
Rocky Enterprise Linux 9.2 Manual Pages on command 'containers-registries.d.5'

$ man containers-registries.d.5

containers-registries.d(5) Page containers-registries.d(5)

Miloslav Trma? August 2016

NAME

 containers-registries.d - Directory for various registries configura?

 tions

DESCRIPTION

 The registries configuration directory contains configuration for vari?

 ous registries (servers storing remote container images), and for con?

 tent stored in them, so that the configuration does not have to be pro?

 vided in command-line options over and over for every command, and so

 that it can be shared by all users of containers/image.

 By default, the registries configuration directory is $HOME/.con?

 fig/containers/registries.d if it exists, otherwise /etc/contain?

 ers/registries.d (unless overridden at compile-time); applications may

 allow using a different directory instead.

Directory Structure

 The directory may contain any number of files with the extension .yaml,

 each using the YAML format. Other than the mandatory extension, names Page 1/5

 of the files don?t matter.

 The contents of these files are merged together; to have a well-defined

 and easy to understand behavior, there can be only one configuration

 section describing a single namespace within a registry (in particular

 there can be at most one one default-docker section across all files,

 and there can be at most one instance of any key under the docker sec?

 tion; these sections are documented later).

 Thus, it is forbidden to have two conflicting configurations for a sin?

 gle registry or scope, and it is also forbidden to split a configura?

 tion for a single registry or scope across more than one file (even if

 they are not semantically in conflict).

Registries, Scopes and Search Order

 Each YAML file must contain a ?YAML mapping? (key-value pairs). Two

 top-level keys are defined:

 ? default-docker is the configuration section (as documented be?

 low) for registries implementing "Docker Registry HTTP API

 V2".

 This key is optional.

 ? docker is a mapping, using individual registries implementing

 "Docker Registry HTTP API V2", or namespaces and individual

 images within these registries, as keys; the value assigned to

 any such key is a configuration section.

 This key is optional.

 Scopes matching individual images are named Docker references in the

 fully expanded form, either

 using a tag or digest. For example, docker.io/library/busybox:latest

 (not busybox:latest).

 More general scopes are prefixes of individual-image scopes, and spec?

 ify a repository (by omitting the tag or digest),

 a repository namespace, or a registry host (and a port if it differs

 from the default).

 Note that if a registry is accessed using a hostname+port configura?

 tion, the port-less hostname Page 2/5

 is not used as parent scope.

 When searching for a configuration to apply for an individual container

 image, only the configuration for the most-precisely matching scope is

 used; configuration using more general scopes is ignored. For example,

 if any configuration exists for docker.io/library/busybox, the configu?

 ration for docker.io is ignored (even if some element of the configura?

 tion is defined for docker.io and not for docker.io/library/busybox).

 Built-in Defaults

 If no docker section can be found for the container image, and no de?

 fault-docker section is configured:

 ? The default directory, /var/lib/containers/sigstore for root

 and $HOME/.local/share/containers/sigstore for unprivileged

 user, will be used for reading and writing signatures.

 ? Sigstore attachments will not be read/written.

Individual Configuration Sections

 A single configuration section is selected for a container image using

 the process described above. The configuration section is a YAML map?

 ping, with the following keys:

 ? lookaside-staging defines an URL of of the signature storage,

 used for editing it (adding or deleting signatures).

 This key is optional; if it is missing, lookaside below is used.

 ? lookaside defines an URL of the signature storage. This URL

 is used for reading existing signatures, and if lookaside-

 staging does not exist, also for adding or removing them.

 This key is optional; if it is missing, no signature storage is defined

 (no signatures

 are download along with images, adding new signatures is possible

 only if lookaside-staging is defined).

 ? use-sigstore-attachments specifies whether sigstore image at?

 tachments (signatures, attestations and the like) are going to

 be read/written along with the image. If disabled, the images

 are treated as if no attachments exist; attempts to write at?

 tachments fail. Page 3/5

Examples

 Using Containers from Various Origins

 The following demonstrates how to to consume and run images from vari?

 ous registries and namespaces:

 docker:

 registry.database-supplier.com:

 lookaside: https://lookaside.database-supplier.com

 distribution.great-middleware.org:

 lookaside: https://security-team.great-middleware.org/lookaside

 docker.io/web-framework:

 lookaside: https://lookaside.web-framework.io:8080

 Developing and Signing Containers, Staging Signatures

 For developers in example.com:

 ? Consume most container images using the public servers also

 used by clients.

 ? Use a separate signature storage for an container images in a

 namespace corresponding to the developers' department, with a

 staging storage used before publishing signatures.

 ? Craft an individual exception for a single branch a specific

 developer is working on locally.

 docker:

 registry.example.com:

 lookaside: https://registry-lookaside.example.com

 registry.example.com/mydepartment:

 lookaside: https://lookaside.mydepartment.example.com

 lookaside-staging: file:///mnt/mydepartment/lookaside-staging

 registry.example.com/mydepartment/myproject:mybranch:

 lookaside: http://localhost:4242/lookaside

 lookaside-staging: file:///home/useraccount/webroot/lookaside

 A Global Default

 If a company publishes its products using a different domain, and dif?

 ferent registry hostname for each of them, it is still possible to use

 a single signature storage server without listing each domain individu? Page 4/5

 ally. This is expected to rarely happen, usually only for staging new

 signatures.

 default-docker:

 lookaside-staging: file:///mnt/company/common-lookaside-staging

AUTHORS

 Miloslav Trma? mitr@redhat.com ?mailto:mitr@redhat.com?

Man Registries.d containers-registries.d(5)

Page 5/5

