
Rocky Enterprise Linux 9.2 Manual Pages on command 'cgroup_namespaces.7'

$ man cgroup_namespaces.7

CGROUP_NAMESPACES(7) Linux Programmer's Manual CGROUP_NAMESPACES(7)

NAME

 cgroup_namespaces - overview of Linux cgroup namespaces

DESCRIPTION

 For an overview of namespaces, see namespaces(7).

 Cgroup namespaces virtualize the view of a process's cgroups (see

 cgroups(7)) as seen via /proc/[pid]/cgroup and /proc/[pid]/mountinfo.

 Each cgroup namespace has its own set of cgroup root directories.

 These root directories are the base points for the relative locations

 displayed in the corresponding records in the /proc/[pid]/cgroup file.

 When a process creates a new cgroup namespace using clone(2) or un?

 share(2) with the CLONE_NEWCGROUP flag, its current cgroups directories

 become the cgroup root directories of the new namespace. (This applies

 both for the cgroups version 1 hierarchies and the cgroups version 2

 unified hierarchy.)

 When reading the cgroup memberships of a "target" process from

 /proc/[pid]/cgroup, the pathname shown in the third field of each

 record will be relative to the reading process's root directory for the Page 1/5

 corresponding cgroup hierarchy. If the cgroup directory of the target

 process lies outside the root directory of the reading process's cgroup

 namespace, then the pathname will show ../ entries for each ancestor

 level in the cgroup hierarchy.

 The following shell session demonstrates the effect of creating a new

 cgroup namespace.

 First, (as superuser) in a shell in the initial cgroup namespace, we

 create a child cgroup in the freezer hierarchy, and place a process in

 that cgroup that we will use as part of the demonstration below:

 # mkdir -p /sys/fs/cgroup/freezer/sub2

 # sleep 10000 & # Create a process that lives for a while

 [1] 20124

 # echo 20124 > /sys/fs/cgroup/freezer/sub2/cgroup.procs

 We then create another child cgroup in the freezer hierarchy and put

 the shell into that cgroup:

 # mkdir -p /sys/fs/cgroup/freezer/sub

 # echo $$ # Show PID of this shell

 30655

 # echo 30655 > /sys/fs/cgroup/freezer/sub/cgroup.procs

 # cat /proc/self/cgroup | grep freezer

 7:freezer:/sub

 Next, we use unshare(1) to create a process running a new shell in new

 cgroup and mount namespaces:

 # PS1="sh2# " unshare -Cm bash

 From the new shell started by unshare(1), we then inspect the

 /proc/[pid]/cgroup files of, respectively, the new shell, a process

 that is in the initial cgroup namespace (init, with PID 1), and the

 process in the sibling cgroup (sub2):

 sh2# cat /proc/self/cgroup | grep freezer

 7:freezer:/

 sh2# cat /proc/1/cgroup | grep freezer

 7:freezer:/..

 sh2# cat /proc/20124/cgroup | grep freezer Page 2/5

 7:freezer:/../sub2

 From the output of the first command, we see that the freezer cgroup

 membership of the new shell (which is in the same cgroup as the initial

 shell) is shown defined relative to the freezer cgroup root directory

 that was established when the new cgroup namespace was created. (In

 absolute terms, the new shell is in the /sub freezer cgroup, and the

 root directory of the freezer cgroup hierarchy in the new cgroup name?

 space is also /sub. Thus, the new shell's cgroup membership is dis?

 played as '/'.)

 However, when we look in /proc/self/mountinfo we see the following

 anomaly:

 sh2# cat /proc/self/mountinfo | grep freezer

 155 145 0:32 /.. /sys/fs/cgroup/freezer ...

 The fourth field of this line (/..) should show the directory in the

 cgroup filesystem which forms the root of this mount. Since by the

 definition of cgroup namespaces, the process's current freezer cgroup

 directory became its root freezer cgroup directory, we should see '/'

 in this field. The problem here is that we are seeing a mount entry

 for the cgroup filesystem corresponding to the initial cgroup namespace

 (whose cgroup filesystem is indeed rooted at the parent directory of

 sub). To fix this problem, we must remount the freezer cgroup filesys?

 tem from the new shell (i.e., perform the mount from a process that is

 in the new cgroup namespace), after which we see the expected results:

 sh2# mount --make-rslave / # Don't propagate mount events

 # to other namespaces

 sh2# umount /sys/fs/cgroup/freezer

 sh2# mount -t cgroup -o freezer freezer /sys/fs/cgroup/freezer

 sh2# cat /proc/self/mountinfo | grep freezer

 155 145 0:32 / /sys/fs/cgroup/freezer rw,relatime ...

CONFORMING TO

 Namespaces are a Linux-specific feature.

NOTES

 Use of cgroup namespaces requires a kernel that is configured with the Page 3/5

 CONFIG_CGROUPS option.

 The virtualization provided by cgroup namespaces serves a number of

 purposes:

 * It prevents information leaks whereby cgroup directory paths outside

 of a container would otherwise be visible to processes in the con?

 tainer. Such leakages could, for example, reveal information about

 the container framework to containerized applications.

 * It eases tasks such as container migration. The virtualization pro?

 vided by cgroup namespaces allows containers to be isolated from

 knowledge of the pathnames of ancestor cgroups. Without such isola?

 tion, the full cgroup pathnames (displayed in /proc/self/cgroups)

 would need to be replicated on the target system when migrating a

 container; those pathnames would also need to be unique, so that they

 don't conflict with other pathnames on the target system.

 * It allows better confinement of containerized processes, because it

 is possible to mount the container's cgroup filesystems such that the

 container processes can't gain access to ancestor cgroup directories.

 Consider, for example, the following scenario:

 ? We have a cgroup directory, /cg/1, that is owned by user ID 9000.

 ? We have a process, X, also owned by user ID 9000, that is names?

 paced under the cgroup /cg/1/2 (i.e., X was placed in a new

 cgroup namespace via clone(2) or unshare(2) with the CLONE_NEWC?

 GROUP flag).

 In the absence of cgroup namespacing, because the cgroup directory

 /cg/1 is owned (and writable) by UID 9000 and process X is also owned

 by user ID 9000, process X would be able to modify the contents of

 cgroups files (i.e., change cgroup settings) not only in /cg/1/2 but

 also in the ancestor cgroup directory /cg/1. Namespacing process X

 under the cgroup directory /cg/1/2, in combination with suitable

 mount operations for the cgroup filesystem (as shown above), prevents

 it modifying files in /cg/1, since it cannot even see the contents of

 that directory (or of further removed cgroup ancestor directories).

 Combined with correct enforcement of hierarchical limits, this pre? Page 4/5

 vents process X from escaping the limits imposed by ancestor cgroups.

SEE ALSO

 unshare(1), clone(2), setns(2), unshare(2), proc(5), cgroups(7), cre?

 dentials(7), namespaces(7), user_namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 CGROUP_NAMESPACES(7)

Page 5/5

