
Rocky Enterprise Linux 9.2 Manual Pages on command 'calloc.3'

$ man calloc.3

MALLOC(3) Linux Programmer's Manual MALLOC(3)

NAME

 malloc, free, calloc, realloc, reallocarray - allocate and free dynamic

 memory

SYNOPSIS

 #include <stdlib.h>

 void *malloc(size_t size);

 void free(void *ptr);

 void *calloc(size_t nmemb, size_t size);

 void *realloc(void *ptr, size_t size);

 void *reallocarray(void *ptr, size_t nmemb, size_t size);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 reallocarray():

 Since glibc 2.29:

 _DEFAULT_SOURCE

 Glibc 2.28 and earlier:

 _GNU_SOURCE

DESCRIPTION Page 1/5

 The malloc() function allocates size bytes and returns a pointer to the

 allocated memory. The memory is not initialized. If size is 0, then

 malloc() returns either NULL, or a unique pointer value that can later

 be successfully passed to free().

 The free() function frees the memory space pointed to by ptr, which

 must have been returned by a previous call to malloc(), calloc(), or

 realloc(). Otherwise, or if free(ptr) has already been called before,

 undefined behavior occurs. If ptr is NULL, no operation is performed.

 The calloc() function allocates memory for an array of nmemb elements

 of size bytes each and returns a pointer to the allocated memory. The

 memory is set to zero. If nmemb or size is 0, then calloc() returns

 either NULL, or a unique pointer value that can later be successfully

 passed to free(). If the multiplication of nmemb and size would result

 in integer overflow, then calloc() returns an error. By contrast, an

 integer overflow would not be detected in the following call to mal?

 loc(), with the result that an incorrectly sized block of memory would

 be allocated:

 malloc(nmemb * size);

 The realloc() function changes the size of the memory block pointed to

 by ptr to size bytes. The contents will be unchanged in the range from

 the start of the region up to the minimum of the old and new sizes. If

 the new size is larger than the old size, the added memory will not be

 initialized. If ptr is NULL, then the call is equivalent to mal?

 loc(size), for all values of size; if size is equal to zero, and ptr is

 not NULL, then the call is equivalent to free(ptr). Unless ptr is

 NULL, it must have been returned by an earlier call to malloc(), cal?

 loc(), or realloc(). If the area pointed to was moved, a free(ptr) is

 done.

 The reallocarray() function changes the size of the memory block

 pointed to by ptr to be large enough for an array of nmemb elements,

 each of which is size bytes. It is equivalent to the call

 realloc(ptr, nmemb * size);

 However, unlike that realloc() call, reallocarray() fails safely in the Page 2/5

 case where the multiplication would overflow. If such an overflow oc?

 curs, reallocarray() returns NULL, sets errno to ENOMEM, and leaves the

 original block of memory unchanged.

RETURN VALUE

 The malloc() and calloc() functions return a pointer to the allocated

 memory, which is suitably aligned for any built-in type. On error,

 these functions return NULL. NULL may also be returned by a successful

 call to malloc() with a size of zero, or by a successful call to cal?

 loc() with nmemb or size equal to zero.

 The free() function returns no value.

 The realloc() function returns a pointer to the newly allocated memory,

 which is suitably aligned for any built-in type, or NULL if the request

 failed. The returned pointer may be the same as ptr if the allocation

 was not moved (e.g., there was room to expand the allocation in-place),

 or different from ptr if the allocation was moved to a new address. If

 size was equal to 0, either NULL or a pointer suitable to be passed to

 free() is returned. If realloc() fails, the original block is left un?

 touched; it is not freed or moved.

 On success, the reallocarray() function returns a pointer to the newly

 allocated memory. On failure, it returns NULL and the original block

 of memory is left untouched.

ERRORS

 calloc(), malloc(), realloc(), and reallocarray() can fail with the

 following error:

 ENOMEM Out of memory. Possibly, the application hit the RLIMIT_AS or

 RLIMIT_DATA limit described in getrlimit(2).

VERSIONS

 reallocarray() first appeared in glibc in version 2.26.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ? Page 3/5

 ???

 ?malloc(), free(), ? Thread safety ? MT-Safe ?

 ?calloc(), realloc() ? ? ?

 ???

CONFORMING TO

 malloc(), free(), calloc(), realloc(): POSIX.1-2001, POSIX.1-2008, C89,

 C99.

 reallocarray() is a nonstandard extension that first appeared in Open?

 BSD 5.6 and FreeBSD 11.0.

NOTES

 By default, Linux follows an optimistic memory allocation strategy.

 This means that when malloc() returns non-NULL there is no guarantee

 that the memory really is available. In case it turns out that the

 system is out of memory, one or more processes will be killed by the

 OOM killer. For more information, see the description of

 /proc/sys/vm/overcommit_memory and /proc/sys/vm/oom_adj in proc(5), and

 the Linux kernel source file Documentation/vm/overcommit-account?

 ing.rst.

 Normally, malloc() allocates memory from the heap, and adjusts the size

 of the heap as required, using sbrk(2). When allocating blocks of mem?

 ory larger than MMAP_THRESHOLD bytes, the glibc malloc() implementation

 allocates the memory as a private anonymous mapping using mmap(2).

 MMAP_THRESHOLD is 128 kB by default, but is adjustable using mal?

 lopt(3). Prior to Linux 4.7 allocations performed using mmap(2) were

 unaffected by the RLIMIT_DATA resource limit; since Linux 4.7, this

 limit is also enforced for allocations performed using mmap(2).

 To avoid corruption in multithreaded applications, mutexes are used in?

 ternally to protect the memory-management data structures employed by

 these functions. In a multithreaded application in which threads si?

 multaneously allocate and free memory, there could be contention for

 these mutexes. To scalably handle memory allocation in multithreaded

 applications, glibc creates additional memory allocation arenas if mu?

 tex contention is detected. Each arena is a large region of memory Page 4/5

 that is internally allocated by the system (using brk(2) or mmap(2)),

 and managed with its own mutexes.

 SUSv2 requires malloc(), calloc(), and realloc() to set errno to ENOMEM

 upon failure. Glibc assumes that this is done (and the glibc versions

 of these routines do this); if you use a private malloc implementation

 that does not set errno, then certain library routines may fail without

 having a reason in errno.

 Crashes in malloc(), calloc(), realloc(), or free() are almost always

 related to heap corruption, such as overflowing an allocated chunk or

 freeing the same pointer twice.

 The malloc() implementation is tunable via environment variables; see

 mallopt(3) for details.

SEE ALSO

 valgrind(1), brk(2), mmap(2), alloca(3), malloc_get_state(3),

 malloc_info(3), malloc_trim(3), malloc_usable_size(3), mallopt(3),

 mcheck(3), mtrace(3), posix_memalign(3)

 For details of the GNU C library implementation, see

 ?https://sourceware.org/glibc/wiki/MallocInternals?.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-06-09 MALLOC(3)

Page 5/5

