
Rocky Enterprise Linux 9.2 Manual Pages on command 'certtool.1'

$ man certtool.1

certtool(1) User Commands certtool(1)

NAME

 certtool - GnuTLS certificate tool

SYNOPSIS

 certtool [-flags] [-flag [value]] [--option-name[[=|]value]]

 All arguments must be options.

DESCRIPTION

 Tool to parse and generate X.509 certificates, requests and private

 keys. It can be used interactively or non interactively by specifying

 the template command line option.

 The tool accepts files or supported URIs via the --infile option. In

 case PIN is required for URI access you can provide it using the envi?

 ronment variables GNUTLS_PIN and GNUTLS_SO_PIN.

OPTIONS

 -d num, --debug=num

 Enable debugging. This option takes an integer number as its

 argument. The value of num is constrained to being:

 in the range 0 through 9999 Page 1/23

 Specifies the debug level.

 -V, --verbose

 More verbose output.

 --infile=file

 Input file.

 --outfile=str

 Output file.

 Certificate related options

 -i, --certificate-info

 Print information on the given certificate.

 --pubkey-info

 Print information on a public key.

 The option combined with --load-request, --load-pubkey,

 --load-privkey and --load-certificate will extract the public

 key of the object in question.

 -s, --generate-self-signed

 Generate a self-signed certificate.

 -c, --generate-certificate

 Generate a signed certificate.

 --generate-proxy

 Generates a proxy certificate.

 -u, --update-certificate

 Update a signed certificate.

 --fingerprint

 Print the fingerprint of the given certificate.

 This is a simple hash of the DER encoding of the certificate. It

 can be combined with the --hash parameter. However, it is recom?

 mended for identification to use the key-id which depends only

 on the certificate's key.

 --key-id

 Print the key ID of the given certificate.

 This is a hash of the public key of the given certificate. It

 identifies the key uniquely, remains the same on a certificate Page 2/23

 renewal and depends only on signed fields of the certificate.

 --certificate-pubkey

 Print certificate's public key.

 This option is deprecated as a duplicate of --pubkey-info

 NOTE: THIS OPTION IS DEPRECATED

 --v1 Generate an X.509 version 1 certificate (with no extensions).

 --sign-params=str

 Sign a certificate with a specific signature algorithm.

 This option can be combined with --generate-certificate, to sign

 the certificate with a specific signature algorithm variant. The

 only option supported is 'RSA-PSS', and should be specified when

 the signer does not have a certificate which is marked for

 RSA-PSS use only.

 Certificate request related options

 --crq-info

 Print information on the given certificate request.

 -q, --generate-request

 Generate a PKCS #10 certificate request. This option must not

 appear in combination with any of the following options: infile.

 Will generate a PKCS #10 certificate request. To specify a pri?

 vate key use --load-privkey.

 --no-crq-extensions

 Do not use extensions in certificate requests.

 PKCS#12 file related options

 --p12-info

 Print information on a PKCS #12 structure.

 This option will dump the contents and print the metadata of the

 provided PKCS #12 structure.

 --p12-name=str

 The PKCS #12 friendly name to use.

 The name to be used for the primary certificate and private key

 in a PKCS #12 file.

 --to-p12 Page 3/23

 Generate a PKCS #12 structure.

 It requires a certificate, a private key and possibly a CA cer?

 tificate to be specified.

 Private key related options

 -k, --key-info

 Print information on a private key.

 --p8-info

 Print information on a PKCS #8 structure.

 This option will print information about encrypted PKCS #8

 structures. That option does not require the decryption of the

 structure.

 --to-rsa

 Convert an RSA-PSS key to raw RSA format.

 It requires an RSA-PSS key as input and will output a raw RSA

 key. This command is necessary for compatibility with applica?

 tions that cannot read RSA-PSS keys.

 -p, --generate-privkey

 Generate a private key.

 When generating RSA-PSS private keys, the --hash option will re?

 strict the allowed hash for the key; in the same keys the

 --salt-size option is also acceptable.

 --key-type=str

 Specify the key type to use on key generation.

 This option can be combined with --generate-privkey, to specify

 the key type to be generated. Valid options are, 'rsa',

 'rsa-pss', 'dsa', 'ecdsa', 'ed25519, 'ed448', 'x25519', and

 'x448'.'. When combined with certificate generation it can be

 used to specify an RSA-PSS certificate when an RSA key is given.

 --bits=num

 Specify the number of bits for key generation. This option

 takes an integer number as its argument.

 --curve=str

 Specify the curve used for EC key generation. Page 4/23

 Supported values are secp192r1, secp224r1, secp256r1, secp384r1

 and secp521r1.

 --sec-param=security parameter

 Specify the security level [low, legacy, medium, high, ultra].

 This is alternative to the bits option.

 --to-p8

 Convert a given key to a PKCS #8 structure.

 This needs to be combined with --load-privkey.

 -8, --pkcs8

 Use PKCS #8 format for private keys.

 --provable

 Generate a private key or parameters from a seed using a prov?

 able method.

 This will use the FIPS PUB186-4 algorithms (i.e., Shawe-Taylor)

 for provable key generation. When specified the private keys or

 parameters will be generated from a seed, and can be later vali?

 dated with --verify-provable-privkey to be correctly generated

 from the seed. You may specify --seed or allow GnuTLS to gener?

 ate one (recommended). This option can be combined with --gener?

 ate-privkey or --generate-dh-params.

 That option applies to RSA and DSA keys. On the DSA keys the PQG

 parameters are generated using the seed, and on RSA the two

 primes.

 --verify-provable-privkey

 Verify a private key generated from a seed using a provable

 method.

 This will use the FIPS-186-4 algorithms for provable key genera?

 tion. You may specify --seed or use the seed stored in the pri?

 vate key structure.

 --seed=str

 When generating a private key use the given hex-encoded seed.

 The seed acts as a security parameter for the private key, and

 thus a seed size which corresponds to the security level of the Page 5/23

 private key should be provided (e.g., 256-bits seed).

 CRL related options

 -l, --crl-info

 Print information on the given CRL structure.

 --generate-crl

 Generate a CRL.

 This option generates a Certificate Revocation List. When com?

 bined with --load-crl it would use the loaded CRL as base for

 the generated (i.e., all revoked certificates in the base will

 be copied to the new CRL). To add new certificates to the CRL

 use --load-certificate.

 --verify-crl

 Verify a Certificate Revocation List using a trusted list. This

 option must appear in combination with the following options:

 load-ca-certificate.

 The trusted certificate list must be loaded with --load-ca-cer?

 tificate.

 Certificate verification related options

 -e, --verify-chain

 Verify a PEM encoded certificate chain.

 Verifies the validity of a certificate chain. That is, an or?

 dered set of certificates where each one is the issuer of the

 previous, and the first is the end-certificate to be validated.

 In a proper chain the last certificate is a self signed one. It

 can be combined with --verify-purpose or --verify-hostname.

 --verify

 Verify a PEM encoded certificate (chain) against a trusted set.

 The trusted certificate list can be loaded with --load-ca-cer?

 tificate. If no certificate list is provided, then the system's

 trusted certificate list is used. Note that during verification

 multiple paths may be explored. On a successful verification the

 successful path will be the last one. It can be combined with

 --verify-purpose or --verify-hostname. Page 6/23

 --verify-hostname=str

 Specify a hostname to be used for certificate chain verifica?

 tion.

 This is to be combined with one of the verify certificate op?

 tions.

 --verify-email=str

 Specify a email to be used for certificate chain verification.

 This option must not appear in combination with any of the fol?

 lowing options: verify-hostname.

 This is to be combined with one of the verify certificate op?

 tions.

 --verify-purpose=str

 Specify a purpose OID to be used for certificate chain verifica?

 tion.

 This object identifier restricts the purpose of the certificates

 to be verified. Example purposes are 1.3.6.1.5.5.7.3.1 (TLS

 WWW), 1.3.6.1.5.5.7.3.4 (EMAIL) etc. Note that a CA certificate

 without a purpose set (extended key usage) is valid for any pur?

 pose.

 --verify-allow-broken

 Allow broken algorithms, such as MD5 for verification.

 This can be combined with --p7-verify, --verify or --ver?

 ify-chain.

 --verify-profile=str

 Specify a security level profile to be used for verification.

 This option can be used to specify a certificate verification

 profile. Certificate

 verification profiles correspond to the security level. This

 should be one of

 'none', 'very weak', 'low', 'legacy', 'medium', 'high', 'ul?

 tra',

 'future'. Note that by default no profile is applied, unless

 one is set Page 7/23

 as minimum in the gnutls configuration file.

 PKCS#7 structure options

 --p7-generate

 Generate a PKCS #7 structure.

 This option generates a PKCS #7 certificate container structure.

 To add certificates in the structure use --load-certificate and

 --load-crl.

 --p7-sign

 Signs using a PKCS #7 structure.

 This option generates a PKCS #7 structure containing a signature

 for the provided data from infile. The data are stored within

 the structure. The signer certificate has to be specified using

 --load-certificate and --load-privkey. The input to --load-cer?

 tificate can be a list of certificates. In case of a list, the

 first certificate is used for signing and the other certificates

 are included in the structure.

 --p7-detached-sign

 Signs using a detached PKCS #7 structure.

 This option generates a PKCS #7 structure containing a signature

 for the provided data from infile. The signer certificate has to

 be specified using --load-certificate and --load-privkey. The

 input to --load-certificate can be a list of certificates. In

 case of a list, the first certificate is used for signing and

 the other certificates are included in the structure.

 --p7-include-cert, --no-p7-include-cert

 The signer's certificate will be included in the cert list. The

 no-p7-include-cert form will disable the option. This option is

 enabled by default.

 This options works with --p7-sign or --p7-detached-sign and will

 include or exclude the signer's certificate into the generated

 signature.

 --p7-time, --no-p7-time

 Will include a timestamp in the PKCS #7 structure. The Page 8/23

 no-p7-time form will disable the option.

 This option will include a timestamp in the generated signature

 --p7-show-data, --no-p7-show-data

 Will show the embedded data in the PKCS #7 structure. The

 no-p7-show-data form will disable the option.

 This option can be combined with --p7-verify or --p7-info and

 will display the embedded signed data in the PKCS #7 structure.

 --p7-info

 Print information on a PKCS #7 structure.

 --p7-verify

 Verify the provided PKCS #7 structure.

 This option verifies the signed PKCS #7 structure. The certifi?

 cate list to use for verification can be specified with

 --load-ca-certificate. When no certificate list is provided,

 then the system's certificate list is used. Alternatively a di?

 rect signer can be provided using --load-certificate. A key pur?

 pose can be enforced with the --verify-purpose option, and the

 --load-data option will utilize detached data.

 --smime-to-p7

 Convert S/MIME to PKCS #7 structure.

 Other options

 --generate-dh-params

 Generate PKCS #3 encoded Diffie-Hellman parameters.

 The will generate random parameters to be used with Diffie-Hell?

 man key exchange. The output parameters will be in PKCS #3 for?

 mat. Note that it is recommended to use the --get-dh-params op?

 tion instead.

 NOTE: THIS OPTION IS DEPRECATED

 --get-dh-params

 List the included PKCS #3 encoded Diffie-Hellman parameters.

 Returns stored DH parameters in GnuTLS. Those parameters re?

 turned are defined in RFC7919, and can be considered standard

 parameters for a TLS key exchange. This option is provided for Page 9/23

 old applications which require DH parameters to be specified;

 modern GnuTLS applications should not require them.

 --dh-info

 Print information PKCS #3 encoded Diffie-Hellman parameters.

 --load-privkey=str

 Loads a private key file.

 This can be either a file or a PKCS #11 URL

 --load-pubkey=str

 Loads a public key file.

 This can be either a file or a PKCS #11 URL

 --load-request=str

 Loads a certificate request file.

 This option can be used with a file

 --load-certificate=str

 Loads a certificate file.

 This option can be used with a file

 --load-ca-privkey=str

 Loads the certificate authority's private key file.

 This can be either a file or a PKCS #11 URL

 --load-ca-certificate=str

 Loads the certificate authority's certificate file.

 This can be either a file or a PKCS #11 URL

 --load-crl=str

 Loads the provided CRL.

 This option can be used with a file

 --load-data=str

 Loads auxiliary data.

 This option can be used with a file

 --password=str

 Password to use.

 You can use this option to specify the password in the command

 line instead of reading it from the tty. Note, that the command

 line arguments are available for view in others in the system. Page 10/23

 Specifying password as '' is the same as specifying no password.

 --null-password

 Enforce a NULL password.

 This option enforces a NULL password. This is different than the

 empty or no password in schemas like PKCS #8.

 --empty-password

 Enforce an empty password.

 This option enforces an empty password. This is different than

 the NULL or no password in schemas like PKCS #8.

 --hex-numbers

 Print big number in an easier format to parse.

 --cprint

 In certain operations it prints the information in C-friendly

 format.

 In certain operations it prints the information in C-friendly

 format, suitable for including into C programs.

 --rsa Generate RSA key.

 When combined with --generate-privkey generates an RSA private

 key.

 NOTE: THIS OPTION IS DEPRECATED

 --dsa Generate DSA key.

 When combined with --generate-privkey generates a DSA private

 key.

 NOTE: THIS OPTION IS DEPRECATED

 --ecc Generate ECC (ECDSA) key.

 When combined with --generate-privkey generates an elliptic

 curve private key to be used with ECDSA.

 NOTE: THIS OPTION IS DEPRECATED

 --ecdsa

 This is an alias for the --ecc option.

 NOTE: THIS OPTION IS DEPRECATED

 --hash=str

 Hash algorithm to use for signing. Page 11/23

 Available hash functions are SHA1, RMD160, SHA256, SHA384,

 SHA512, SHA3-224, SHA3-256, SHA3-384, SHA3-512.

 --salt-size=num

 Specify the RSA-PSS key default salt size. This option takes an

 integer number as its argument.

 Typical keys shouldn't set or restrict this option.

 --inder, --no-inder

 Use DER format for input certificates, private keys, and DH pa?

 rameters . The no-inder form will disable the option.

 The input files will be assumed to be in DER or RAW format. Un?

 like options that in PEM input would allow multiple input data

 (e.g. multiple certificates), when reading in DER format a sin?

 gle data structure is read.

 --inraw

 This is an alias for the --inder option.

 --outder, --no-outder

 Use DER format for output certificates, private keys, and DH pa?

 rameters. The no-outder form will disable the option.

 The output will be in DER or RAW format.

 --outraw

 This is an alias for the --outder option.

 --disable-quick-random

 No effect.

 NOTE: THIS OPTION IS DEPRECATED

 --template=str

 Template file to use for non-interactive operation.

 --stdout-info

 Print information to stdout instead of stderr.

 --ask-pass

 Enable interaction for entering password when in batch mode.

 This option will enable interaction to enter password when in

 batch mode. That is useful when the template option has been

 specified. Page 12/23

 --pkcs-cipher=cipher

 Cipher to use for PKCS #8 and #12 operations.

 Cipher may be one of 3des, 3des-pkcs12, aes-128, aes-192,

 aes-256, rc2-40, arcfour.

 --provider=str

 Specify the PKCS #11 provider library.

 This will override the default options in

 /etc/gnutls/pkcs11.conf

 --text, --no-text

 Output textual information before PEM-encoded certificates, pri?

 vate keys, etc. The no-text form will disable the option. This

 option is enabled by default.

 Output textual information before PEM-encoded data

 -v arg, --version=arg

 Output version of program and exit. The default mode is `v', a

 simple version. The `c' mode will print copyright information

 and `n' will print the full copyright notice.

 -h, --help

 Display usage information and exit.

 -!, --more-help

 Pass the extended usage information through a pager.

FILES

 Certtool's template file format

 A template file can be used to avoid the interactive questions of cert?

 tool. Initially create a file named 'cert.cfg' that contains the infor?

 mation about the certificate. The template can be used as below:

 $ certtool --generate-certificate --load-privkey key.pem --template cert.cfg --outfile cert.pem --load-ca-certificate

ca-cert.pem --load-ca-privkey ca-key.pem

 An example certtool template file that can be used to generate a cer?

 tificate request or a self signed certificate follows.

 # X.509 Certificate options

 #

 # DN options Page 13/23

 # The organization of the subject.

 organization = "Koko inc."

 # The organizational unit of the subject.

 unit = "sleeping dept."

 # The locality of the subject.

 # locality =

 # The state of the certificate owner.

 state = "Attiki"

 # The country of the subject. Two letter code.

 country = GR

 # The common name of the certificate owner.

 cn = "Cindy Lauper"

 # A user id of the certificate owner.

 #uid = "clauper"

 # Set domain components

 #dc = "name"

 #dc = "domain"

 # If the supported DN OIDs are not adequate you can set

 # any OID here.

 # For example set the X.520 Title and the X.520 Pseudonym

 # by using OID and string pairs.

 #dn_oid = "2.5.4.12 Dr."

 #dn_oid = "2.5.4.65 jackal"

 # This is deprecated and should not be used in new

 # certificates.

 # pkcs9_email = "none@none.org"

 # An alternative way to set the certificate's distinguished name directly

 # is with the "dn" option. The attribute names allowed are:

 # C (country), street, O (organization), OU (unit), title, CN (common name),

 # L (locality), ST (state), placeOfBirth, gender, countryOfCitizenship,

 # countryOfResidence, serialNumber, telephoneNumber, surName, initials,

 # generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name,

 # businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName, Page 14/23

 # jurisdictionOfIncorporationStateOrProvinceName,

 # jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs.

 #dn = "cn = Nikos,st = New Something,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias"

 # The serial number of the certificate

 # The value is in decimal (i.e. 1963) or hex (i.e. 0x07ab).

 # Comment the field for a random serial number.

 serial = 007

 # In how many days, counting from today, this certificate will expire.

 # Use -1 if there is no expiration date.

 expiration_days = 700

 # Alternatively you may set concrete dates and time. The GNU date string

 # formats are accepted. See:

 # https://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html

 #activation_date = "2004-02-29 16:21:42"

 #expiration_date = "2025-02-29 16:24:41"

 # X.509 v3 extensions

 # A dnsname in case of a WWW server.

 #dns_name = "www.none.org"

 #dns_name = "www.morethanone.org"

 # An othername defined by an OID and a hex encoded string

 #other_name = "1.3.6.1.5.2.2

302ca00d1b0b56414e5245494e2e4f5247a11b3019a006020400000002a10f300d1b047269636b1b0561646d696e"

 #other_name_utf8 = "1.2.4.5.6 A UTF8 string"

 #other_name_octet = "1.2.4.5.6 A string that will be encoded as ASN.1 octet string"

 # Allows writing an XmppAddr Identifier

 #xmpp_name = juliet@im.example.com

 # Names used in PKINIT

 #krb5_principal = user@REALM.COM

 #krb5_principal = HTTP/user@REALM.COM

 # A subject alternative name URI

 #uri = "https://www.example.com"

 # An IP address in case of a server.

 #ip_address = "192.168.1.1" Page 15/23

 # An email in case of a person

 email = "none@none.org"

 # TLS feature (rfc7633) extension. That can is used to indicate mandatory TLS

 # extension features to be provided by the server. In practice this is used

 # to require the Status Request (extid: 5) extension from the server. That is,

 # to require the server holding this certificate to provide a stapled OCSP response.

 # You can have multiple lines for multiple TLS features.

 # To ask for OCSP status request use:

 #tls_feature = 5

 # Challenge password used in certificate requests

 challenge_password = 123456

 # Password when encrypting a private key

 #password = secret

 # An URL that has CRLs (certificate revocation lists)

 # available. Needed in CA certificates.

 #crl_dist_points = "https://www.getcrl.crl/getcrl/"

 # Whether this is a CA certificate or not

 #ca

 # Subject Unique ID (in hex)

 #subject_unique_id = 00153224

 # Issuer Unique ID (in hex)

 #issuer_unique_id = 00153225

 #### Key usage

 # The following key usage flags are used by CAs and end certificates

 # Whether this certificate will be used to sign data (needed

 # in TLS DHE ciphersuites). This is the digitalSignature flag

 # in RFC5280 terminology.

 signing_key

 # Whether this certificate will be used to encrypt data (needed

 # in TLS RSA ciphersuites). Note that it is preferred to use different

 # keys for encryption and signing. This is the keyEncipherment flag

 # in RFC5280 terminology.

 encryption_key Page 16/23

 # Whether this key will be used to sign other certificates. The

 # keyCertSign flag in RFC5280 terminology.

 #cert_signing_key

 # Whether this key will be used to sign CRLs. The

 # cRLSign flag in RFC5280 terminology.

 #crl_signing_key

 # The keyAgreement flag of RFC5280. Its purpose is loosely

 # defined. Not use it unless required by a protocol.

 #key_agreement

 # The dataEncipherment flag of RFC5280. Its purpose is loosely

 # defined. Not use it unless required by a protocol.

 #data_encipherment

 # The nonRepudiation flag of RFC5280. Its purpose is loosely

 # defined. Not use it unless required by a protocol.

 #non_repudiation

 #### Extended key usage (key purposes)

 # The following extensions are used in an end certificate

 # to clarify its purpose. Some CAs also use it to indicate

 # the types of certificates they are purposed to sign.

 # Whether this certificate will be used for a TLS client;

 # this sets the id-kp-clientAuth (1.3.6.1.5.5.7.3.2) of

 # extended key usage.

 #tls_www_client

 # Whether this certificate will be used for a TLS server;

 # this sets the id-kp-serverAuth (1.3.6.1.5.5.7.3.1) of

 # extended key usage.

 #tls_www_server

 # Whether this key will be used to sign code. This sets the

 # id-kp-codeSigning (1.3.6.1.5.5.7.3.3) of extended key usage

 # extension.

 #code_signing_key

 # Whether this key will be used to sign OCSP data. This sets the

 # id-kp-OCSPSigning (1.3.6.1.5.5.7.3.9) of extended key usage extension. Page 17/23

 #ocsp_signing_key

 # Whether this key will be used for time stamping. This sets the

 # id-kp-timeStamping (1.3.6.1.5.5.7.3.8) of extended key usage extension.

 #time_stamping_key

 # Whether this key will be used for email protection. This sets the

 # id-kp-emailProtection (1.3.6.1.5.5.7.3.4) of extended key usage extension.

 #email_protection_key

 # Whether this key will be used for IPsec IKE operations (1.3.6.1.5.5.7.3.17).

 #ipsec_ike_key

 ## adding custom key purpose OIDs

 # for microsoft smart card logon

 # key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

 # for email protection

 # key_purpose_oid = 1.3.6.1.5.5.7.3.4

 # for any purpose (must not be used in intermediate CA certificates)

 # key_purpose_oid = 2.5.29.37.0

 ### end of key purpose OIDs

 ### Adding arbitrary extensions

 # This requires to provide the extension OIDs, as well as the extension data in

 # hex format. The following two options are available since GnuTLS 3.5.3.

 #add_extension = "1.2.3.4 0x0AAB01ACFE"

 # As above but encode the data as an octet string

 #add_extension = "1.2.3.4 octet_string(0x0AAB01ACFE)"

 # For portability critical extensions shouldn't be set to certificates.

 #add_critical_extension = "5.6.7.8 0x1AAB01ACFE"

 # When generating a certificate from a certificate

 # request, then honor the extensions stored in the request

 # and store them in the real certificate.

 #honor_crq_extensions

 # Alternatively only specific extensions can be copied.

 #honor_crq_ext = 2.5.29.17

 #honor_crq_ext = 2.5.29.15

 # Path length constraint. Sets the maximum number of Page 18/23

 # certificates that can be used to certify this certificate.

 # (i.e. the certificate chain length)

 #path_len = -1

 #path_len = 2

 # OCSP URI

 # ocsp_uri = https://my.ocsp.server/ocsp

 # CA issuers URI

 # ca_issuers_uri = https://my.ca.issuer

 # Certificate policies

 #policy1 = 1.3.6.1.4.1.5484.1.10.99.1.0

 #policy1_txt = "This is a long policy to summarize"

 #policy1_url = https://www.example.com/a-policy-to-read

 #policy2 = 1.3.6.1.4.1.5484.1.10.99.1.1

 #policy2_txt = "This is a short policy"

 #policy2_url = https://www.example.com/another-policy-to-read

 # The number of additional certificates that may appear in a

 # path before the anyPolicy is no longer acceptable.

 #inhibit_anypolicy_skip_certs 1

 # Name constraints

 # DNS

 #nc_permit_dns = example.com

 #nc_exclude_dns = test.example.com

 # EMAIL

 #nc_permit_email = "nmav@ex.net"

 # Exclude subdomains of example.com

 #nc_exclude_email = .example.com

 # Exclude all e-mail addresses of example.com

 #nc_exclude_email = example.com

 # IP

 #nc_permit_ip = 192.168.0.0/16

 #nc_exclude_ip = 192.168.5.0/24

 #nc_permit_ip = fc0a:eef2:e7e7:a56e::/64

 # Options for proxy certificates Page 19/23

 #proxy_policy_language = 1.3.6.1.5.5.7.21.1

 # Options for generating a CRL

 # The number of days the next CRL update will be due.

 # next CRL update will be in 43 days

 #crl_next_update = 43

 # this is the 5th CRL by this CA

 # The value is in decimal (i.e. 1963) or hex (i.e. 0x07ab).

 # Comment the field for a time-based number.

 # Time-based CRL numbers generated in GnuTLS 3.6.3 and later

 # are significantly larger than those generated in previous

 # versions. Since CRL numbers need to be monotonic, you need

 # to specify the CRL number here manually if you intend to

 # downgrade to an earlier version than 3.6.3 after publishing

 # the CRL as it is not possible to specify CRL numbers greater

 # than 2**63-2 using hex notation in those versions.

 #crl_number = 5

 # Specify the update dates more precisely.

 #crl_this_update_date = "2004-02-29 16:21:42"

 #crl_next_update_date = "2025-02-29 16:24:41"

 # The date that the certificates will be made seen as

 # being revoked.

 #crl_revocation_date = "2025-02-29 16:24:41"

EXAMPLES

 Generating private keys

 To create an RSA private key, run:

 $ certtool --generate-privkey --outfile key.pem --rsa

 To create a DSA or elliptic curves (ECDSA) private key use the above

 command combined with 'dsa' or 'ecc' options.

 Generating certificate requests

 To create a certificate request (needed when the certificate is issued

 by another party), run:

 certtool --generate-request --load-privkey key.pem --outfile request.pem

 If the private key is stored in a smart card you can generate a request Page 20/23

 by specifying the private key object URL.

 $./certtool --generate-request --load-privkey "pkcs11:..." --load-pubkey "pkcs11:..." --outfile request.pem

 Generating a self-signed certificate

 To create a self signed certificate, use the command:

 $ certtool --generate-privkey --outfile ca-key.pem

 $ certtool --generate-self-signed --load-privkey ca-key.pem --outfile ca-cert.pem

 Note that a self-signed certificate usually belongs to a certificate

 authority, that signs other certificates.

 Generating a certificate

 To generate a certificate using the previous request, use the command:

 $ certtool --generate-certificate --load-request request.pem --outfile cert.pem --load-ca-certificate ca-cert.pem

--load-ca-privkey ca-key.pem

 To generate a certificate using the private key only, use the command:

 $ certtool --generate-certificate --load-privkey key.pem --outfile cert.pem --load-ca-certificate ca-cert.pem

--load-ca-privkey ca-key.pem

 Certificate information

 To view the certificate information, use:

 $ certtool --certificate-info --infile cert.pem

 Changing the certificate format

 To convert the certificate from PEM to DER format, use:

 $ certtool --certificate-info --infile cert.pem --outder --outfile cert.der

 PKCS #12 structure generation

 To generate a PKCS #12 structure using the previous key and certifi?

 cate, use the command:

 $ certtool --load-certificate cert.pem --load-privkey key.pem --to-p12 --outder --outfile key.p12

 Some tools (reportedly web browsers) have problems with that file be?

 cause it does not contain the CA certificate for the certificate. To

 work around that problem in the tool, you can use the --load-ca-cer?

 tificate parameter as follows:

 $ certtool --load-ca-certificate ca.pem --load-certificate cert.pem --load-privkey key.pem --to-p12 --outder --outfile

key.p12

 Obtaining Diffie-Hellman parameters

 To obtain the RFC7919 parameters for Diffie-Hellman key exchange, use Page 21/23

 the command:

 $ certtool --get-dh-params --outfile dh.pem --sec-param medium

 Verifying a certificate

 To verify a certificate in a file against the system's CA trust store

 use the following command:

 $ certtool --verify --infile cert.pem

 It is also possible to simulate hostname verification with the follow?

 ing options:

 $ certtool --verify --verify-hostname www.example.com --infile cert.pem

 Proxy certificate generation

 Proxy certificate can be used to delegate your credential to a tempo?

 rary, typically short-lived, certificate. To create one from the pre?

 viously created certificate, first create a temporary key and then gen?

 erate a proxy certificate for it, using the commands:

 $ certtool --generate-privkey > proxy-key.pem

 $ certtool --generate-proxy --load-ca-privkey key.pem --load-privkey proxy-key.pem --load-certificate cert.pem

--outfile proxy-cert.pem

 Certificate revocation list generation

 To create an empty Certificate Revocation List (CRL) do:

 $ certtool --generate-crl --load-ca-privkey x509-ca-key.pem --load-ca-certificate x509-ca.pem

 To create a CRL that contains some revoked certificates, place the cer?

 tificates in a file and use --load-certificate as follows:

 $ certtool --generate-crl --load-ca-privkey x509-ca-key.pem --load-ca-certificate x509-ca.pem --load-certificate

revoked-certs.pem

 To verify a Certificate Revocation List (CRL) do:

 $ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

EXIT STATUS

 One of the following exit values will be returned:

 0 (EXIT_SUCCESS)

 Successful program execution.

 1 (EXIT_FAILURE)

 The operation failed or the command syntax was not valid.

SEE ALSO Page 22/23

 p11tool (1), psktool (1), srptool (1)

AUTHORS

COPYRIGHT

 Copyright (C) 2020-2021 Free Software Foundation, and others all rights

 reserved. This program is released under the terms of the GNU General

 Public License, version 3 or later

BUGS

 Please send bug reports to: bugs@gnutls.org

3.7.6 27 May 2022 certtool(1)

Page 23/23

