
Rocky Enterprise Linux 9.2 Manual Pages on command 'crypto-policies.7'

$ man crypto-policies.7

CRYPTO-POLICIES(7) CRYPTO-POLICIES(7)

NAME

 crypto-policies - system-wide crypto policies overview

DESCRIPTION

 The security of cryptographic components of the operating system does

 not remain constant over time. Algorithms, such as cryptographic

 hashing and encryption, typically have a lifetime, after which they are

 considered either too risky to use or plain insecure. That means, we

 need to phase out such algorithms from the default settings or

 completely disable them if they could cause an irreparable problem.

 While in the past the algorithms were not disabled in a consistent way

 and different applications applied different policies, the system-wide

 crypto-policies followed by the crypto core components allow

 consistently deprecating and disabling algorithms system-wide.

 Several preconfigured policies (DEFAULT, LEGACY, FUTURE, and FIPS) and

 subpolicies are included in the crypto-policies(7) package. System

 administrators or third-party vendors can define custom policies.

 For rationale, see RFC 7457 for a list of attacks taking advantage of Page 1/11

 legacy crypto algorithms.

COVERED APPLICATIONS

 Crypto-policies apply to the configuration of the core cryptographic

 subsystems, covering TLS, IKE, IPSec, DNSSec, and Kerberos protocols;

 i.e., the supported secure communications protocols on the base

 operating system.

 Once an application runs in the operating system, it follows the

 default or selected policy and refuses to fall back to algorithms and

 protocols not within the policy, unless the user has explicitly

 requested the application to do so. That is, the policy applies to the

 default behavior of applications when running with the system-provided

 configuration but the user can override it on an application-specific

 basis.

 The policies currently provide settings for these applications and

 libraries:

 ? BIND DNS name server daemon (scopes: BIND, DNSSec)

 ? GnuTLS TLS library (scopes: GnuTLS, SSL, TLS)

 ? OpenJDK runtime environment (scopes: java-tls, SSL, TLS)

 ? Kerberos 5 library (scopes: krb5, Kerberos)

 ? Libreswan IPsec and IKE protocol implementation (scopes: libreswan,

 IPSec, IKE)

 ? NSS TLS library (scopes: NSS, SSL, TLS)

 ? OpenSSH SSH2 protocol implementation (scopes: OpenSSH, SSH)

 ? OpenSSL TLS library (scopes: OpenSSL, SSL, TLS)

 ? libssh SSH2 protocol implementation (scopes: libssh, SSH)

 Applications using the above libraries and tools are covered by the

 cryptographic policies unless they are explicitly configured otherwise.

PROVIDED POLICIES

 LEGACY

 This policy ensures maximum compatibility with legacy systems at

 the cost of being less secure. It allows the TLS 1.2, and TLS 1.3

 protocols, as well as IKEv2 and SSH2. DSA is not allowed, while

 RSA and Diffie-Hellman parameters are accepted if no less than 2048 Page 2/11

 bits. This policy provides at least 80-bit security.

 ? MACs: all HMAC with SHA-1 or better + all modern MACs (Poly1305

 etc.)

 ? Curves: all prime >= 255 bits (including Bernstein curves)

 ? Signature algorithms: with SHA1 hash or better (no DSA)

 ? Ciphers: all available >= 112-bit key, >= 128-bit block

 (excluding 3DES and RC4)

 ? Key exchange: ECDHE, RSA, DHE (no DHE-DSS)

 ? DH params size: >= 2048

 ? RSA keys size: >= 2048

 ? TLS protocols: TLS >= 1.2, DTLS >= 1.2

 DEFAULT

 The DEFAULT policy is a reasonable default policy for today?s

 standards. It allows the TLS 1.2, and TLS 1.3 protocols, as well as

 IKEv2 and SSH2. The Diffie-Hellman parameters are accepted if they

 are at least 2048 bits long. This policy provides at least 112-bit

 security.

 ? MACs: all HMAC with SHA-1 or better + all modern MACs (Poly1305

 etc.)

 ? Curves: all prime >= 255 bits (including Bernstein curves)

 ? Signature algorithms: with SHA-224 hash or better (no DSA)

 ? TLS Ciphers: >= 128-bit key, >= 128-bit block (AES, ChaCha20,

 including AES-CBC)

 ? non-TLS Ciphers: as TLS Ciphers

 ? Key exchange: ECDHE, RSA, DHE (no DHE-DSS)

 ? DH params size: >= 2048

 ? RSA keys size: >= 2048

 ? TLS protocols: TLS >= 1.2, DTLS >= 1.2

 FUTURE

 A conservative security policy that is believed to withstand any

 near-term future attacks. This policy does not allow the use of

 SHA-1 in signature algorithms. The policy also provides some (not

 complete) preparation for post-quantum encryption support in form Page 3/11

 of 256-bit symmetric encryption requirement. The RSA and

 Diffie-Hellman parameters are accepted if larger than 3071 bits.

 This policy provides at least 128-bit security.

 ? MACs: all HMAC with SHA-256 or better + all modern MACs

 (Poly1305 etc.)

 ? Curves: all prime >= 255 bits (including Bernstein curves)

 ? Signature algorithms: with SHA-256 hash or better (no DSA)

 ? TLS Ciphers: >= 256-bit key, >= 128-bit block, only

 Authenticated Encryption (AE) ciphers, no CBC ciphers

 ? non-TLS Ciphers: same as TLS ciphers with added non AE ciphers,

 CBC ones enabled only in Kerberos

 ? Key exchange: ECDHE, DHE (no DHE-DSS, no RSA)

 ? DH params size: >= 3072

 ? RSA keys size: >= 3072

 ? TLS protocols: TLS >= 1.2, DTLS >= 1.2

 FIPS

 A policy to aid conformance to the FIPS 140-2 requirements. This

 policy is used internally by the fips-mode-setup(8) tool which can

 switch the system into the FIPS 140-2 mode. This policy provides at

 least 112-bit security.

 ? MACs: SHA-256 or better

 ? Curves: all prime >= 256 bits

 ? Signature algorithms: with SHA-256 hash or better (no DSA)

 ? TLS Ciphers: >= 128-bit key, >= 128-bit block (AES, excluding

 AES-CBC)

 ? non-TLS Ciphers: same as TLS Ciphers

 ? Key exchange: ECDHE, DHE (no DHE-DSS, no RSA)

 ? DH params size: >= 2048

 ? RSA params size: >= 2048

 ? TLS protocols: TLS >= 1.2, DTLS >= 1.2

 EMPTY

 All cryptographic algorithms are disabled (used for debugging only,

 do not use). Page 4/11

CRYPTO POLICY DEFINITION FORMAT

 The crypto policy definition files have a simple syntax following an

 INI file key = value syntax with these particular features:

 ? Comments are indicated by # character. Everything on the line

 following the character is ignored.

 ? Backslash \ character followed immediately with the end-of-line

 character indicates line continuation. The following line is

 concatenated to the current line after the backslash and

 end-of-line characters are removed.

 ? Value types for integer options can be decimal integers (option =

 1).

 ? Multiple-choice options can be specified by setting them to a list

 of values (option = value1 value2). This list can further be

 altered by prepending/omitting/appending values (option = prepended

 -omitted appended). A follow-up reassignment will reset the list.

 The latter syntax cannot be combined with the former one in the

 same directive. Setting an option to an empty list is possible with

 option =.

 ? Asterisk sign can be used for wildcard matching as a shortcut for

 specifying multiple values when setting multiple-choice options.

 Note that wildcard matching can lead to future updates implicitly

 enabling algorithms not yet available in the current version. If

 this is a concern, do not use wildcard-matching outside of

 algorithm-omitting directives.

 ? In order to limit the scope of the directive and make it affect

 just some of the backends, the following extended syntax can be

 used: option@scope = ..., option@{scope1,scope2,...} =

 Negation of scopes is possible with option@!scope /

 'option@{scope1,scope2,...}. Scope selectors are case-insensitive.

 The available options are:

 ? mac: List of allowed MAC algorithms

 ? group: List of allowed groups or elliptic curves for key exchanges

 for use with other protocols Page 5/11

 ? hash: List of allowed cryptographic hash (message digest)

 algorithms

 ? sign: List of allowed signature algorithms

 ? cipher: List of allowed symmetric encryption algorithms (including

 the modes) for use with other protocols

 ? key_exchange: List of allowed key exchange algorithms

 ? protocol: List of allowed TLS, DTLS and IKE protocol versions; mind

 that some backends do not allow selectively disabling protocols

 versions and only use the oldest version as the lower boundary.

 ? min_dh_size: Integer value of minimum number of bits of parameters

 for DH key exchange

 ? min_dsa_size: Integer value of minimum number of bits for DSA keys

 ? min_rsa_size: Integer value of minimum number of bits for RSA keys

 ? sha1_in_certs: Value of 1 if SHA1 allowed in certificate

 signatures, 0 otherwise (Applies to GnuTLS back end only.)

 ? arbitrary_dh_groups: Value of 1 if arbitrary group in

 Diffie-Hellman is allowed, 0 otherwise

 ? ssh_certs: Value of 1 if OpenSSH certificate authentication is

 allowed, 0 otherwise

 ? ssh_etm: Value of 1 if OpenSSH EtM (encrypt-then-mac) extension is

 allowed, 0 otherwise

 Full policy definition files have suffix .pol, subpolicy files have

 suffix .pmod. Subpolicies do not have to have values set for all the

 keys listed above.

 The effective configuration of a policy with subpolicies applied is the

 same as a configuration from a single policy obtained by concatenating

 the policy and the subpolicies in question.

 Policy file placement and naming:

 The policy files shipped in packages are placed in

 /usr/share/crypto-policies/policies and the subpolicies in

 /usr/share/crypto-policies/policies/modules.

 Locally configured policy files should be placed in

 /etc/crypto-policies/policies and subpolicies in Page 6/11

 /etc/crypto-policies/policies/modules.

 The policy and subpolicy files must have names in upper-case except for

 the .pol and .pmod suffix as the update-crypto-policies command always

 converts the policy name to upper-case before searching for the policy

 on the filesystem.

COMMANDS

 update-crypto-policies(8)

 This command manages the policies available to the various

 cryptographic back ends and allows the system administrator to

 change the active cryptographic policy.

 fips-mode-setup(8)

 This command allows the system administrator to enable, or disable

 the system FIPS mode and also apply the FIPS cryptographic policy

 which limits the allowed algorithms and protocols to these allowed

 by the FIPS 140-2 requirements.

NOTES

 Known notable exceptions

 ? Go-language applications do not yet follow the system-wide policy.

 ? GnuPG-2 application does not follow the system-wide policy.

 In general only the data-in-transit is currently covered by the

 system-wide policy.

 If the system administrator changes the system-wide policy with the

 update-crypto-policies(8) command it is advisable to restart the system

 as the individual back-end libraries read the configuration files

 usually during their initialization. The changes in the policy thus

 take place in most cases only when the applications using the back-end

 libraries are restarted.

 Removed cipher suites and protocols

 The following cipher suites and protocols are completely removed from

 the core cryptographic libraries listed above:

 ? DES

 ? All export grade cipher suites

 ? MD5 in signatures Page 7/11

 ? SSLv2

 ? SSLv3

 ? All ECC curves smaller than 224 bits

 ? All binary field ECC curves

 Cipher suites and protocols disabled in all predefined policies

 The following ciphersuites and protocols are available but disabled in

 all predefined crypto policies:

 ? DH with parameters < 2048 bits

 ? RSA with key size < 2048 bits

 ? Camellia

 ? RC4

 ? ARIA

 ? SEED

 ? IDEA

 ? Integrity only ciphersuites

 ? TLS CBC mode ciphersuites using SHA-384 HMAC

 ? AES-CCM8

 ? all ECC curves incompatible with TLS 1.3, including secp256k1

 ? IKEv1

 Notable irregularities in the individual configuration generators

 ? OpenSSL and NSS: Disabling all TLS and/or all DTLS versions isn?t

 actually possible. Trying to do so will result in the library

 defaults being applied instead.

 ? OpenSSL: The minimum length of the keys and some other parameters

 are enforced by the @SECLEVEL value which does not provide a fine

 granularity. The list of TLS ciphers is not generated as an exact

 list but by subtracting from all the supported ciphers for the

 enabled key exchange methods. For that reason there is no way to

 disable a random cipher. In particular all AES-128 ciphers are

 disabled if the AES-128-GCM is not present in the list; all AES-256

 ciphers are disabled if the AES-256-GCM is not present. The CBC

 ciphers are disabled if there isn?t HMAC-SHA1 in the hmac list and

 AES-256-CBC in the cipher list. To disable the CCM ciphers both Page 8/11

 AES-128-CCM and AES-256-CCM must not be present in the cipher list.

 ? GnuTLS: The minimum length of the keys and some other parameters

 are enforced by min-verification-profile setting in the GnuTLS

 configuration file which does not provide fine granularity.

 ? GnuTLS: PSK key exchanges have to be explicitly enabled by the

 applications using them.

 ? GnuTLS: HMAC-SHA2-256 and HMAC-SHA2-384 MACs are disabled due to

 concerns over the constant-timedness of the implementation.

 ? OpenSSH: DH group 1 is always disabled on server even if the policy

 allows 1024 bit DH groups in general. The OpenSSH configuration

 option HostKeyAlgorithms is set only for the SSH server as

 otherwise the handling of the existing known hosts entries would be

 broken on client.

 ? Libreswan: The key_exchange parameter does not affect the generated

 configuration. The use of regular DH or ECDH can be limited with

 appropriate setting of the group parameter.

HISTORY

 The ECDHE-GSS and DHE-GSS algorithms are newly introduced and must be

 specified in the base policy for the SSH GSSAPI key exchange methods to

 be enabled. Previously the legacy SSH GSSAPI key exchange methods were

 automatically enabled when the SHA1 hash and DH parameters of at least

 2048 bits were enabled.

 Before the introduction of the custom crypto policies support it was

 possible to have an completely arbitrary crypto policy created as a set

 of arbitrary back-end config files in

 /usr/share/crypto-policies/<POLICYNAME> directory. With the

 introduction of the custom crypto policies it is still possible but

 there must be an empty (possibly with any comment lines)

 <POLICYNAME>.pol file in /usr/share/crypto-policies/policies so the

 update-crypto-policies command can recognize the arbitrary custom

 policy. No subpolicies must be used with such an arbitrary custom

 policy. Modifications from local.d will be appended to the files

 provided by the policy. Page 9/11

 The use of the following historaically available options is

 discouraged:

 ? min_tls_version: Lowest allowed TLS protocol version (recommended

 replacement: protocol@TLS)

 ? min_dtls_version: Lowest allowed DTLS protocol version (recommended

 replacement: protocol@TLS)

 The following options are deprecated, please rewrite your policies:

 ? ike_protocol: List of allowed IKE protocol versions (recommended

 replacement: protocol@IKE, mind the relative position to other

 protocol directives).

 ? tls_cipher: list of allowed symmetric encryption algorithms for use

 with the TLS protocol (recommended replacement: cipher@TLS, mind

 the relative position to other cipher directives).

 ? ssh_cipher: list of allowed symmetric encryption algorithms for use

 with the SSH protocol (recommended replacement: cipher@SSH, mind

 the relative position to other cipher directives).

 ? ssh_group: list of allowed groups or elliptic curves for key

 exchanges for use with the SSH protocol (recommended replacement:

 group@SSH, mind the relative position to other group directives).

 ? sha1_in_dnssec: Allow SHA1 usage in DNSSec protocol even if it is

 not present in the hash and sign lists (recommended replacements:

 hash@DNSSec, sign@DNSSec).

FILES

 /etc/crypto-policies/back-ends

 The individual cryptographical back-end configuration files.

 Usually linked to the configuration shipped in the crypto-policies

 package unless a configuration from local.d is added.

 /etc/crypto-policies/config

 A file containing the name of the active crypto-policy set on the

 system.

 /etc/crypto-policies/local.d

 Additional configuration shipped by other packages or created by

 the system administrator. The contents of the Page 10/11

 <back-end>-file.config is appended to the configuration from the

 policy back end as shipped in the crypto-policies package.

 /usr/share/crypto-policies/policies

 System policy definition files.

 /usr/share/crypto-policies/policies/modules

 System subpolicy definition files.

 /etc/crypto-policies/policies

 Custom policy definition files as configured by the system

 administrator.

 /etc/crypto-policies/policies/modules

 Custom subpolicy definition files as configured by the system

 administrator.

 /usr/share/crypto-policies/<'POLICYNAME'>

 Pre-generated back-end configurations for policy POLICYNAME.

SEE ALSO

 update-crypto-policies(8), fips-mode-setup(8)

AUTHOR

 Written by Tom?? Mr?z.

crypto-policies 12/15/2022 CRYPTO-POLICIES(7)

Page 11/11

