
Rocky Enterprise Linux 9.2 Manual Pages on command 'bzip2recover.1'

$ man bzip2recover.1

bzip2(1) General Commands Manual bzip2(1)

NAME

 bzip2, bunzip2 - a block-sorting file compressor, v1.0.8

 bzcat - decompresses files to stdout

 bzip2recover - recovers data from damaged bzip2 files

SYNOPSIS

 bzip2 [-cdfkqstvzVL123456789] [filenames ...]

 bunzip2 [-fkvsVL] [filenames ...]

 bzcat [-s] [filenames ...]

 bzip2recover filename

DESCRIPTION

 bzip2 compresses files using the Burrows-Wheeler block sorting text

 compression algorithm, and Huffman coding. Compression is generally

 considerably better than that achieved by more conventional

 LZ77/LZ78-based compressors, and approaches the performance of the PPM

 family of statistical compressors.

 The command-line options are deliberately very similar to those of GNU

 gzip, but they are not identical. Page 1/10

 bzip2 expects a list of file names to accompany the command-line flags.

 Each file is replaced by a compressed version of itself, with the name

 "original_name.bz2". Each compressed file has the same modification

 date, permissions, and, when possible, ownership as the corresponding

 original, so that these properties can be correctly restored at decom?

 pression time. File name handling is naive in the sense that there is

 no mechanism for preserving original file names, permissions, owner?

 ships or dates in filesystems which lack these concepts, or have seri?

 ous file name length restrictions, such as MS-DOS.

 bzip2 and bunzip2 will by default not overwrite existing files. If you

 want this to happen, specify the -f flag.

 If no file names are specified, bzip2 compresses from standard input to

 standard output. In this case, bzip2 will decline to write compressed

 output to a terminal, as this would be entirely incomprehensible and

 therefore pointless.

 bunzip2 (or bzip2 -d) decompresses all specified files. Files which

 were not created by bzip2 will be detected and ignored, and a warning

 issued. bzip2 attempts to guess the filename for the decompressed file

 from that of the compressed file as follows:

 filename.bz2 becomes filename

 filename.bz becomes filename

 filename.tbz2 becomes filename.tar

 filename.tbz becomes filename.tar

 anyothername becomes anyothername.out

 If the file does not end in one of the recognised endings, .bz2, .bz,

 .tbz2 or .tbz, bzip2 complains that it cannot guess the name of the

 original file, and uses the original name with .out appended.

 As with compression, supplying no filenames causes decompression from

 standard input to standard output.

 bunzip2 will correctly decompress a file which is the concatenation of

 two or more compressed files. The result is the concatenation of the

 corresponding uncompressed files. Integrity testing (-t) of concate?

 nated compressed files is also supported. Page 2/10

 You can also compress or decompress files to the standard output by

 giving the -c flag. Multiple files may be compressed and decompressed

 like this. The resulting outputs are fed sequentially to stdout. Com?

 pression of multiple files in this manner generates a stream containing

 multiple compressed file representations. Such a stream can be decom?

 pressed correctly only by bzip2 version 0.9.0 or later. Earlier ver?

 sions of bzip2 will stop after decompressing the first file in the

 stream.

 bzcat (or bzip2 -dc) decompresses all specified files to the standard

 output.

 bzip2 will read arguments from the environment variables BZIP2 and

 BZIP, in that order, and will process them before any arguments read

 from the command line. This gives a convenient way to supply default

 arguments.

 Compression is always performed, even if the compressed file is

 slightly larger than the original. Files of less than about one hun?

 dred bytes tend to get larger, since the compression mechanism has a

 constant overhead in the region of 50 bytes. Random data (including

 the output of most file compressors) is coded at about 8.05 bits per

 byte, giving an expansion of around 0.5%.

 As a self-check for your protection, bzip2 uses 32-bit CRCs to make

 sure that the decompressed version of a file is identical to the origi?

 nal. This guards against corruption of the compressed data, and

 against undetected bugs in bzip2 (hopefully very unlikely). The

 chances of data corruption going undetected is microscopic, about one

 chance in four billion for each file processed. Be aware, though, that

 the check occurs upon decompression, so it can only tell you that some?

 thing is wrong. It can't help you recover the original uncompressed

 data. You can use bzip2recover to try to recover data from damaged

 files.

 Unlike GNU gzip, bzip2 will not create a cascade of .bz2 suffixes even

 when using the --force option:

 filename.bz2 dose not become filename.bz2.bz2 Page 3/10

 Return values: 0 for a normal exit, 1 for environmental problems (file

 not found, invalid flags, I/O errors, &c), 2 to indicate a corrupt com?

 pressed file, 3 for an internal consistency error (eg, bug) which

 caused bzip2 to panic.

OPTIONS

 -c --stdout

 Compress or decompress to standard output.

 -d --decompress

 Force decompression. bzip2, bunzip2 and bzcat are really the

 same program, and the decision about what actions to take is

 done on the basis of which name is used. This flag overrides

 that mechanism, and forces bzip2 to decompress.

 -z --compress

 The complement to -d: forces compression, regardless of the in?

 vocation name.

 -t --test

 Check integrity of the specified file(s), but don't decompress

 them. This really performs a trial decompression and throws

 away the result.

 -f --force

 Force overwrite of output files. Normally, bzip2 will not over?

 write existing output files. Also forces bzip2 to break hard

 links to files, which it otherwise wouldn't do.

 bzip2 normally declines to decompress files which don't have the

 correct magic header bytes. If forced (-f), however, it will

 pass such files through unmodified. This is how GNU gzip be?

 haves.

 -k --keep

 Keep (don't delete) input files during compression or decompres?

 sion.

 -s --small

 Reduce memory usage, for compression, decompression and testing.

 Files are decompressed and tested using a modified algorithm Page 4/10

 which only requires 2.5 bytes per block byte. This means any

 file can be decompressed in 2300k of memory, albeit at about

 half the normal speed.

 During compression, -s selects a block size of 200k, which lim?

 its memory use to around the same figure, at the expense of your

 compression ratio. In short, if your machine is low on memory

 (8 megabytes or less), use -s for everything. See MEMORY MAN?

 AGEMENT below.

 -q --quiet

 Suppress non-essential warning messages. Messages pertaining to

 I/O errors and other critical events will not be suppressed.

 -v --verbose

 Verbose mode -- show the compression ratio for each file pro?

 cessed. Further -v's increase the verbosity level, spewing out

 lots of information which is primarily of interest for diagnos?

 tic purposes.

 -L --license -V --version

 Display the software version, license terms and conditions.

 -1 (or --fast) to -9 (or --best)

 Set the block size to 100 k, 200 k .. 900 k when compressing.

 Has no effect when decompressing. See MEMORY MANAGEMENT below.

 The --fast and --best aliases are primarily for GNU gzip compat?

 ibility. In particular, --fast doesn't make things signifi?

 cantly faster. And --best merely selects the default behaviour.

 -- Treats all subsequent arguments as file names, even if they

 start with a dash. This is so you can handle files with names

 beginning with a dash, for example: bzip2 -- -myfilename.

 --repetitive-fast --repetitive-best

 These flags are redundant in versions 0.9.5 and above. They

 provided some coarse control over the behaviour of the sorting

 algorithm in earlier versions, which was sometimes useful.

 0.9.5 and above have an improved algorithm which renders these

 flags irrelevant. Page 5/10

MEMORY MANAGEMENT

 bzip2 compresses large files in blocks. The block size affects both

 the compression ratio achieved, and the amount of memory needed for

 compression and decompression. The flags -1 through -9 specify the

 block size to be 100,000 bytes through 900,000 bytes (the default) re?

 spectively. At decompression time, the block size used for compression

 is read from the header of the compressed file, and bunzip2 then allo?

 cates itself just enough memory to decompress the file. Since block

 sizes are stored in compressed files, it follows that the flags -1 to

 -9 are irrelevant to and so ignored during decompression.

 Compression and decompression requirements, in bytes, can be estimated

 as:

 Compression: 400k + (8 x block size)

 Decompression: 100k + (4 x block size), or

 100k + (2.5 x block size)

 Larger block sizes give rapidly diminishing marginal returns. Most of

 the compression comes from the first two or three hundred k of block

 size, a fact worth bearing in mind when using bzip2 on small machines.

 It is also important to appreciate that the decompression memory re?

 quirement is set at compression time by the choice of block size.

 For files compressed with the default 900k block size, bunzip2 will re?

 quire about 3700 kbytes to decompress. To support decompression of any

 file on a 4 megabyte machine, bunzip2 has an option to decompress using

 approximately half this amount of memory, about 2300 kbytes. Decom?

 pression speed is also halved, so you should use this option only where

 necessary. The relevant flag is -s.

 In general, try and use the largest block size memory constraints al?

 low, since that maximises the compression achieved. Compression and

 decompression speed are virtually unaffected by block size.

 Another significant point applies to files which fit in a single block

 -- that means most files you'd encounter using a large block size. The

 amount of real memory touched is proportional to the size of the file,

 since the file is smaller than a block. For example, compressing a Page 6/10

 file 20,000 bytes long with the flag -9 will cause the compressor to

 allocate around 7600k of memory, but only touch 400k + 20000 * 8 = 560

 kbytes of it. Similarly, the decompressor will allocate 3700k but only

 touch 100k + 20000 * 4 = 180 kbytes.

 Here is a table which summarises the maximum memory usage for different

 block sizes. Also recorded is the total compressed size for 14 files

 of the Calgary Text Compression Corpus totalling 3,141,622 bytes. This

 column gives some feel for how compression varies with block size.

 These figures tend to understate the advantage of larger block sizes

 for larger files, since the Corpus is dominated by smaller files.

 Compress Decompress Decompress Corpus

 Flag usage usage -s usage Size

 -1 1200k 500k 350k 914704

 -2 2000k 900k 600k 877703

 -3 2800k 1300k 850k 860338

 -4 3600k 1700k 1100k 846899

 -5 4400k 2100k 1350k 845160

 -6 5200k 2500k 1600k 838626

 -7 6100k 2900k 1850k 834096

 -8 6800k 3300k 2100k 828642

 -9 7600k 3700k 2350k 828642

RECOVERING DATA FROM DAMAGED FILES

 bzip2 compresses files in blocks, usually 900kbytes long. Each block

 is handled independently. If a media or transmission error causes a

 multi-block .bz2 file to become damaged, it may be possible to recover

 data from the undamaged blocks in the file.

 The compressed representation of each block is delimited by a 48-bit

 pattern, which makes it possible to find the block boundaries with rea?

 sonable certainty. Each block also carries its own 32-bit CRC, so dam?

 aged blocks can be distinguished from undamaged ones.

 bzip2recover is a simple program whose purpose is to search for blocks

 in .bz2 files, and write each block out into its own .bz2 file. You

 can then use bzip2 -t to test the integrity of the resulting files, and Page 7/10

 decompress those which are undamaged.

 bzip2recover takes a single argument, the name of the damaged file, and

 writes a number of files "rec00001file.bz2", "rec00002file.bz2", etc,

 containing the extracted blocks. The output filenames are de?

 signed so that the use of wildcards in subsequent processing -- for

 example, "bzip2 -dc rec*file.bz2 > recovered_data" -- processes the

 files in the correct order.

 bzip2recover should be of most use dealing with large .bz2 files, as

 these will contain many blocks. It is clearly futile to use it on dam?

 aged single-block files, since a damaged block cannot be recov?

 ered. If you wish to minimise any potential data loss through media

 or transmission errors, you might consider compressing with a smaller

 block size.

PERFORMANCE NOTES

 The sorting phase of compression gathers together similar strings in

 the file. Because of this, files containing very long runs of repeated

 symbols, like "aabaabaabaab ..." (repeated several hundred times) may

 compress more slowly than normal. Versions 0.9.5 and above fare much

 better than previous versions in this respect. The ratio between

 worst-case and average-case compression time is in the region of 10:1.

 For previous versions, this figure was more like 100:1. You can use

 the -vvvv option to monitor progress in great detail, if you want.

 Decompression speed is unaffected by these phenomena.

 bzip2 usually allocates several megabytes of memory to operate in, and

 then charges all over it in a fairly random fashion. This means that

 performance, both for compressing and decompressing, is largely deter?

 mined by the speed at which your machine can service cache misses. Be?

 cause of this, small changes to the code to reduce the miss rate have

 been observed to give disproportionately large performance improve?

 ments. I imagine bzip2 will perform best on machines with very large

 caches.

CAVEATS

 I/O error messages are not as helpful as they could be. bzip2 tries Page 8/10

 hard to detect I/O errors and exit cleanly, but the details of what the

 problem is sometimes seem rather misleading.

 This manual page pertains to version 1.0.8 of bzip2. Compressed data

 created by this version is entirely forwards and backwards compatible

 with the previous public releases, versions 0.1pl2, 0.9.0, 0.9.5,

 1.0.0, 1.0.1, 1.0.2 and above, but with the following exception: 0.9.0

 and above can correctly decompress multiple concatenated compressed

 files. 0.1pl2 cannot do this; it will stop after decompressing just

 the first file in the stream.

 bzip2recover versions prior to 1.0.2 used 32-bit integers to represent

 bit positions in compressed files, so they could not handle compressed

 files more than 512 megabytes long. Versions 1.0.2 and above use

 64-bit ints on some platforms which support them (GNU supported tar?

 gets, and Windows). To establish whether or not bzip2recover was built

 with such a limitation, run it without arguments. In any event you can

 build yourself an unlimited version if you can recompile it with May?

 beUInt64 set to be an unsigned 64-bit integer.

AUTHOR

 Julian Seward, jseward@acm.org.

 https://sourceware.org/bzip2/

 The ideas embodied in bzip2 are due to (at least) the following people:

 Michael Burrows and David Wheeler (for the block sorting transforma?

 tion), David Wheeler (again, for the Huffman coder), Peter Fenwick (for

 the structured coding model in the original bzip, and many refine?

 ments), and Alistair Moffat, Radford Neal and Ian Witten (for the

 arithmetic coder in the original bzip). I am much indebted for their

 help, support and advice. See the manual in the source distribution

 for pointers to sources of documentation. Christian von Roques encour?

 aged me to look for faster sorting algorithms, so as to speed up com?

 pression. Bela Lubkin encouraged me to improve the worst-case compres?

 sion performance. Donna Robinson XMLised the documentation. The bz*

 scripts are derived from those of GNU gzip. Many people sent patches,

 helped with portability problems, lent machines, gave advice and were Page 9/10

 generally helpful.

 bzip2(1)

Page 10/10

