
Rocky Enterprise Linux 9.2 Manual Pages on command 'core.5'

$ man core.5

CORE(5) Linux Programmer's Manual CORE(5)

NAME

 core - core dump file

DESCRIPTION

 The default action of certain signals is to cause a process to termi?

 nate and produce a core dump file, a file containing an image of the

 process's memory at the time of termination. This image can be used in

 a debugger (e.g., gdb(1)) to inspect the state of the program at the

 time that it terminated. A list of the signals which cause a process

 to dump core can be found in signal(7).

 A process can set its soft RLIMIT_CORE resource limit to place an upper

 limit on the size of the core dump file that will be produced if it re?

 ceives a "core dump" signal; see getrlimit(2) for details.

 There are various circumstances in which a core dump file is not pro?

 duced:

 * The process does not have permission to write the core file. (By

 default, the core file is called core or core.pid, where pid is the

 ID of the process that dumped core, and is created in the current Page 1/11

 working directory. See below for details on naming.) Writing the

 core file fails if the directory in which it is to be created is not

 writable, or if a file with the same name exists and is not writable

 or is not a regular file (e.g., it is a directory or a symbolic

 link).

 * A (writable, regular) file with the same name as would be used for

 the core dump already exists, but there is more than one hard link

 to that file.

 * The filesystem where the core dump file would be created is full; or

 has run out of inodes; or is mounted read-only; or the user has

 reached their quota for the filesystem.

 * The directory in which the core dump file is to be created does not

 exist.

 * The RLIMIT_CORE (core file size) or RLIMIT_FSIZE (file size) re?

 source limits for the process are set to zero; see getrlimit(2) and

 the documentation of the shell's ulimit command (limit in csh(1)).

 * The binary being executed by the process does not have read permis?

 sion enabled. (This is a security measure to ensure that an exe?

 cutable whose contents are not readable does not produce a?possibly

 readable?core dump containing an image of the executable.)

 * The process is executing a set-user-ID (set-group-ID) program that

 is owned by a user (group) other than the real user (group) ID of

 the process, or the process is executing a program that has file ca?

 pabilities (see capabilities(7)). (However, see the description of

 the prctl(2) PR_SET_DUMPABLE operation, and the description of the

 /proc/sys/fs/suid_dumpable file in proc(5).)

 * /proc/sys/kernel/core_pattern is empty and /proc/sys/ker?

 nel/core_uses_pid contains the value 0. (These files are described

 below.) Note that if /proc/sys/kernel/core_pattern is empty and

 /proc/sys/kernel/core_uses_pid contains the value 1, core dump files

 will have names of the form .pid, and such files are hidden unless

 one uses the ls(1) -a option.

 * (Since Linux 3.7) The kernel was configured without the CONFIG_CORE? Page 2/11

 DUMP option.

 In addition, a core dump may exclude part of the address space of the

 process if the madvise(2) MADV_DONTDUMP flag was employed.

 On systems that employ systemd(1) as the init framework, core dumps may

 instead be placed in a location determined by systemd(1). See below

 for further details.

 Naming of core dump files

 By default, a core dump file is named core, but the /proc/sys/ker?

 nel/core_pattern file (since Linux 2.6 and 2.4.21) can be set to define

 a template that is used to name core dump files. The template can con?

 tain % specifiers which are substituted by the following values when a

 core file is created:

 %% A single % character.

 %c Core file size soft resource limit of crashing process (since

 Linux 2.6.24).

 %d Dump mode?same as value returned by prctl(2) PR_GET_DUMPABLE

 (since Linux 3.7).

 %e The process or thread's comm value, which typically is the same

 as the executable filename (without path prefix, and truncated

 to a maximum of 15 characters), but may have been modified to

 be something different; see the discussion of /proc/[pid]/comm

 and /proc/[pid]/task/[tid]/comm in proc(5).

 %E Pathname of executable, with slashes ('/') replaced by exclama?

 tion marks ('!') (since Linux 3.0).

 %g Numeric real GID of dumped process.

 %h Hostname (same as nodename returned by uname(2)).

 %i TID of thread that triggered core dump, as seen in the PID

 namespace in which the thread resides (since Linux 3.18).

 %I TID of thread that triggered core dump, as seen in the initial

 PID namespace (since Linux 3.18).

 %p PID of dumped process, as seen in the PID namespace in which

 the process resides.

 %P PID of dumped process, as seen in the initial PID namespace Page 3/11

 (since Linux 3.12).

 %s Number of signal causing dump.

 %t Time of dump, expressed as seconds since the Epoch, 1970-01-01

 00:00:00 +0000 (UTC).

 %u Numeric real UID of dumped process.

 A single % at the end of the template is dropped from the core file?

 name, as is the combination of a % followed by any character other than

 those listed above. All other characters in the template become a lit?

 eral part of the core filename. The template may include '/' charac?

 ters, which are interpreted as delimiters for directory names. The

 maximum size of the resulting core filename is 128 bytes (64 bytes in

 kernels before 2.6.19). The default value in this file is "core". For

 backward compatibility, if /proc/sys/kernel/core_pattern does not in?

 clude %p and /proc/sys/kernel/core_uses_pid (see below) is nonzero,

 then .PID will be appended to the core filename.

 Paths are interpreted according to the settings that are active for the

 crashing process. That means the crashing process's mount namespace

 (see mount_namespaces(7)), its current working directory (found via

 getcwd(2)), and its root directory (see chroot(2)).

 Since version 2.4, Linux has also provided a more primitive method of

 controlling the name of the core dump file. If the /proc/sys/ker?

 nel/core_uses_pid file contains the value 0, then a core dump file is

 simply named core. If this file contains a nonzero value, then the

 core dump file includes the process ID in a name of the form core.PID.

 Since Linux 3.6, if /proc/sys/fs/suid_dumpable is set to 2 ("suid?

 safe"), the pattern must be either an absolute pathname (starting with

 a leading '/' character) or a pipe, as defined below.

 Piping core dumps to a program

 Since kernel 2.6.19, Linux supports an alternate syntax for the

 /proc/sys/kernel/core_pattern file. If the first character of this

 file is a pipe symbol (|), then the remainder of the line is inter?

 preted as the command-line for a user-space program (or script) that is

 to be executed. Page 4/11

 Since kernel 5.3.0, the pipe template is split on spaces into an argu?

 ment list before the template parameters are expanded. In earlier ker?

 nels, the template parameters are expanded first and the resulting

 string is split on spaces into an argument list. This means that in

 earlier kernels executable names added by the %e and %E template param?

 eters could get split into multiple arguments. So the core dump han?

 dler needs to put the executable names as the last argument and ensure

 it joins all parts of the executable name using spaces. Executable

 names with multiple spaces in them are not correctly represented in

 earlier kernels, meaning that the core dump handler needs to use mecha?

 nisms to find the executable name.

 Instead of being written to a file, the core dump is given as standard

 input to the program. Note the following points:

 * The program must be specified using an absolute pathname (or a path?

 name relative to the root directory, /), and must immediately follow

 the '|' character.

 * The command-line arguments can include any of the % specifiers

 listed above. For example, to pass the PID of the process that is

 being dumped, specify %p in an argument.

 * The process created to run the program runs as user and group root.

 * Running as root does not confer any exceptional security bypasses.

 Namely, LSMs (e.g., SELinux) are still active and may prevent the

 handler from accessing details about the crashed process via

 /proc/[pid].

 * The program pathname is interpreted with respect to the initial

 mount namespace as it is always executed there. It is not affected

 by the settings (e.g., root directory, mount namespace, current

 working directory) of the crashing process.

 * The process runs in the initial namespaces (PID, mount, user, and so

 on) and not in the namespaces of the crashing process. One can uti?

 lize specifiers such as %P to find the right /proc/[pid] directory

 and probe/enter the crashing process's namespaces if needed.

 * The process starts with its current working directory as the root Page 5/11

 directory. If desired, it is possible change to the working direc?

 tory of the dumping process by employing the value provided by the

 %P specifier to change to the location of the dumping process via

 /proc/[pid]/cwd.

 * Command-line arguments can be supplied to the program (since Linux

 2.6.24), delimited by white space (up to a total line length of 128

 bytes).

 * The RLIMIT_CORE limit is not enforced for core dumps that are piped

 to a program via this mechanism.

 /proc/sys/kernel/core_pipe_limit

 When collecting core dumps via a pipe to a user-space program, it can

 be useful for the collecting program to gather data about the crashing

 process from that process's /proc/[pid] directory. In order to do this

 safely, the kernel must wait for the program collecting the core dump

 to exit, so as not to remove the crashing process's /proc/[pid] files

 prematurely. This in turn creates the possibility that a misbehaving

 collecting program can block the reaping of a crashed process by simply

 never exiting.

 Since Linux 2.6.32, the /proc/sys/kernel/core_pipe_limit can be used to

 defend against this possibility. The value in this file defines how

 many concurrent crashing processes may be piped to user-space programs

 in parallel. If this value is exceeded, then those crashing processes

 above this value are noted in the kernel log and their core dumps are

 skipped.

 A value of 0 in this file is special. It indicates that unlimited pro?

 cesses may be captured in parallel, but that no waiting will take place

 (i.e., the collecting program is not guaranteed access to /proc/<crash?

 ing-PID>). The default value for this file is 0.

 Controlling which mappings are written to the core dump

 Since kernel 2.6.23, the Linux-specific /proc/[pid]/coredump_filter

 file can be used to control which memory segments are written to the

 core dump file in the event that a core dump is performed for the

 process with the corresponding process ID. Page 6/11

 The value in the file is a bit mask of memory mapping types (see

 mmap(2)). If a bit is set in the mask, then memory mappings of the

 corresponding type are dumped; otherwise they are not dumped. The bits

 in this file have the following meanings:

 bit 0 Dump anonymous private mappings.

 bit 1 Dump anonymous shared mappings.

 bit 2 Dump file-backed private mappings.

 bit 3 Dump file-backed shared mappings.

 bit 4 (since Linux 2.6.24)

 Dump ELF headers.

 bit 5 (since Linux 2.6.28)

 Dump private huge pages.

 bit 6 (since Linux 2.6.28)

 Dump shared huge pages.

 bit 7 (since Linux 4.4)

 Dump private DAX pages.

 bit 8 (since Linux 4.4)

 Dump shared DAX pages.

 By default, the following bits are set: 0, 1, 4 (if the CON?

 FIG_CORE_DUMP_DEFAULT_ELF_HEADERS kernel configuration option is en?

 abled), and 5. This default can be modified at boot time using the

 coredump_filter boot option.

 The value of this file is displayed in hexadecimal. (The default value

 is thus displayed as 33.)

 Memory-mapped I/O pages such as frame buffer are never dumped, and vir?

 tual DSO (vdso(7)) pages are always dumped, regardless of the core?

 dump_filter value.

 A child process created via fork(2) inherits its parent's coredump_fil?

 ter value; the coredump_filter value is preserved across an execve(2).

 It can be useful to set coredump_filter in the parent shell before run?

 ning a program, for example:

 $ echo 0x7 > /proc/self/coredump_filter

 $./some_program Page 7/11

 This file is provided only if the kernel was built with the CON?

 FIG_ELF_CORE configuration option.

 Core dumps and systemd

 On systems using the systemd(1) init framework, core dumps may be

 placed in a location determined by systemd(1). To do this, systemd(1)

 employs the core_pattern feature that allows piping core dumps to a

 program. One can verify this by checking whether core dumps are being

 piped to the systemd-coredump(8) program:

 $ cat /proc/sys/kernel/core_pattern

 |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %e

 In this case, core dumps will be placed in the location configured for

 systemd-coredump(8), typically as lz4(1) compressed files in the direc?

 tory /var/lib/systemd/coredump/. One can list the core dumps that have

 been recorded by systemd-coredump(8) using coredumpctl(1):

 $ coredumpctl list | tail -5

 Wed 2017-10-11 22:25:30 CEST 2748 1000 1000 3 present /usr/bin/sleep

 Thu 2017-10-12 06:29:10 CEST 2716 1000 1000 3 present /usr/bin/sleep

 Thu 2017-10-12 06:30:50 CEST 2767 1000 1000 3 present /usr/bin/sleep

 Thu 2017-10-12 06:37:40 CEST 2918 1000 1000 3 present /usr/bin/cat

 Thu 2017-10-12 08:13:07 CEST 2955 1000 1000 3 present /usr/bin/cat

 The information shown for each core dump includes the date and time of

 the dump, the PID, UID, and GID of the dumping process, the signal

 number that caused the core dump, and the pathname of the executable

 that was being run by the dumped process. Various options to core?

 dumpctl(1) allow a specified coredump file to be pulled from the sys?

 temd(1) location into a specified file. For example, to extract the

 core dump for PID 2955 shown above to a file named core in the current

 directory, one could use:

 $ coredumpctl dump 2955 -o core

 For more extensive details, see the coredumpctl(1) manual page.

 To (persistently) disable the systemd(1) mechanism that archives core

 dumps, restoring to something more like traditional Linux behavior, one

 can set an override for the systemd(1) mechanism, using something like: Page 8/11

 # echo "kernel.core_pattern=core.%p" > \

 /etc/sysctl.d/50-coredump.conf

 # /lib/systemd/systemd-sysctl

 It is also possible to temporarily (i.e., until the next reboot) change

 the core_pattern setting using a command such as the following (which

 causes the names of core dump files to include the executable name as

 well as the number of the signal which triggered the core dump):

 # sysctl -w kernel.core_pattern="%e-%s.core"

NOTES

 The gdb(1) gcore command can be used to obtain a core dump of a running

 process.

 In Linux versions up to and including 2.6.27, if a multithreaded

 process (or, more precisely, a process that shares its memory with an?

 other process by being created with the CLONE_VM flag of clone(2))

 dumps core, then the process ID is always appended to the core file?

 name, unless the process ID was already included elsewhere in the file?

 name via a %p specification in /proc/sys/kernel/core_pattern. (This is

 primarily useful when employing the obsolete LinuxThreads implementa?

 tion, where each thread of a process has a different PID.)

EXAMPLES

 The program below can be used to demonstrate the use of the pipe syntax

 in the /proc/sys/kernel/core_pattern file. The following shell session

 demonstrates the use of this program (compiled to create an executable

 named core_pattern_pipe_test):

 $ cc -o core_pattern_pipe_test core_pattern_pipe_test.c

 $ su

 Password:

 # echo "|$PWD/core_pattern_pipe_test %p UID=%u GID=%g sig=%s" > \

 /proc/sys/kernel/core_pattern

 # exit

 $ sleep 100

 ^\ # type control-backslash

 Quit (core dumped) Page 9/11

 $ cat core.info

 argc=5

 argc[0]=</home/mtk/core_pattern_pipe_test>

 argc[1]=<20575>

 argc[2]=<UID=1000>

 argc[3]=<GID=100>

 argc[4]=<sig=3>

 Total bytes in core dump: 282624

 Program source

 /* core_pattern_pipe_test.c */

 #define _GNU_SOURCE

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <limits.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define BUF_SIZE 1024

 int

 main(int argc, char *argv[])

 {

 ssize_t nread, tot;

 char buf[BUF_SIZE];

 FILE *fp;

 char cwd[PATH_MAX];

 /* Change our current working directory to that of the

 crashing process */

 snprintf(cwd, PATH_MAX, "/proc/%s/cwd", argv[1]);

 chdir(cwd);

 /* Write output to file "core.info" in that directory */

 fp = fopen("core.info", "w+");

 if (fp == NULL)

 exit(EXIT_FAILURE); Page 10/11

 /* Display command-line arguments given to core_pattern

 pipe program */

 fprintf(fp, "argc=%d\n", argc);

 for (int j = 0; j < argc; j++)

 fprintf(fp, "argc[%d]=<%s>\n", j, argv[j]);

 /* Count bytes in standard input (the core dump) */

 tot = 0;

 while ((nread = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)

 tot += nread;

 fprintf(fp, "Total bytes in core dump: %zd\n", tot);

 fclose(fp);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 bash(1), coredumpctl(1), gdb(1), getrlimit(2), mmap(2), prctl(2),

 sigaction(2), elf(5), proc(5), pthreads(7), signal(7), systemd-core?

 dump(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CORE(5)

Page 11/11

