
Rocky Enterprise Linux 9.2 Manual Pages on command 'cpp.1'

$ man cpp.1

CPP(1) GNU CPP(1)

NAME

 cpp - The C Preprocessor

SYNOPSIS

 cpp [-Dmacro[=defn]...] [-Umacro]

 [-Idir...] [-iquotedir...]

 [-M|-MM] [-MG] [-MF filename]

 [-MP] [-MQ target...]

 [-MT target...]

 infile [[-o] outfile]

 Only the most useful options are given above; see below for a more

 complete list of preprocessor-specific options. In addition, cpp

 accepts most gcc driver options, which are not listed here. Refer to

 the GCC documentation for details.

DESCRIPTION

 The C preprocessor, often known as cpp, is a macro processor that is

 used automatically by the C compiler to transform your program before

 compilation. It is called a macro processor because it allows you to Page 1/19

 define macros, which are brief abbreviations for longer constructs.

 The C preprocessor is intended to be used only with C, C++, and

 Objective-C source code. In the past, it has been abused as a general

 text processor. It will choke on input which does not obey C's lexical

 rules. For example, apostrophes will be interpreted as the beginning

 of character constants, and cause errors. Also, you cannot rely on it

 preserving characteristics of the input which are not significant to

 C-family languages. If a Makefile is preprocessed, all the hard tabs

 will be removed, and the Makefile will not work.

 Having said that, you can often get away with using cpp on things which

 are not C. Other Algol-ish programming languages are often safe (Ada,

 etc.) So is assembly, with caution. -traditional-cpp mode preserves

 more white space, and is otherwise more permissive. Many of the

 problems can be avoided by writing C or C++ style comments instead of

 native language comments, and keeping macros simple.

 Wherever possible, you should use a preprocessor geared to the language

 you are writing in. Modern versions of the GNU assembler have macro

 facilities. Most high level programming languages have their own

 conditional compilation and inclusion mechanism. If all else fails,

 try a true general text processor, such as GNU M4.

 C preprocessors vary in some details. This manual discusses the GNU C

 preprocessor, which provides a small superset of the features of ISO

 Standard C. In its default mode, the GNU C preprocessor does not do a

 few things required by the standard. These are features which are

 rarely, if ever, used, and may cause surprising changes to the meaning

 of a program which does not expect them. To get strict ISO Standard C,

 you should use the -std=c90, -std=c99, -std=c11 or -std=c17 options,

 depending on which version of the standard you want. To get all the

 mandatory diagnostics, you must also use -pedantic.

 This manual describes the behavior of the ISO preprocessor. To

 minimize gratuitous differences, where the ISO preprocessor's behavior

 does not conflict with traditional semantics, the traditional

 preprocessor should behave the same way. The various differences that Page 2/19

 do exist are detailed in the section Traditional Mode.

 For clarity, unless noted otherwise, references to CPP in this manual

 refer to GNU CPP.

OPTIONS

 The cpp command expects two file names as arguments, infile and

 outfile. The preprocessor reads infile together with any other files

 it specifies with #include. All the output generated by the combined

 input files is written in outfile.

 Either infile or outfile may be -, which as infile means to read from

 standard input and as outfile means to write to standard output. If

 either file is omitted, it means the same as if - had been specified

 for that file. You can also use the -o outfile option to specify the

 output file.

 Unless otherwise noted, or the option ends in =, all options which take

 an argument may have that argument appear either immediately after the

 option, or with a space between option and argument: -Ifoo and -I foo

 have the same effect.

 Many options have multi-letter names; therefore multiple single-letter

 options may not be grouped: -dM is very different from -d -M.

 -D name

 Predefine name as a macro, with definition 1.

 -D name=definition

 The contents of definition are tokenized and processed as if they

 appeared during translation phase three in a #define directive. In

 particular, the definition is truncated by embedded newline

 characters.

 If you are invoking the preprocessor from a shell or shell-like

 program you may need to use the shell's quoting syntax to protect

 characters such as spaces that have a meaning in the shell syntax.

 If you wish to define a function-like macro on the command line,

 write its argument list with surrounding parentheses before the

 equals sign (if any). Parentheses are meaningful to most shells,

 so you should quote the option. With sh and csh, Page 3/19

 -D'name(args...)=definition' works.

 -D and -U options are processed in the order they are given on the

 command line. All -imacros file and -include file options are

 processed after all -D and -U options.

 -U name

 Cancel any previous definition of name, either built in or provided

 with a -D option.

 -include file

 Process file as if "#include "file"" appeared as the first line of

 the primary source file. However, the first directory searched for

 file is the preprocessor's working directory instead of the

 directory containing the main source file. If not found there, it

 is searched for in the remainder of the "#include "..."" search

 chain as normal.

 If multiple -include options are given, the files are included in

 the order they appear on the command line.

 -imacros file

 Exactly like -include, except that any output produced by scanning

 file is thrown away. Macros it defines remain defined. This

 allows you to acquire all the macros from a header without also

 processing its declarations.

 All files specified by -imacros are processed before all files

 specified by -include.

 -undef

 Do not predefine any system-specific or GCC-specific macros. The

 standard predefined macros remain defined.

 -pthread

 Define additional macros required for using the POSIX threads

 library. You should use this option consistently for both

 compilation and linking. This option is supported on GNU/Linux

 targets, most other Unix derivatives, and also on x86 Cygwin and

 MinGW targets.

 -M Instead of outputting the result of preprocessing, output a rule Page 4/19

 suitable for make describing the dependencies of the main source

 file. The preprocessor outputs one make rule containing the object

 file name for that source file, a colon, and the names of all the

 included files, including those coming from -include or -imacros

 command-line options.

 Unless specified explicitly (with -MT or -MQ), the object file name

 consists of the name of the source file with any suffix replaced

 with object file suffix and with any leading directory parts

 removed. If there are many included files then the rule is split

 into several lines using \-newline. The rule has no commands.

 This option does not suppress the preprocessor's debug output, such

 as -dM. To avoid mixing such debug output with the dependency

 rules you should explicitly specify the dependency output file with

 -MF, or use an environment variable like DEPENDENCIES_OUTPUT.

 Debug output is still sent to the regular output stream as normal.

 Passing -M to the driver implies -E, and suppresses warnings with

 an implicit -w.

 -MM Like -M but do not mention header files that are found in system

 header directories, nor header files that are included, directly or

 indirectly, from such a header.

 This implies that the choice of angle brackets or double quotes in

 an #include directive does not in itself determine whether that

 header appears in -MM dependency output.

 -MF file

 When used with -M or -MM, specifies a file to write the

 dependencies to. If no -MF switch is given the preprocessor sends

 the rules to the same place it would send preprocessed output.

 When used with the driver options -MD or -MMD, -MF overrides the

 default dependency output file.

 If file is -, then the dependencies are written to stdout.

 -MG In conjunction with an option such as -M requesting dependency

 generation, -MG assumes missing header files are generated files

 and adds them to the dependency list without raising an error. The Page 5/19

 dependency filename is taken directly from the "#include" directive

 without prepending any path. -MG also suppresses preprocessed

 output, as a missing header file renders this useless.

 This feature is used in automatic updating of makefiles.

 -Mno-modules

 Disable dependency generation for compiled module interfaces.

 -MP This option instructs CPP to add a phony target for each dependency

 other than the main file, causing each to depend on nothing. These

 dummy rules work around errors make gives if you remove header

 files without updating the Makefile to match.

 This is typical output:

 test.o: test.c test.h

 test.h:

 -MT target

 Change the target of the rule emitted by dependency generation. By

 default CPP takes the name of the main input file, deletes any

 directory components and any file suffix such as .c, and appends

 the platform's usual object suffix. The result is the target.

 An -MT option sets the target to be exactly the string you specify.

 If you want multiple targets, you can specify them as a single

 argument to -MT, or use multiple -MT options.

 For example, -MT '$(objpfx)foo.o' might give

 $(objpfx)foo.o: foo.c

 -MQ target

 Same as -MT, but it quotes any characters which are special to

 Make. -MQ '$(objpfx)foo.o' gives

 $$(objpfx)foo.o: foo.c

 The default target is automatically quoted, as if it were given

 with -MQ.

 -MD -MD is equivalent to -M -MF file, except that -E is not implied.

 The driver determines file based on whether an -o option is given.

 If it is, the driver uses its argument but with a suffix of .d,

 otherwise it takes the name of the input file, removes any Page 6/19

 directory components and suffix, and applies a .d suffix.

 If -MD is used in conjunction with -E, any -o switch is understood

 to specify the dependency output file, but if used without -E, each

 -o is understood to specify a target object file.

 Since -E is not implied, -MD can be used to generate a dependency

 output file as a side effect of the compilation process.

 -MMD

 Like -MD except mention only user header files, not system header

 files.

 -fpreprocessed

 Indicate to the preprocessor that the input file has already been

 preprocessed. This suppresses things like macro expansion,

 trigraph conversion, escaped newline splicing, and processing of

 most directives. The preprocessor still recognizes and removes

 comments, so that you can pass a file preprocessed with -C to the

 compiler without problems. In this mode the integrated

 preprocessor is little more than a tokenizer for the front ends.

 -fpreprocessed is implicit if the input file has one of the

 extensions .i, .ii or .mi. These are the extensions that GCC uses

 for preprocessed files created by -save-temps.

 -fdirectives-only

 When preprocessing, handle directives, but do not expand macros.

 The option's behavior depends on the -E and -fpreprocessed options.

 With -E, preprocessing is limited to the handling of directives

 such as "#define", "#ifdef", and "#error". Other preprocessor

 operations, such as macro expansion and trigraph conversion are not

 performed. In addition, the -dD option is implicitly enabled.

 With -fpreprocessed, predefinition of command line and most builtin

 macros is disabled. Macros such as "__LINE__", which are

 contextually dependent, are handled normally. This enables

 compilation of files previously preprocessed with "-E

 -fdirectives-only".

 With both -E and -fpreprocessed, the rules for -fpreprocessed take Page 7/19

 precedence. This enables full preprocessing of files previously

 preprocessed with "-E -fdirectives-only".

 -fdollars-in-identifiers

 Accept $ in identifiers.

 -fextended-identifiers

 Accept universal character names and extended characters in

 identifiers. This option is enabled by default for C99 (and later

 C standard versions) and C++.

 -fno-canonical-system-headers

 When preprocessing, do not shorten system header paths with

 canonicalization.

 -fmax-include-depth=depth

 Set the maximum depth of the nested #include. The default is 200.

 -ftabstop=width

 Set the distance between tab stops. This helps the preprocessor

 report correct column numbers in warnings or errors, even if tabs

 appear on the line. If the value is less than 1 or greater than

 100, the option is ignored. The default is 8.

 -ftrack-macro-expansion[=level]

 Track locations of tokens across macro expansions. This allows the

 compiler to emit diagnostic about the current macro expansion stack

 when a compilation error occurs in a macro expansion. Using this

 option makes the preprocessor and the compiler consume more memory.

 The level parameter can be used to choose the level of precision of

 token location tracking thus decreasing the memory consumption if

 necessary. Value 0 of level de-activates this option. Value 1

 tracks tokens locations in a degraded mode for the sake of minimal

 memory overhead. In this mode all tokens resulting from the

 expansion of an argument of a function-like macro have the same

 location. Value 2 tracks tokens locations completely. This value is

 the most memory hungry. When this option is given no argument, the

 default parameter value is 2.

 Note that "-ftrack-macro-expansion=2" is activated by default. Page 8/19

 -fmacro-prefix-map=old=new

 When preprocessing files residing in directory old, expand the

 "__FILE__" and "__BASE_FILE__" macros as if the files resided in

 directory new instead. This can be used to change an absolute path

 to a relative path by using . for new which can result in more

 reproducible builds that are location independent. This option

 also affects "__builtin_FILE()" during compilation. See also

 -ffile-prefix-map.

 -fexec-charset=charset

 Set the execution character set, used for string and character

 constants. The default is UTF-8. charset can be any encoding

 supported by the system's "iconv" library routine.

 -fwide-exec-charset=charset

 Set the wide execution character set, used for wide string and

 character constants. The default is one of UTF-32BE, UTF-32LE,

 UTF-16BE, or UTF-16LE, whichever corresponds to the width of

 "wchar_t" and the big-endian or little-endian byte order being used

 for code generation. As with -fexec-charset, charset can be any

 encoding supported by the system's "iconv" library routine;

 however, you will have problems with encodings that do not fit

 exactly in "wchar_t".

 -finput-charset=charset

 Set the input character set, used for translation from the

 character set of the input file to the source character set used by

 GCC. If the locale does not specify, or GCC cannot get this

 information from the locale, the default is UTF-8. This can be

 overridden by either the locale or this command-line option.

 Currently the command-line option takes precedence if there's a

 conflict. charset can be any encoding supported by the system's

 "iconv" library routine.

 -fworking-directory

 Enable generation of linemarkers in the preprocessor output that

 let the compiler know the current working directory at the time of Page 9/19

 preprocessing. When this option is enabled, the preprocessor

 emits, after the initial linemarker, a second linemarker with the

 current working directory followed by two slashes. GCC uses this

 directory, when it's present in the preprocessed input, as the

 directory emitted as the current working directory in some

 debugging information formats. This option is implicitly enabled

 if debugging information is enabled, but this can be inhibited with

 the negated form -fno-working-directory. If the -P flag is present

 in the command line, this option has no effect, since no "#line"

 directives are emitted whatsoever.

 -A predicate=answer

 Make an assertion with the predicate predicate and answer answer.

 This form is preferred to the older form -A predicate(answer),

 which is still supported, because it does not use shell special

 characters.

 -A -predicate=answer

 Cancel an assertion with the predicate predicate and answer answer.

 -C Do not discard comments. All comments are passed through to the

 output file, except for comments in processed directives, which are

 deleted along with the directive.

 You should be prepared for side effects when using -C; it causes

 the preprocessor to treat comments as tokens in their own right.

 For example, comments appearing at the start of what would be a

 directive line have the effect of turning that line into an

 ordinary source line, since the first token on the line is no

 longer a #.

 -CC Do not discard comments, including during macro expansion. This is

 like -C, except that comments contained within macros are also

 passed through to the output file where the macro is expanded.

 In addition to the side effects of the -C option, the -CC option

 causes all C++-style comments inside a macro to be converted to

 C-style comments. This is to prevent later use of that macro from

 inadvertently commenting out the remainder of the source line. Page 10/19

 The -CC option is generally used to support lint comments.

 -P Inhibit generation of linemarkers in the output from the

 preprocessor. This might be useful when running the preprocessor

 on something that is not C code, and will be sent to a program

 which might be confused by the linemarkers.

 -traditional

 -traditional-cpp

 Try to imitate the behavior of pre-standard C preprocessors, as

 opposed to ISO C preprocessors.

 Note that GCC does not otherwise attempt to emulate a pre-standard

 C compiler, and these options are only supported with the -E

 switch, or when invoking CPP explicitly.

 -trigraphs

 Support ISO C trigraphs. These are three-character sequences, all

 starting with ??, that are defined by ISO C to stand for single

 characters. For example, ??/ stands for \, so '??/n' is a

 character constant for a newline.

 By default, GCC ignores trigraphs, but in standard-conforming modes

 it converts them. See the -std and -ansi options.

 -remap

 Enable special code to work around file systems which only permit

 very short file names, such as MS-DOS.

 -H Print the name of each header file used, in addition to other

 normal activities. Each name is indented to show how deep in the

 #include stack it is. Precompiled header files are also printed,

 even if they are found to be invalid; an invalid precompiled header

 file is printed with ...x and a valid one with ...! .

 -dletters

 Says to make debugging dumps during compilation as specified by

 letters. The flags documented here are those relevant to the

 preprocessor. Other letters are interpreted by the compiler

 proper, or reserved for future versions of GCC, and so are silently

 ignored. If you specify letters whose behavior conflicts, the Page 11/19

 result is undefined.

 -dM Instead of the normal output, generate a list of #define

 directives for all the macros defined during the execution of

 the preprocessor, including predefined macros. This gives you

 a way of finding out what is predefined in your version of the

 preprocessor. Assuming you have no file foo.h, the command

 touch foo.h; cpp -dM foo.h

 shows all the predefined macros.

 -dD Like -dM except in two respects: it does not include the

 predefined macros, and it outputs both the #define directives

 and the result of preprocessing. Both kinds of output go to

 the standard output file.

 -dN Like -dD, but emit only the macro names, not their expansions.

 -dI Output #include directives in addition to the result of

 preprocessing.

 -dU Like -dD except that only macros that are expanded, or whose

 definedness is tested in preprocessor directives, are output;

 the output is delayed until the use or test of the macro; and

 #undef directives are also output for macros tested but

 undefined at the time.

 -fdebug-cpp

 This option is only useful for debugging GCC. When used from CPP

 or with -E, it dumps debugging information about location maps.

 Every token in the output is preceded by the dump of the map its

 location belongs to.

 When used from GCC without -E, this option has no effect.

 -I dir

 -iquote dir

 -isystem dir

 -idirafter dir

 Add the directory dir to the list of directories to be searched for

 header files during preprocessing.

 If dir begins with = or $SYSROOT, then the = or $SYSROOT is Page 12/19

 replaced by the sysroot prefix; see --sysroot and -isysroot.

 Directories specified with -iquote apply only to the quote form of

 the directive, "#include "file"". Directories specified with -I,

 -isystem, or -idirafter apply to lookup for both the

 "#include "file"" and "#include <file>" directives.

 You can specify any number or combination of these options on the

 command line to search for header files in several directories.

 The lookup order is as follows:

 1. For the quote form of the include directive, the directory of

 the current file is searched first.

 2. For the quote form of the include directive, the directories

 specified by -iquote options are searched in left-to-right

 order, as they appear on the command line.

 3. Directories specified with -I options are scanned in left-to-

 right order.

 4. Directories specified with -isystem options are scanned in

 left-to-right order.

 5. Standard system directories are scanned.

 6. Directories specified with -idirafter options are scanned in

 left-to-right order.

 You can use -I to override a system header file, substituting your

 own version, since these directories are searched before the

 standard system header file directories. However, you should not

 use this option to add directories that contain vendor-supplied

 system header files; use -isystem for that.

 The -isystem and -idirafter options also mark the directory as a

 system directory, so that it gets the same special treatment that

 is applied to the standard system directories.

 If a standard system include directory, or a directory specified

 with -isystem, is also specified with -I, the -I option is ignored.

 The directory is still searched but as a system directory at its

 normal position in the system include chain. This is to ensure

 that GCC's procedure to fix buggy system headers and the ordering Page 13/19

 for the "#include_next" directive are not inadvertently changed.

 If you really need to change the search order for system

 directories, use the -nostdinc and/or -isystem options.

 -I- Split the include path. This option has been deprecated. Please

 use -iquote instead for -I directories before the -I- and remove

 the -I- option.

 Any directories specified with -I options before -I- are searched

 only for headers requested with "#include "file""; they are not

 searched for "#include <file>". If additional directories are

 specified with -I options after the -I-, those directories are

 searched for all #include directives.

 In addition, -I- inhibits the use of the directory of the current

 file directory as the first search directory for "#include "file"".

 There is no way to override this effect of -I-.

 -iprefix prefix

 Specify prefix as the prefix for subsequent -iwithprefix options.

 If the prefix represents a directory, you should include the final

 /.

 -iwithprefix dir

 -iwithprefixbefore dir

 Append dir to the prefix specified previously with -iprefix, and

 add the resulting directory to the include search path.

 -iwithprefixbefore puts it in the same place -I would; -iwithprefix

 puts it where -idirafter would.

 -isysroot dir

 This option is like the --sysroot option, but applies only to

 header files (except for Darwin targets, where it applies to both

 header files and libraries). See the --sysroot option for more

 information.

 -imultilib dir

 Use dir as a subdirectory of the directory containing target-

 specific C++ headers.

 -nostdinc Page 14/19

 Do not search the standard system directories for header files.

 Only the directories explicitly specified with -I, -iquote,

 -isystem, and/or -idirafter options (and the directory of the

 current file, if appropriate) are searched.

 -nostdinc++

 Do not search for header files in the C++-specific standard

 directories, but do still search the other standard directories.

 (This option is used when building the C++ library.)

 -Wcomment

 -Wcomments

 Warn whenever a comment-start sequence /* appears in a /* comment,

 or whenever a backslash-newline appears in a // comment. This

 warning is enabled by -Wall.

 -Wtrigraphs

 Warn if any trigraphs are encountered that might change the meaning

 of the program. Trigraphs within comments are not warned about,

 except those that would form escaped newlines.

 This option is implied by -Wall. If -Wall is not given, this

 option is still enabled unless trigraphs are enabled. To get

 trigraph conversion without warnings, but get the other -Wall

 warnings, use -trigraphs -Wall -Wno-trigraphs.

 -Wundef

 Warn if an undefined identifier is evaluated in an "#if" directive.

 Such identifiers are replaced with zero.

 -Wexpansion-to-defined

 Warn whenever defined is encountered in the expansion of a macro

 (including the case where the macro is expanded by an #if

 directive). Such usage is not portable. This warning is also

 enabled by -Wpedantic and -Wextra.

 -Wunused-macros

 Warn about macros defined in the main file that are unused. A

 macro is used if it is expanded or tested for existence at least

 once. The preprocessor also warns if the macro has not been used Page 15/19

 at the time it is redefined or undefined.

 Built-in macros, macros defined on the command line, and macros

 defined in include files are not warned about.

 Note: If a macro is actually used, but only used in skipped

 conditional blocks, then the preprocessor reports it as unused. To

 avoid the warning in such a case, you might improve the scope of

 the macro's definition by, for example, moving it into the first

 skipped block. Alternatively, you could provide a dummy use with

 something like:

 #if defined the_macro_causing_the_warning

 #endif

 -Wno-endif-labels

 Do not warn whenever an "#else" or an "#endif" are followed by

 text. This sometimes happens in older programs with code of the

 form

 #if FOO

 ...

 #else FOO

 ...

 #endif FOO

 The second and third "FOO" should be in comments. This warning is

 on by default.

ENVIRONMENT

 This section describes the environment variables that affect how CPP

 operates. You can use them to specify directories or prefixes to use

 when searching for include files, or to control dependency output.

 Note that you can also specify places to search using options such as

 -I, and control dependency output with options like -M. These take

 precedence over environment variables, which in turn take precedence

 over the configuration of GCC.

 CPATH

 C_INCLUDE_PATH

 CPLUS_INCLUDE_PATH Page 16/19

 OBJC_INCLUDE_PATH

 Each variable's value is a list of directories separated by a

 special character, much like PATH, in which to look for header

 files. The special character, "PATH_SEPARATOR", is target-

 dependent and determined at GCC build time. For Microsoft Windows-

 based targets it is a semicolon, and for almost all other targets

 it is a colon.

 CPATH specifies a list of directories to be searched as if

 specified with -I, but after any paths given with -I options on the

 command line. This environment variable is used regardless of

 which language is being preprocessed.

 The remaining environment variables apply only when preprocessing

 the particular language indicated. Each specifies a list of

 directories to be searched as if specified with -isystem, but after

 any paths given with -isystem options on the command line.

 In all these variables, an empty element instructs the compiler to

 search its current working directory. Empty elements can appear at

 the beginning or end of a path. For instance, if the value of

 CPATH is ":/special/include", that has the same effect as

 -I. -I/special/include.

 DEPENDENCIES_OUTPUT

 If this variable is set, its value specifies how to output

 dependencies for Make based on the non-system header files

 processed by the compiler. System header files are ignored in the

 dependency output.

 The value of DEPENDENCIES_OUTPUT can be just a file name, in which

 case the Make rules are written to that file, guessing the target

 name from the source file name. Or the value can have the form

 file target, in which case the rules are written to file file using

 target as the target name.

 In other words, this environment variable is equivalent to

 combining the options -MM and -MF, with an optional -MT switch too.

 SUNPRO_DEPENDENCIES Page 17/19

 This variable is the same as DEPENDENCIES_OUTPUT (see above),

 except that system header files are not ignored, so it implies -M

 rather than -MM. However, the dependence on the main input file is

 omitted.

 SOURCE_DATE_EPOCH

 If this variable is set, its value specifies a UNIX timestamp to be

 used in replacement of the current date and time in the "__DATE__"

 and "__TIME__" macros, so that the embedded timestamps become

 reproducible.

 The value of SOURCE_DATE_EPOCH must be a UNIX timestamp, defined as

 the number of seconds (excluding leap seconds) since 01 Jan 1970

 00:00:00 represented in ASCII; identical to the output of "date

 +%s" on GNU/Linux and other systems that support the %s extension

 in the "date" command.

 The value should be a known timestamp such as the last modification

 time of the source or package and it should be set by the build

 process.

SEE ALSO

 gpl(7), gfdl(7), fsf-funding(7), gcc(1), and the Info entries for cpp

 and gcc.

COPYRIGHT

 Copyright (c) 1987-2021 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document

 under the terms of the GNU Free Documentation License, Version 1.3 or

 any later version published by the Free Software Foundation. A copy of

 the license is included in the man page gfdl(7). This manual contains

 no Invariant Sections. The Front-Cover Texts are (a) (see below), and

 the Back-Cover Texts are (b) (see below).

 (a) The FSF's Front-Cover Text is:

 A GNU Manual

 (b) The FSF's Back-Cover Text is:

 You have freedom to copy and modify this GNU Manual, like GNU

 software. Copies published by the Free Software Foundation raise Page 18/19

 funds for GNU development.

gcc-11 2022-11-21 CPP(1)

Page 19/19

