works as long as the chip's seed key is correctly maintained

 by the TPM2 chip), which is then used to decrypt (on the TPM2 chip)

 the encrypted key from the LUKS2 volume JSON token header saved

 there during enrollment. The resulting decrypted key is then used

 to unlock the volume. When the randomized key is encrypted the

 current values of the selected PCRs (see below) are included in the

 operation, so that different PCR state results in different

 encrypted keys and the decrypted key can only be recovered if the

 same PCR state is reproduced.

 tpm2-pcrs=

 Takes a "+" separated list of numeric TPM2 PCR (i.e. "Platform

 Configuration Register") indexes to bind the TPM2 volume unlocking

 to. This option is only useful when TPM2 enrollment metadata is not

 available in the LUKS2 JSON token header already, the way

 systemd-cryptenroll writes it there. If not used (and no metadata

 in the LUKS2 JSON token header defines it), defaults to a list of a

 single entry: PCR 7. Assign an empty string to encode a policy that

 binds the key to no PCRs, making the key accessible to local

 programs regardless of the current PCR state.

 tpm2-pin=

 Takes a boolean argument, defaults to "false". Controls whether

 TPM2 volume unlocking is bound to a PIN in addition to PCRs.

 Similarly, this option is only useful when TPM2 enrollment metadata

 is not available. Page 13/18

 tpm2-signature=

 Takes an absolute path to a TPM2 PCR JSON signature file, as

 produced by the systemd-measure(1) tool. This permits locking LUKS2

 volumes to any PCR values for which a valid signature matching a

 public key specified at key enrollment time can be provided. See

 systemd-cryptenroll(1) for details on enrolling TPM2 PCR public

 keys. If this option is not specified but it is attempted to unlock

 a LUKS2 volume with a signed TPM2 PCR enrollment a suitable

 signature file tpm2-pcr-signature.json is searched for in

 /etc/systemd/, /run/systemd/, /usr/lib/systemd/ (in this order).

 token-timeout=

 Specifies how long to wait at most for configured security devices

 (i.e. FIDO2, PKCS#11, TPM2) to show up. Takes a time value in

 seconds (but other time units may be specified too, see

 systemd.time(7) for supported formats). Defaults to 30s. Once the

 specified timeout elapsed authentication via password is attempted.

 Note that this timeout applies to waiting for the security device

 to show up ? it does not apply to the PIN prompt for the device

 (should one be needed) or similar. Pass 0 to turn off the time-out

 and wait forever.

 try-empty-password=

 Takes a boolean argument. If enabled, right before asking the user

 for a password it is first attempted to unlock the volume with an

 empty password. This is useful for systems that are initialized

 with an encrypted volume with only an empty password set, which

 shall be replaced with a suitable password during first boot, but

 after activation.

 x-systemd.device-timeout=

 Specifies how long systemd should wait for a block device to show

 up before giving up on the entry. The argument is a time in seconds

 or explicitly specified units of "s", "min", "h", "ms".

 x-initrd.attach

 Setup this encrypted block device in the initrd, similarly to Page 14/18

 systemd.mount(5) units marked with x-initrd.mount.

 Although it's not necessary to mark the mount entry for the root

 file system with x-initrd.mount, x-initrd.attach is still

 recommended with the encrypted block device containing the root

 file system as otherwise systemd will attempt to detach the device

 during the regular system shutdown while it's still in use. With

 this option the device will still be detached but later after the

 root file system is unmounted.

 All other encrypted block devices that contain file systems mounted

 in the initrd should use this option.

 At early boot and when the system manager configuration is reloaded,

 this file is translated into native systemd units by systemd-

 cryptsetup-generator(8).

AF_UNIX KEY FILES

 If the key file path (as specified in the third column of /etc/crypttab

 entries, see above) refers to an AF_UNIX stream socket in the file

 system, the key is acquired by connecting to the socket and reading the

 key from the connection. The connection is made from an AF_UNIX socket

 name in the abstract namespace, see unix(7) for details. The source

 socket name is chosen according the following format:

 NUL RANDOM /cryptsetup/ VOLUME

 In other words: a NUL byte (as required for abstract namespace

 sockets), followed by a random string (consisting of alphanumeric

 characters only), followed by the literal string "/cryptsetup/",

 followed by the name of the volume to acquire they key for. For

 example, for the volume "myvol":

 \0d7067f78d9827418/cryptsetup/myvol

 Services listening on the AF_UNIX stream socket may query the source

 socket name with getpeername(2), and use this to determine which key to

 send, allowing a single listening socket to serve keys for multiple

 volumes. If the PKCS#11 logic is used (see above), the socket source

 name is picked in similar fashion, except that the literal string

 "/cryptsetup-pkcs11/" is used. And similarly for FIDO2 Page 15/18

 ("/cryptsetup-fido2/") and TPM2 ("/cryptsetup-tpm2/"). A diffent path

 component is used so that services providing key material know that the

 secret key was not requested directly, but instead an encrypted key

 that will be decrypted via the PKCS#11/FIDO2/TPM2 logic to acquire the

 final secret key.

EXAMPLES

 Example 1. /etc/crypttab example

 Set up four encrypted block devices. One using LUKS for normal storage,

 another one for usage as a swap device and two TrueCrypt volumes. For

 the fourth device, the option string is interpreted as two options

 "cipher=xchacha12,aes-adiantum-plain64", "keyfile-timeout=10s".

 luks UUID=2505567a-9e27-4efe-a4d5-15ad146c258b

 swap /dev/sda7 /dev/urandom swap

 truecrypt /dev/sda2 /etc/container_password tcrypt

 hidden /mnt/tc_hidden /dev/null tcrypt-hidden,tcrypt-keyfile=/etc/keyfile

 external /dev/sda3 keyfile:LABEL=keydev keyfile-timeout=10s,cipher=xchacha12\,aes-adiantum-plain64

 Example 2. Yubikey-based PKCS#11 Volume Unlocking Example

 The PKCS#11 logic allows hooking up any compatible security token that

 is capable of storing RSA decryption keys for unlocking an encrypted

 volume. Here's an example how to set up a Yubikey security token for

 this purpose on a LUKS2 volume, using ykmap(1) from the yubikey-manager

 project to initialize the token and systemd-cryptenroll(1) to add it in

 the LUKS2 volume:

 # SPDX-License-Identifier: MIT-0

 # Destroy any old key on the Yubikey (careful!)

 ykman piv reset

 # Generate a new private/public key pair on the device, store the public key in

 # 'pubkey.pem'.

 ykman piv generate-key -a RSA2048 9d pubkey.pem

 # Create a self-signed certificate from this public key, and store it on the

 # device. The "subject" should be an arbitrary user-chosen string to identify

 # the token with.

 ykman piv generate-certificate --subject "Knobelei" 9d pubkey.pem Page 16/18

 # We don't need the public key anymore, let's remove it. Since it is not

 # security sensitive we just do a regular "rm" here.

 rm pubkey.pem

 # Enroll the freshly initialized security token in the LUKS2 volume. Replace

 # /dev/sdXn by the partition to use (e.g. /dev/sda1).

 sudo systemd-cryptenroll --pkcs11-token-uri=auto /dev/sdXn

 # Test: Let's run systemd-cryptsetup to test if this all worked.

 sudo /usr/lib/systemd/systemd-cryptsetup attach mytest /dev/sdXn - pkcs11-uri=auto

 # If that worked, let's now add the same line persistently to /etc/crypttab,

 # for the future.

 sudo bash -c 'echo "mytest /dev/sdXn - pkcs11-uri=auto" >> /etc/crypttab'

 A few notes on the above:

 ? We use RSA2048, which is the longest key size current Yubikeys

 support

 ? We use Yubikey key slot 9d, since that's apparently the keyslot to

 use for decryption purposes, see documentation[2].

 Example 3. FIDO2 Volume Unlocking Example

 The FIDO2 logic allows using any compatible FIDO2 security token that

 implements the "hmac-secret" extension for unlocking an encrypted

 volume. Here's an example how to set up a FIDO2 security token for this

 purpose for a LUKS2 volume, using systemd-cryptenroll(1):

 # SPDX-License-Identifier: MIT-0

 # Enroll the security token in the LUKS2 volume. Replace /dev/sdXn by the

 # partition to use (e.g. /dev/sda1).

 sudo systemd-cryptenroll --fido2-device=auto /dev/sdXn

 # Test: Let's run systemd-cryptsetup to test if this worked.

 sudo /usr/lib/systemd/systemd-cryptsetup attach mytest /dev/sdXn - fido2-device=auto

 # If that worked, let's now add the same line persistently to /etc/crypttab,

 # for the future.

 sudo bash -c 'echo "mytest /dev/sdXn - fido2-device=auto" >> /etc/crypttab'

 Example 4. TPM2 Volume Unlocking Example

 The TPM2 logic allows using any TPM2 chip supported by the Linux kernel

 for unlocking an encrypted volume. Here's an example how to set up a Page 17/18

 TPM2 chip for this purpose for a LUKS2 volume, using systemd-

 cryptenroll(1):

 # SPDX-License-Identifier: MIT-0

 # Enroll the TPM2 security chip in the LUKS2 volume, and bind it to PCR 7

 # only. Replace /dev/sdXn by the partition to use (e.g. /dev/sda1).

 sudo systemd-cryptenroll --tpm2-device=auto --tpm2-pcrs=7 /dev/sdXn

 # Test: Let's run systemd-cryptsetup to test if this worked.

 sudo /usr/lib/systemd/systemd-cryptsetup attach mytest /dev/sdXn - tpm2-device=auto

 # If that worked, let's now add the same line persistently to /etc/crypttab,

 # for the future.

 sudo bash -c 'echo "mytest /dev/sdXn - tpm2-device=auto" >> /etc/crypttab'

SEE ALSO

 systemd(1), systemd-cryptsetup@.service(8), systemd-cryptsetup-

 generator(8), systemd-cryptenroll(1), fstab(5), cryptsetup(8),

 mkswap(8), mke2fs(8)

NOTES

 1. RFC7512 PKCS#11 URI

 https://tools.ietf.org/html/rfc7512

 2. see documentation

 https://developers.yubico.com/PIV/Introduction/Certificate_slots.html

systemd 252 CRYPTTAB(5)

Page 18/18

