
Rocky Enterprise Linux 9.2 Manual Pages on command 'clone2.2'

$ man clone2.2

CLONE(2) Linux Programmer's Manual CLONE(2)

NAME

 clone, __clone2, clone3 - create a child process

SYNOPSIS

 /* Prototype for the glibc wrapper function */

 #define _GNU_SOURCE

 #include <sched.h>

 int clone(int (*fn)(void *), void *stack, int flags, void *arg, ...

 /* pid_t *parent_tid, void *tls, pid_t *child_tid */);

 /* For the prototype of the raw clone() system call, see NOTES */

 long clone3(struct clone_args *cl_args, size_t size);

 Note: There is not yet a glibc wrapper for clone3(); see NOTES.

DESCRIPTION

 These system calls create a new ("child") process, in a manner similar

 to fork(2).

 By contrast with fork(2), these system calls provide more precise con?

 trol over what pieces of execution context are shared between the call?

 ing process and the child process. For example, using these system Page 1/27

 calls, the caller can control whether or not the two processes share

 the virtual address space, the table of file descriptors, and the table

 of signal handlers. These system calls also allow the new child

 process to be placed in separate namespaces(7).

 Note that in this manual page, "calling process" normally corresponds

 to "parent process". But see the descriptions of CLONE_PARENT and

 CLONE_THREAD below.

 This page describes the following interfaces:

 * The glibc clone() wrapper function and the underlying system call on

 which it is based. The main text describes the wrapper function;

 the differences for the raw system call are described toward the end

 of this page.

 * The newer clone3() system call.

 In the remainder of this page, the terminology "the clone call" is used

 when noting details that apply to all of these interfaces,

 The clone() wrapper function

 When the child process is created with the clone() wrapper function, it

 commences execution by calling the function pointed to by the argument

 fn. (This differs from fork(2), where execution continues in the child

 from the point of the fork(2) call.) The arg argument is passed as the

 argument of the function fn.

 When the fn(arg) function returns, the child process terminates. The

 integer returned by fn is the exit status for the child process. The

 child process may also terminate explicitly by calling exit(2) or after

 receiving a fatal signal.

 The stack argument specifies the location of the stack used by the

 child process. Since the child and calling process may share memory,

 it is not possible for the child process to execute in the same stack

 as the calling process. The calling process must therefore set up mem?

 ory space for the child stack and pass a pointer to this space to

 clone(). Stacks grow downward on all processors that run Linux (except

 the HP PA processors), so stack usually points to the topmost address

 of the memory space set up for the child stack. Note that clone() does Page 2/27

 not provide a means whereby the caller can inform the kernel of the

 size of the stack area.

 The remaining arguments to clone() are discussed below.

 clone3()

 The clone3() system call provides a superset of the functionality of

 the older clone() interface. It also provides a number of API improve?

 ments, including: space for additional flags bits; cleaner separation

 in the use of various arguments; and the ability to specify the size of

 the child's stack area.

 As with fork(2), clone3() returns in both the parent and the child. It

 returns 0 in the child process and returns the PID of the child in the

 parent.

 The cl_args argument of clone3() is a structure of the following form:

 struct clone_args {

 u64 flags; /* Flags bit mask */

 u64 pidfd; /* Where to store PID file descriptor

 (pid_t *) */

 u64 child_tid; /* Where to store child TID,

 in child's memory (pid_t *) */

 u64 parent_tid; /* Where to store child TID,

 in parent's memory (int *) */

 u64 exit_signal; /* Signal to deliver to parent on

 child termination */

 u64 stack; /* Pointer to lowest byte of stack */

 u64 stack_size; /* Size of stack */

 u64 tls; /* Location of new TLS */

 u64 set_tid; /* Pointer to a pid_t array

 (since Linux 5.5) */

 u64 set_tid_size; /* Number of elements in set_tid

 (since Linux 5.5) */

 u64 cgroup; /* File descriptor for target cgroup

 of child (since Linux 5.7) */

 }; Page 3/27

 The size argument that is supplied to clone3() should be initialized to

 the size of this structure. (The existence of the size argument per?

 mits future extensions to the clone_args structure.)

 The stack for the child process is specified via cl_args.stack, which

 points to the lowest byte of the stack area, and cl_args.stack_size,

 which specifies the size of the stack in bytes. In the case where the

 CLONE_VM flag (see below) is specified, a stack must be explicitly al?

 located and specified. Otherwise, these two fields can be specified as

 NULL and 0, which causes the child to use the same stack area as the

 parent (in the child's own virtual address space).

 The remaining fields in the cl_args argument are discussed below.

 Equivalence between clone() and clone3() arguments

 Unlike the older clone() interface, where arguments are passed individ?

 ually, in the newer clone3() interface the arguments are packaged into

 the clone_args structure shown above. This structure allows for a su?

 perset of the information passed via the clone() arguments.

 The following table shows the equivalence between the arguments of

 clone() and the fields in the clone_args argument supplied to clone3():

 clone() clone3() Notes

 cl_args field

 flags & ~0xff flags For most flags; details below

 parent_tid pidfd See CLONE_PIDFD

 child_tid child_tid See CLONE_CHILD_SETTID

 parent_tid parent_tid See CLONE_PARENT_SETTID

 flags & 0xff exit_signal

 stack stack

 --- stack_size

 tls tls See CLONE_SETTLS

 --- set_tid See below for details

 --- set_tid_size

 --- cgroup See CLONE_INTO_CGROUP

 The child termination signal

 When the child process terminates, a signal may be sent to the parent. Page 4/27

 The termination signal is specified in the low byte of flags (clone())

 or in cl_args.exit_signal (clone3()). If this signal is specified as

 anything other than SIGCHLD, then the parent process must specify the

 __WALL or __WCLONE options when waiting for the child with wait(2). If

 no signal (i.e., zero) is specified, then the parent process is not

 signaled when the child terminates.

 The set_tid array

 By default, the kernel chooses the next sequential PID for the new

 process in each of the PID namespaces where it is present. When creat?

 ing a process with clone3(), the set_tid array (available since Linux

 5.5) can be used to select specific PIDs for the process in some or all

 of the PID namespaces where it is present. If the PID of the newly

 created process should be set only for the current PID namespace or in

 the newly created PID namespace (if flags contains CLONE_NEWPID) then

 the first element in the set_tid array has to be the desired PID and

 set_tid_size needs to be 1.

 If the PID of the newly created process should have a certain value in

 multiple PID namespaces, then the set_tid array can have multiple en?

 tries. The first entry defines the PID in the most deeply nested PID

 namespace and each of the following entries contains the PID in the

 corresponding ancestor PID namespace. The number of PID namespaces in

 which a PID should be set is defined by set_tid_size which cannot be

 larger than the number of currently nested PID namespaces.

 To create a process with the following PIDs in a PID namespace hierar?

 chy:

 PID NS level Requested PID Notes

 0 31496 Outermost PID namespace

 1 42

 2 7 Innermost PID namespace

 Set the array to:

 set_tid[0] = 7;

 set_tid[1] = 42;

 set_tid[2] = 31496; Page 5/27

 set_tid_size = 3;

 If only the PIDs in the two innermost PID namespaces need to be speci?

 fied, set the array to:

 set_tid[0] = 7;

 set_tid[1] = 42;

 set_tid_size = 2;

 The PID in the PID namespaces outside the two innermost PID namespaces

 will be selected the same way as any other PID is selected.

 The set_tid feature requires CAP_SYS_ADMIN or (since Linux 5.9)

 CAP_CHECKPOINT_RESTORE in all owning user namespaces of the target PID

 namespaces.

 Callers may only choose a PID greater than 1 in a given PID namespace

 if an init process (i.e., a process with PID 1) already exists in that

 namespace. Otherwise the PID entry for this PID namespace must be 1.

 The flags mask

 Both clone() and clone3() allow a flags bit mask that modifies their

 behavior and allows the caller to specify what is shared between the

 calling process and the child process. This bit mask?the flags argu?

 ment of clone() or the cl_args.flags field passed to clone3()?is re?

 ferred to as the flags mask in the remainder of this page.

 The flags mask is specified as a bitwise-OR of zero or more of the con?

 stants listed below. Except as noted below, these flags are available

 (and have the same effect) in both clone() and clone3().

 CLONE_CHILD_CLEARTID (since Linux 2.5.49)

 Clear (zero) the child thread ID at the location pointed to by

 child_tid (clone()) or cl_args.child_tid (clone3()) in child

 memory when the child exits, and do a wakeup on the futex at

 that address. The address involved may be changed by the

 set_tid_address(2) system call. This is used by threading li?

 braries.

 CLONE_CHILD_SETTID (since Linux 2.5.49)

 Store the child thread ID at the location pointed to by

 child_tid (clone()) or cl_args.child_tid (clone3()) in the Page 6/27

 child's memory. The store operation completes before the clone

 call returns control to user space in the child process. (Note

 that the store operation may not have completed before the clone

 call returns in the parent process, which will be relevant if

 the CLONE_VM flag is also employed.)

 CLONE_CLEAR_SIGHAND (since Linux 5.5)

 By default, signal dispositions in the child thread are the same

 as in the parent. If this flag is specified, then all signals

 that are handled in the parent are reset to their default dispo?

 sitions (SIG_DFL) in the child.

 Specifying this flag together with CLONE_SIGHAND is nonsensical

 and disallowed.

 CLONE_DETACHED (historical)

 For a while (during the Linux 2.5 development series) there was

 a CLONE_DETACHED flag, which caused the parent not to receive a

 signal when the child terminated. Ultimately, the effect of

 this flag was subsumed under the CLONE_THREAD flag and by the

 time Linux 2.6.0 was released, this flag had no effect. Start?

 ing in Linux 2.6.2, the need to give this flag together with

 CLONE_THREAD disappeared.

 This flag is still defined, but it is usually ignored when call?

 ing clone(). However, see the description of CLONE_PIDFD for

 some exceptions.

 CLONE_FILES (since Linux 2.0)

 If CLONE_FILES is set, the calling process and the child process

 share the same file descriptor table. Any file descriptor cre?

 ated by the calling process or by the child process is also

 valid in the other process. Similarly, if one of the processes

 closes a file descriptor, or changes its associated flags (using

 the fcntl(2) F_SETFD operation), the other process is also af?

 fected. If a process sharing a file descriptor table calls ex?

 ecve(2), its file descriptor table is duplicated (unshared).

 If CLONE_FILES is not set, the child process inherits a copy of Page 7/27

 all file descriptors opened in the calling process at the time

 of the clone call. Subsequent operations that open or close

 file descriptors, or change file descriptor flags, performed by

 either the calling process or the child process do not affect

 the other process. Note, however, that the duplicated file de?

 scriptors in the child refer to the same open file descriptions

 as the corresponding file descriptors in the calling process,

 and thus share file offsets and file status flags (see open(2)).

 CLONE_FS (since Linux 2.0)

 If CLONE_FS is set, the caller and the child process share the

 same filesystem information. This includes the root of the

 filesystem, the current working directory, and the umask. Any

 call to chroot(2), chdir(2), or umask(2) performed by the call?

 ing process or the child process also affects the other process.

 If CLONE_FS is not set, the child process works on a copy of the

 filesystem information of the calling process at the time of the

 clone call. Calls to chroot(2), chdir(2), or umask(2) performed

 later by one of the processes do not affect the other process.

 CLONE_INTO_CGROUP (since Linux 5.7)

 By default, a child process is placed in the same version 2

 cgroup as its parent. The CLONE_INTO_CGROUP flag allows the

 child process to be created in a different version 2 cgroup.

 (Note that CLONE_INTO_CGROUP has effect only for version 2

 cgroups.)

 In order to place the child process in a different cgroup, the

 caller specifies CLONE_INTO_CGROUP in cl_args.flags and passes a

 file descriptor that refers to a version 2 cgroup in the

 cl_args.cgroup field. (This file descriptor can be obtained by

 opening a cgroup v2 directory using either the O_RDONLY or the

 O_PATH flag.) Note that all of the usual restrictions (de?

 scribed in cgroups(7)) on placing a process into a version 2

 cgroup apply.

 Among the possible use cases for CLONE_INTO_CGROUP are the fol? Page 8/27

 lowing:

 * Spawning a process into a cgroup different from the parent's

 cgroup makes it possible for a service manager to directly

 spawn new services into dedicated cgroups. This eliminates

 the accounting jitter that would be caused if the child

 process was first created in the same cgroup as the parent

 and then moved into the target cgroup. Furthermore, spawning

 the child process directly into a target cgroup is signifi?

 cantly cheaper than moving the child process into the target

 cgroup after it has been created.

 * The CLONE_INTO_CGROUP flag also allows the creation of frozen

 child processes by spawning them into a frozen cgroup. (See

 cgroups(7) for a description of the freezer controller.)

 * For threaded applications (or even thread implementations

 which make use of cgroups to limit individual threads), it is

 possible to establish a fixed cgroup layout before spawning

 each thread directly into its target cgroup.

 CLONE_IO (since Linux 2.6.25)

 If CLONE_IO is set, then the new process shares an I/O context

 with the calling process. If this flag is not set, then (as

 with fork(2)) the new process has its own I/O context.

 The I/O context is the I/O scope of the disk scheduler (i.e.,

 what the I/O scheduler uses to model scheduling of a process's

 I/O). If processes share the same I/O context, they are treated

 as one by the I/O scheduler. As a consequence, they get to

 share disk time. For some I/O schedulers, if two processes

 share an I/O context, they will be allowed to interleave their

 disk access. If several threads are doing I/O on behalf of the

 same process (aio_read(3), for instance), they should employ

 CLONE_IO to get better I/O performance.

 If the kernel is not configured with the CONFIG_BLOCK option,

 this flag is a no-op.

 CLONE_NEWCGROUP (since Linux 4.6) Page 9/27

 Create the process in a new cgroup namespace. If this flag is

 not set, then (as with fork(2)) the process is created in the

 same cgroup namespaces as the calling process.

 For further information on cgroup namespaces, see cgroup_name?

 spaces(7).

 Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWC?

 GROUP.

 CLONE_NEWIPC (since Linux 2.6.19)

 If CLONE_NEWIPC is set, then create the process in a new IPC

 namespace. If this flag is not set, then (as with fork(2)), the

 process is created in the same IPC namespace as the calling

 process.

 For further information on IPC namespaces, see ipc_name?

 spaces(7).

 Only a privileged process (CAP_SYS_ADMIN) can employ

 CLONE_NEWIPC. This flag can't be specified in conjunction with

 CLONE_SYSVSEM.

 CLONE_NEWNET (since Linux 2.6.24)

 (The implementation of this flag was completed only by about

 kernel version 2.6.29.)

 If CLONE_NEWNET is set, then create the process in a new network

 namespace. If this flag is not set, then (as with fork(2)) the

 process is created in the same network namespace as the calling

 process.

 For further information on network namespaces, see network_name?

 spaces(7).

 Only a privileged process (CAP_SYS_ADMIN) can employ

 CLONE_NEWNET.

 CLONE_NEWNS (since Linux 2.4.19)

 If CLONE_NEWNS is set, the cloned child is started in a new

 mount namespace, initialized with a copy of the namespace of the

 parent. If CLONE_NEWNS is not set, the child lives in the same

 mount namespace as the parent. Page 10/27

 For further information on mount namespaces, see namespaces(7)

 and mount_namespaces(7).

 Only a privileged process (CAP_SYS_ADMIN) can employ

 CLONE_NEWNS. It is not permitted to specify both CLONE_NEWNS

 and CLONE_FS in the same clone call.

 CLONE_NEWPID (since Linux 2.6.24)

 If CLONE_NEWPID is set, then create the process in a new PID

 namespace. If this flag is not set, then (as with fork(2)) the

 process is created in the same PID namespace as the calling

 process.

 For further information on PID namespaces, see namespaces(7) and

 pid_namespaces(7).

 Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEW?

 PID. This flag can't be specified in conjunction with

 CLONE_THREAD or CLONE_PARENT.

 CLONE_NEWUSER

 (This flag first became meaningful for clone() in Linux 2.6.23,

 the current clone() semantics were merged in Linux 3.5, and the

 final pieces to make the user namespaces completely usable were

 merged in Linux 3.8.)

 If CLONE_NEWUSER is set, then create the process in a new user

 namespace. If this flag is not set, then (as with fork(2)) the

 process is created in the same user namespace as the calling

 process.

 For further information on user namespaces, see namespaces(7)

 and user_namespaces(7).

 Before Linux 3.8, use of CLONE_NEWUSER required that the caller

 have three capabilities: CAP_SYS_ADMIN, CAP_SETUID, and CAP_SET?

 GID. Starting with Linux 3.8, no privileges are needed to cre?

 ate a user namespace.

 This flag can't be specified in conjunction with CLONE_THREAD or

 CLONE_PARENT. For security reasons, CLONE_NEWUSER cannot be

 specified in conjunction with CLONE_FS. Page 11/27

 CLONE_NEWUTS (since Linux 2.6.19)

 If CLONE_NEWUTS is set, then create the process in a new UTS

 namespace, whose identifiers are initialized by duplicating the

 identifiers from the UTS namespace of the calling process. If

 this flag is not set, then (as with fork(2)) the process is cre?

 ated in the same UTS namespace as the calling process.

 For further information on UTS namespaces, see uts_name?

 spaces(7).

 Only a privileged process (CAP_SYS_ADMIN) can employ

 CLONE_NEWUTS.

 CLONE_PARENT (since Linux 2.3.12)

 If CLONE_PARENT is set, then the parent of the new child (as re?

 turned by getppid(2)) will be the same as that of the calling

 process.

 If CLONE_PARENT is not set, then (as with fork(2)) the child's

 parent is the calling process.

 Note that it is the parent process, as returned by getppid(2),

 which is signaled when the child terminates, so that if

 CLONE_PARENT is set, then the parent of the calling process,

 rather than the calling process itself, will be signaled.

 The CLONE_PARENT flag can't be used in clone calls by the global

 init process (PID 1 in the initial PID namespace) and init pro?

 cesses in other PID namespaces. This restriction prevents the

 creation of multi-rooted process trees as well as the creation

 of unreapable zombies in the initial PID namespace.

 CLONE_PARENT_SETTID (since Linux 2.5.49)

 Store the child thread ID at the location pointed to by par?

 ent_tid (clone()) or cl_args.parent_tid (clone3()) in the par?

 ent's memory. (In Linux 2.5.32-2.5.48 there was a flag

 CLONE_SETTID that did this.) The store operation completes be?

 fore the clone call returns control to user space.

 CLONE_PID (Linux 2.0 to 2.5.15)

 If CLONE_PID is set, the child process is created with the same Page 12/27

 process ID as the calling process. This is good for hacking the

 system, but otherwise of not much use. From Linux 2.3.21 on?

 ward, this flag could be specified only by the system boot

 process (PID 0). The flag disappeared completely from the ker?

 nel sources in Linux 2.5.16. Subsequently, the kernel silently

 ignored this bit if it was specified in the flags mask. Much

 later, the same bit was recycled for use as the CLONE_PIDFD

 flag.

 CLONE_PIDFD (since Linux 5.2)

 If this flag is specified, a PID file descriptor referring to

 the child process is allocated and placed at a specified loca?

 tion in the parent's memory. The close-on-exec flag is set on

 this new file descriptor. PID file descriptors can be used for

 the purposes described in pidfd_open(2).

 * When using clone3(), the PID file descriptor is placed at the

 location pointed to by cl_args.pidfd.

 * When using clone(), the PID file descriptor is placed at the

 location pointed to by parent_tid. Since the parent_tid ar?

 gument is used to return the PID file descriptor, CLONE_PIDFD

 cannot be used with CLONE_PARENT_SETTID when calling clone().

 It is currently not possible to use this flag together with

 CLONE_THREAD. This means that the process identified by the PID

 file descriptor will always be a thread group leader.

 If the obsolete CLONE_DETACHED flag is specified alongside

 CLONE_PIDFD when calling clone(), an error is returned. An er?

 ror also results if CLONE_DETACHED is specified when calling

 clone3(). This error behavior ensures that the bit correspond?

 ing to CLONE_DETACHED can be reused for further PID file de?

 scriptor features in the future.

 CLONE_PTRACE (since Linux 2.2)

 If CLONE_PTRACE is specified, and the calling process is being

 traced, then trace the child also (see ptrace(2)).

 CLONE_SETTLS (since Linux 2.5.32) Page 13/27

 The TLS (Thread Local Storage) descriptor is set to tls.

 The interpretation of tls and the resulting effect is architec?

 ture dependent. On x86, tls is interpreted as a struct

 user_desc * (see set_thread_area(2)). On x86-64 it is the new

 value to be set for the %fs base register (see the ARCH_SET_FS

 argument to arch_prctl(2)). On architectures with a dedicated

 TLS register, it is the new value of that register.

 Use of this flag requires detailed knowledge and generally it

 should not be used except in libraries implementing threading.

 CLONE_SIGHAND (since Linux 2.0)

 If CLONE_SIGHAND is set, the calling process and the child

 process share the same table of signal handlers. If the calling

 process or child process calls sigaction(2) to change the behav?

 ior associated with a signal, the behavior is changed in the

 other process as well. However, the calling process and child

 processes still have distinct signal masks and sets of pending

 signals. So, one of them may block or unblock signals using

 sigprocmask(2) without affecting the other process.

 If CLONE_SIGHAND is not set, the child process inherits a copy

 of the signal handlers of the calling process at the time of the

 clone call. Calls to sigaction(2) performed later by one of the

 processes have no effect on the other process.

 Since Linux 2.6.0, the flags mask must also include CLONE_VM if

 CLONE_SIGHAND is specified

 CLONE_STOPPED (since Linux 2.6.0)

 If CLONE_STOPPED is set, then the child is initially stopped (as

 though it was sent a SIGSTOP signal), and must be resumed by

 sending it a SIGCONT signal.

 This flag was deprecated from Linux 2.6.25 onward, and was re?

 moved altogether in Linux 2.6.38. Since then, the kernel

 silently ignores it without error. Starting with Linux 4.6, the

 same bit was reused for the CLONE_NEWCGROUP flag.

 CLONE_SYSVSEM (since Linux 2.5.10) Page 14/27

 If CLONE_SYSVSEM is set, then the child and the calling process

 share a single list of System V semaphore adjustment (semadj)

 values (see semop(2)). In this case, the shared list accumu?

 lates semadj values across all processes sharing the list, and

 semaphore adjustments are performed only when the last process

 that is sharing the list terminates (or ceases sharing the list

 using unshare(2)). If this flag is not set, then the child has

 a separate semadj list that is initially empty.

 CLONE_THREAD (since Linux 2.4.0)

 If CLONE_THREAD is set, the child is placed in the same thread

 group as the calling process. To make the remainder of the dis?

 cussion of CLONE_THREAD more readable, the term "thread" is used

 to refer to the processes within a thread group.

 Thread groups were a feature added in Linux 2.4 to support the

 POSIX threads notion of a set of threads that share a single

 PID. Internally, this shared PID is the so-called thread group

 identifier (TGID) for the thread group. Since Linux 2.4, calls

 to getpid(2) return the TGID of the caller.

 The threads within a group can be distinguished by their (sys?

 tem-wide) unique thread IDs (TID). A new thread's TID is avail?

 able as the function result returned to the caller, and a thread

 can obtain its own TID using gettid(2).

 When a clone call is made without specifying CLONE_THREAD, then

 the resulting thread is placed in a new thread group whose TGID

 is the same as the thread's TID. This thread is the leader of

 the new thread group.

 A new thread created with CLONE_THREAD has the same parent

 process as the process that made the clone call (i.e., like

 CLONE_PARENT), so that calls to getppid(2) return the same value

 for all of the threads in a thread group. When a CLONE_THREAD

 thread terminates, the thread that created it is not sent a

 SIGCHLD (or other termination) signal; nor can the status of

 such a thread be obtained using wait(2). (The thread is said to Page 15/27

 be detached.)

 After all of the threads in a thread group terminate the parent

 process of the thread group is sent a SIGCHLD (or other termina?

 tion) signal.

 If any of the threads in a thread group performs an execve(2),

 then all threads other than the thread group leader are termi?

 nated, and the new program is executed in the thread group

 leader.

 If one of the threads in a thread group creates a child using

 fork(2), then any thread in the group can wait(2) for that

 child.

 Since Linux 2.5.35, the flags mask must also include CLONE_SIG?

 HAND if CLONE_THREAD is specified (and note that, since Linux

 2.6.0, CLONE_SIGHAND also requires CLONE_VM to be included).

 Signal dispositions and actions are process-wide: if an unhan?

 dled signal is delivered to a thread, then it will affect (ter?

 minate, stop, continue, be ignored in) all members of the thread

 group.

 Each thread has its own signal mask, as set by sigprocmask(2).

 A signal may be process-directed or thread-directed. A process-

 directed signal is targeted at a thread group (i.e., a TGID),

 and is delivered to an arbitrarily selected thread from among

 those that are not blocking the signal. A signal may be

 process-directed because it was generated by the kernel for rea?

 sons other than a hardware exception, or because it was sent us?

 ing kill(2) or sigqueue(3). A thread-directed signal is tar?

 geted at (i.e., delivered to) a specific thread. A signal may

 be thread directed because it was sent using tgkill(2) or

 pthread_sigqueue(3), or because the thread executed a machine

 language instruction that triggered a hardware exception (e.g.,

 invalid memory access triggering SIGSEGV or a floating-point ex?

 ception triggering SIGFPE).

 A call to sigpending(2) returns a signal set that is the union Page 16/27

 of the pending process-directed signals and the signals that are

 pending for the calling thread.

 If a process-directed signal is delivered to a thread group, and

 the thread group has installed a handler for the signal, then

 the handler will be invoked in exactly one, arbitrarily selected

 member of the thread group that has not blocked the signal. If

 multiple threads in a group are waiting to accept the same sig?

 nal using sigwaitinfo(2), the kernel will arbitrarily select one

 of these threads to receive the signal.

 CLONE_UNTRACED (since Linux 2.5.46)

 If CLONE_UNTRACED is specified, then a tracing process cannot

 force CLONE_PTRACE on this child process.

 CLONE_VFORK (since Linux 2.2)

 If CLONE_VFORK is set, the execution of the calling process is

 suspended until the child releases its virtual memory resources

 via a call to execve(2) or _exit(2) (as with vfork(2)).

 If CLONE_VFORK is not set, then both the calling process and the

 child are schedulable after the call, and an application should

 not rely on execution occurring in any particular order.

 CLONE_VM (since Linux 2.0)

 If CLONE_VM is set, the calling process and the child process

 run in the same memory space. In particular, memory writes per?

 formed by the calling process or by the child process are also

 visible in the other process. Moreover, any memory mapping or

 unmapping performed with mmap(2) or munmap(2) by the child or

 calling process also affects the other process.

 If CLONE_VM is not set, the child process runs in a separate

 copy of the memory space of the calling process at the time of

 the clone call. Memory writes or file mappings/unmappings per?

 formed by one of the processes do not affect the other, as with

 fork(2).

 If the CLONE_VM flag is specified and the CLONE_VM flag is not

 specified, then any alternate signal stack that was established Page 17/27

 by sigaltstack(2) is cleared in the child process.

RETURN VALUE

 On success, the thread ID of the child process is returned in the

 caller's thread of execution. On failure, -1 is returned in the

 caller's context, no child process will be created, and errno will be

 set appropriately.

ERRORS

 EAGAIN Too many processes are already running; see fork(2).

 EBUSY (clone3() only)

 CLONE_INTO_CGROUP was specified in cl_args.flags, but the file

 descriptor specified in cl_args.cgroup refers to a version 2

 cgroup in which a domain controller is enabled.

 EEXIST (clone3() only)

 One (or more) of the PIDs specified in set_tid already exists in

 the corresponding PID namespace.

 EINVAL Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified in the

 flags mask.

 EINVAL CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was

 not. (Since Linux 2.6.0.)

 EINVAL CLONE_THREAD was specified in the flags mask, but CLONE_SIGHAND

 was not. (Since Linux 2.5.35.)

 EINVAL CLONE_THREAD was specified in the flags mask, but the current

 process previously called unshare(2) with the CLONE_NEWPID flag

 or used setns(2) to reassociate itself with a PID namespace.

 EINVAL Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

 EINVAL (since Linux 3.9)

 Both CLONE_NEWUSER and CLONE_FS were specified in the flags

 mask.

 EINVAL Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the flags

 mask.

 EINVAL One (or both) of CLONE_NEWPID or CLONE_NEWUSER and one (or both)

 of CLONE_THREAD or CLONE_PARENT were specified in the flags

 mask. Page 18/27

 EINVAL (since Linux 2.6.32)

 CLONE_PARENT was specified, and the caller is an init process.

 EINVAL Returned by the glibc clone() wrapper function when fn or stack

 is specified as NULL.

 EINVAL CLONE_NEWIPC was specified in the flags mask, but the kernel was

 not configured with the CONFIG_SYSVIPC and CONFIG_IPC_NS op?

 tions.

 EINVAL CLONE_NEWNET was specified in the flags mask, but the kernel was

 not configured with the CONFIG_NET_NS option.

 EINVAL CLONE_NEWPID was specified in the flags mask, but the kernel was

 not configured with the CONFIG_PID_NS option.

 EINVAL CLONE_NEWUSER was specified in the flags mask, but the kernel

 was not configured with the CONFIG_USER_NS option.

 EINVAL CLONE_NEWUTS was specified in the flags mask, but the kernel was

 not configured with the CONFIG_UTS_NS option.

 EINVAL stack is not aligned to a suitable boundary for this architec?

 ture. For example, on aarch64, stack must be a multiple of 16.

 EINVAL (clone3() only)

 CLONE_DETACHED was specified in the flags mask.

 EINVAL (clone() only)

 CLONE_PIDFD was specified together with CLONE_DETACHED in the

 flags mask.

 EINVAL CLONE_PIDFD was specified together with CLONE_THREAD in the

 flags mask.

 EINVAL (clone() only)

 CLONE_PIDFD was specified together with CLONE_PARENT_SETTID in

 the flags mask.

 EINVAL (clone3() only)

 set_tid_size is greater than the number of nested PID name?

 spaces.

 EINVAL (clone3() only)

 One of the PIDs specified in set_tid was an invalid.

 EINVAL (AArch64 only, Linux 4.6 and earlier) Page 19/27

 stack was not aligned to a 126-bit boundary.

 ENOMEM Cannot allocate sufficient memory to allocate a task structure

 for the child, or to copy those parts of the caller's context

 that need to be copied.

 ENOSPC (since Linux 3.7)

 CLONE_NEWPID was specified in the flags mask, but the limit on

 the nesting depth of PID namespaces would have been exceeded;

 see pid_namespaces(7).

 ENOSPC (since Linux 4.9; beforehand EUSERS)

 CLONE_NEWUSER was specified in the flags mask, and the call

 would cause the limit on the number of nested user namespaces to

 be exceeded. See user_namespaces(7).

 From Linux 3.11 to Linux 4.8, the error diagnosed in this case

 was EUSERS.

 ENOSPC (since Linux 4.9)

 One of the values in the flags mask specified the creation of a

 new user namespace, but doing so would have caused the limit de?

 fined by the corresponding file in /proc/sys/user to be ex?

 ceeded. For further details, see namespaces(7).

 EOPNOTSUPP (clone3() only)

 CLONE_INTO_CGROUP was specified in cl_args.flags, but the file

 descriptor specified in cl_args.cgroup refers to a version 2

 cgroup that is in the domain invalid state.

 EPERM CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET, CLONE_NEWNS,

 CLONE_NEWPID, or CLONE_NEWUTS was specified by an unprivileged

 process (process without CAP_SYS_ADMIN).

 EPERM CLONE_PID was specified by a process other than process 0.

 (This error occurs only on Linux 2.5.15 and earlier.)

 EPERM CLONE_NEWUSER was specified in the flags mask, but either the

 effective user ID or the effective group ID of the caller does

 not have a mapping in the parent namespace (see user_name?

 spaces(7)).

 EPERM (since Linux 3.9) Page 20/27

 CLONE_NEWUSER was specified in the flags mask and the caller is

 in a chroot environment (i.e., the caller's root directory does

 not match the root directory of the mount namespace in which it

 resides).

 EPERM (clone3() only)

 set_tid_size was greater than zero, and the caller lacks the

 CAP_SYS_ADMIN capability in one or more of the user namespaces

 that own the corresponding PID namespaces.

 ERESTARTNOINTR (since Linux 2.6.17)

 System call was interrupted by a signal and will be restarted.

 (This can be seen only during a trace.)

 EUSERS (Linux 3.11 to Linux 4.8)

 CLONE_NEWUSER was specified in the flags mask, and the limit on

 the number of nested user namespaces would be exceeded. See the

 discussion of the ENOSPC error above.

VERSIONS

 The clone3() system call first appeared in Linux 5.3.

CONFORMING TO

 These system calls are Linux-specific and should not be used in pro?

 grams intended to be portable.

NOTES

 One use of these systems calls is to implement threads: multiple flows

 of control in a program that run concurrently in a shared address

 space.

 Glibc does not provide a wrapper for clone3(); call it using

 syscall(2).

 Note that the glibc clone() wrapper function makes some changes in the

 memory pointed to by stack (changes required to set the stack up cor?

 rectly for the child) before invoking the clone() system call. So, in

 cases where clone() is used to recursively create children, do not use

 the buffer employed for the parent's stack as the stack of the child.

 The kcmp(2) system call can be used to test whether two processes share

 various resources such as a file descriptor table, System V semaphore Page 21/27

 undo operations, or a virtual address space.

 Handlers registered using pthread_atfork(3) are not executed during a

 clone call.

 In the Linux 2.4.x series, CLONE_THREAD generally does not make the

 parent of the new thread the same as the parent of the calling process.

 However, for kernel versions 2.4.7 to 2.4.18 the CLONE_THREAD flag im?

 plied the CLONE_PARENT flag (as in Linux 2.6.0 and later).

 On i386, clone() should not be called through vsyscall, but directly

 through int $0x80.

 C library/kernel differences

 The raw clone() system call corresponds more closely to fork(2) in that

 execution in the child continues from the point of the call. As such,

 the fn and arg arguments of the clone() wrapper function are omitted.

 In contrast to the glibc wrapper, the raw clone() system call accepts

 NULL as a stack argument (and clone3() likewise allows cl_args.stack to

 be NULL). In this case, the child uses a duplicate of the parent's

 stack. (Copy-on-write semantics ensure that the child gets separate

 copies of stack pages when either process modifies the stack.) In this

 case, for correct operation, the CLONE_VM option should not be speci?

 fied. (If the child shares the parent's memory because of the use of

 the CLONE_VM flag, then no copy-on-write duplication occurs and chaos

 is likely to result.)

 The order of the arguments also differs in the raw system call, and

 there are variations in the arguments across architectures, as detailed

 in the following paragraphs.

 The raw system call interface on x86-64 and some other architectures

 (including sh, tile, and alpha) is:

 long clone(unsigned long flags, void *stack,

 int *parent_tid, int *child_tid,

 unsigned long tls);

 On x86-32, and several other common architectures (including score,

 ARM, ARM 64, PA-RISC, arc, Power PC, xtensa, and MIPS), the order of

 the last two arguments is reversed: Page 22/27

 long clone(unsigned long flags, void *stack,

 int *parent_tid, unsigned long tls,

 int *child_tid);

 On the cris and s390 architectures, the order of the first two argu?

 ments is reversed:

 long clone(void *stack, unsigned long flags,

 int *parent_tid, int *child_tid,

 unsigned long tls);

 On the microblaze architecture, an additional argument is supplied:

 long clone(unsigned long flags, void *stack,

 int stack_size, /* Size of stack */

 int *parent_tid, int *child_tid,

 unsigned long tls);

 blackfin, m68k, and sparc

 The argument-passing conventions on blackfin, m68k, and sparc are dif?

 ferent from the descriptions above. For details, see the kernel (and

 glibc) source.

 ia64

 On ia64, a different interface is used:

 int __clone2(int (*fn)(void *),

 void *stack_base, size_t stack_size,

 int flags, void *arg, ...

 /* pid_t *parent_tid, struct user_desc *tls,

 pid_t *child_tid */);

 The prototype shown above is for the glibc wrapper function; for the

 system call itself, the prototype can be described as follows (it is

 identical to the clone() prototype on microblaze):

 long clone2(unsigned long flags, void *stack_base,

 int stack_size, /* Size of stack */

 int *parent_tid, int *child_tid,

 unsigned long tls);

 __clone2() operates in the same way as clone(), except that stack_base

 points to the lowest address of the child's stack area, and stack_size Page 23/27

 specifies the size of the stack pointed to by stack_base.

 Linux 2.4 and earlier

 In Linux 2.4 and earlier, clone() does not take arguments parent_tid,

 tls, and child_tid.

BUGS

 GNU C library versions 2.3.4 up to and including 2.24 contained a wrap?

 per function for getpid(2) that performed caching of PIDs. This

 caching relied on support in the glibc wrapper for clone(), but limita?

 tions in the implementation meant that the cache was not up to date in

 some circumstances. In particular, if a signal was delivered to the

 child immediately after the clone() call, then a call to getpid(2) in a

 handler for the signal could return the PID of the calling process

 ("the parent"), if the clone wrapper had not yet had a chance to update

 the PID cache in the child. (This discussion ignores the case where

 the child was created using CLONE_THREAD, when getpid(2) should return

 the same value in the child and in the process that called clone(),

 since the caller and the child are in the same thread group. The

 stale-cache problem also does not occur if the flags argument includes

 CLONE_VM.) To get the truth, it was sometimes necessary to use code

 such as the following:

 #include <syscall.h>

 pid_t mypid;

 mypid = syscall(SYS_getpid);

 Because of the stale-cache problem, as well as other problems noted in

 getpid(2), the PID caching feature was removed in glibc 2.25.

EXAMPLES

 The following program demonstrates the use of clone() to create a child

 process that executes in a separate UTS namespace. The child changes

 the hostname in its UTS namespace. Both parent and child then display

 the system hostname, making it possible to see that the hostname dif?

 fers in the UTS namespaces of the parent and child. For an example of

 the use of this program, see setns(2).

 Within the sample program, we allocate the memory that is to be used Page 24/27

 for the child's stack using mmap(2) rather than malloc(3) for the fol?

 lowing reasons:

 * mmap(2) allocates a block of memory that starts on a page boundary

 and is a multiple of the page size. This is useful if we want to

 establish a guard page (a page with protection PROT_NONE) at the end

 of the stack using mprotect(2).

 * We can specify the MAP_STACK flag to request a mapping that is suit?

 able for a stack. For the moment, this flag is a no-op on Linux,

 but it exists and has effect on some other systems, so we should in?

 clude it for portability.

 Program source

 #define _GNU_SOURCE

 #include <sys/wait.h>

 #include <sys/utsname.h>

 #include <sched.h>

 #include <string.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <sys/mman.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static int /* Start function for cloned child */

 childFunc(void *arg)

 {

 struct utsname uts;

 /* Change hostname in UTS namespace of child */

 if (sethostname(arg, strlen(arg)) == -1)

 errExit("sethostname");

 /* Retrieve and display hostname */

 if (uname(&uts) == -1)

 errExit("uname"); Page 25/27

 printf("uts.nodename in child: %s\n", uts.nodename);

 /* Keep the namespace open for a while, by sleeping.

 This allows some experimentation--for example, another

 process might join the namespace. */

 sleep(200);

 return 0; /* Child terminates now */

 }

 #define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

 int

 main(int argc, char *argv[])

 {

 char *stack; /* Start of stack buffer */

 char *stackTop; /* End of stack buffer */

 pid_t pid;

 struct utsname uts;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);

 exit(EXIT_SUCCESS);

 }

 /* Allocate memory to be used for the stack of the child */

 stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,

 MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

 if (stack == MAP_FAILED)

 errExit("mmap");

 stackTop = stack + STACK_SIZE; /* Assume stack grows downward */

 /* Create child that has its own UTS namespace;

 child commences execution in childFunc() */

 pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);

 if (pid == -1)

 errExit("clone");

 printf("clone() returned %jd\n", (intmax_t) pid);

 /* Parent falls through to here */

 sleep(1); /* Give child time to change its hostname */ Page 26/27

 /* Display hostname in parent's UTS namespace. This will be

 different from hostname in child's UTS namespace. */

 if (uname(&uts) == -1)

 errExit("uname");

 printf("uts.nodename in parent: %s\n", uts.nodename);

 if (waitpid(pid, NULL, 0) == -1) /* Wait for child */

 errExit("waitpid");

 printf("child has terminated\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2),

 pidfd_open(2), set_thread_area(2), set_tid_address(2), setns(2),

 tkill(2), unshare(2), wait(2), capabilities(7), namespaces(7),

 pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CLONE(2)

Page 27/27

