
Rocky Enterprise Linux 9.2 Manual Pages on command 'copy_file_range.2'

$ man copy_file_range.2

COPY_FILE_RANGE(2) Linux Programmer's Manual COPY_FILE_RANGE(2)

NAME

 copy_file_range - Copy a range of data from one file to another

SYNOPSIS

 #define _GNU_SOURCE

 #include <unistd.h>

 ssize_t copy_file_range(int fd_in, loff_t *off_in,

 int fd_out, loff_t *off_out,

 size_t len, unsigned int flags);

DESCRIPTION

 The copy_file_range() system call performs an in-kernel copy between

 two file descriptors without the additional cost of transferring data

 from the kernel to user space and then back into the kernel. It copies

 up to len bytes of data from the source file descriptor fd_in to the

 target file descriptor fd_out, overwriting any data that exists within

 the requested range of the target file.

 The following semantics apply for off_in, and similar statements apply

 to off_out: Page 1/6

 * If off_in is NULL, then bytes are read from fd_in starting from the

 file offset, and the file offset is adjusted by the number of bytes

 copied.

 * If off_in is not NULL, then off_in must point to a buffer that spec?

 ifies the starting offset where bytes from fd_in will be read. The

 file offset of fd_in is not changed, but off_in is adjusted appro?

 priately.

 fd_in and fd_out can refer to the same file. If they refer to the same

 file, then the source and target ranges are not allowed to overlap.

 The flags argument is provided to allow for future extensions and cur?

 rently must be set to 0.

RETURN VALUE

 Upon successful completion, copy_file_range() will return the number of

 bytes copied between files. This could be less than the length origi?

 nally requested. If the file offset of fd_in is at or past the end of

 file, no bytes are copied, and copy_file_range() returns zero.

 On error, copy_file_range() returns -1 and errno is set to indicate the

 error.

ERRORS

 EBADF One or more file descriptors are not valid.

 EBADF fd_in is not open for reading; or fd_out is not open for writ?

 ing.

 EBADF The O_APPEND flag is set for the open file description (see

 open(2)) referred to by the file descriptor fd_out.

 EFBIG An attempt was made to write at a position past the maximum file

 offset the kernel supports.

 EFBIG An attempt was made to write a range that exceeds the allowed

 maximum file size. The maximum file size differs between

 filesystem implementations and can be different from the maximum

 allowed file offset.

 EFBIG An attempt was made to write beyond the process's file size re?

 source limit. This may also result in the process receiving a

 SIGXFSZ signal. Page 2/6

 EINVAL The flags argument is not 0.

 EINVAL fd_in and fd_out refer to the same file and the source and tar?

 get ranges overlap.

 EINVAL Either fd_in or fd_out is not a regular file.

 EIO A low-level I/O error occurred while copying.

 EISDIR Either fd_in or fd_out refers to a directory.

 ENOMEM Out of memory.

 ENOSPC There is not enough space on the target filesystem to complete

 the copy.

 EOVERFLOW

 The requested source or destination range is too large to repre?

 sent in the specified data types.

 EPERM fd_out refers to an immutable file.

 ETXTBSY

 Either fd_in or fd_out refers to an active swap file.

 EXDEV The files referred to by fd_in and fd_out are not on the same

 mounted filesystem (pre Linux 5.3).

VERSIONS

 The copy_file_range() system call first appeared in Linux 4.5, but

 glibc 2.27 provides a user-space emulation when it is not available.

 A major rework of the kernel implementation occurred in 5.3. Areas of

 the API that weren't clearly defined were clarified and the API bounds

 are much more strictly checked than on earlier kernels. Applications

 should target the behaviour and requirements of 5.3 kernels.

 First support for cross-filesystem copies was introduced in Linux 5.3.

 Older kernels will return -EXDEV when cross-filesystem copies are at?

 tempted.

CONFORMING TO

 The copy_file_range() system call is a nonstandard Linux and GNU exten?

 sion.

NOTES

 If fd_in is a sparse file, then copy_file_range() may expand any holes

 existing in the requested range. Users may benefit from calling Page 3/6

 copy_file_range() in a loop, and using the lseek(2) SEEK_DATA and

 SEEK_HOLE operations to find the locations of data segments.

 copy_file_range() gives filesystems an opportunity to implement "copy

 acceleration" techniques, such as the use of reflinks (i.e., two or

 more inodes that share pointers to the same copy-on-write disk blocks)

 or server-side-copy (in the case of NFS).

EXAMPLES

 #define _GNU_SOURCE

 #include <fcntl.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/stat.h>

 #include <sys/syscall.h>

 #include <unistd.h>

 /* On versions of glibc before 2.27, we must invoke copy_file_range()

 using syscall(2) */

 static loff_t

 copy_file_range(int fd_in, loff_t *off_in, int fd_out,

 loff_t *off_out, size_t len, unsigned int flags)

 {

 return syscall(__NR_copy_file_range, fd_in, off_in, fd_out,

 off_out, len, flags);

 }

 int

 main(int argc, char **argv)

 {

 int fd_in, fd_out;

 struct stat stat;

 loff_t len, ret;

 if (argc != 3) {

 fprintf(stderr, "Usage: %s <source> <destination>\n", argv[0]);

 exit(EXIT_FAILURE);

 } Page 4/6

 fd_in = open(argv[1], O_RDONLY);

 if (fd_in == -1) {

 perror("open (argv[1])");

 exit(EXIT_FAILURE);

 }

 if (fstat(fd_in, &stat) == -1) {

 perror("fstat");

 exit(EXIT_FAILURE);

 }

 len = stat.st_size;

 fd_out = open(argv[2], O_CREAT | O_WRONLY | O_TRUNC, 0644);

 if (fd_out == -1) {

 perror("open (argv[2])");

 exit(EXIT_FAILURE);

 }

 do {

 ret = copy_file_range(fd_in, NULL, fd_out, NULL, len, 0);

 if (ret == -1) {

 perror("copy_file_range");

 exit(EXIT_FAILURE);

 }

 len -= ret;

 } while (len > 0 && ret > 0);

 close(fd_in);

 close(fd_out);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 lseek(2), sendfile(2), splice(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 5/6

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 COPY_FILE_RANGE(2)

Page 6/6

