
Rocky Enterprise Linux 9.2 Manual Pages on command 'bundle-config.1'

$ man bundle-config.1

BUNDLE-CONFIG(1) BUNDLE-CONFIG(1)

NAME

 bundle-config - Set bundler configuration options

SYNOPSIS

 bundle config [list|get|set|unset] [name [value]]

DESCRIPTION

 This command allows you to interact with Bundler?s configuration sys?

 tem.

 Bundler loads configuration settings in this order:

 1. Local config (<project_root>/.bundle/config or $BUNDLE_APP_CON?

 FIG/config)

 2. Environmental variables (ENV)

 3. Global config (~/.bundle/config)

 4. Bundler default config

 Executing bundle config list with will print a list of all bundler con?

 figuration for the current bundle, and where that configuration was

 set.

 Executing bundle config get <name> will print the value of that config? Page 1/11

 uration setting, and where it was set.

 Executing bundle config set <name> <value> will set that configuration

 to the value specified for all bundles executed as the current user.

 The configuration will be stored in ~/.bundle/config. If name already

 is set, name will be overridden and user will be warned.

 Executing bundle config set --global <name> <value> works the same as

 above.

 Executing bundle config set --local <name> <value> will set that con?

 figuration in the directory for the local application. The configura?

 tion will be stored in <project_root>/.bundle/config. If BUN?

 DLE_APP_CONFIG is set, the configuration will be stored in $BUN?

 DLE_APP_CONFIG/config.

 Executing bundle config unset <name> will delete the configuration in

 both local and global sources.

 Executing bundle config unset --global <name> will delete the configu?

 ration only from the user configuration.

 Executing bundle config unset --local <name> <value> will delete the

 configuration only from the local application.

 Executing bundle with the BUNDLE_IGNORE_CONFIG environment variable set

 will cause it to ignore all configuration.

REMEMBERING OPTIONS

 Flags passed to bundle install or the Bundler runtime, such as --path

 foo or --without production, are remembered between commands and saved

 to your local application?s configuration (normally, ./.bundle/config).

 However, this will be changed in bundler 3, so it?s better not to rely

 on this behavior. If these options must be remembered, it?s better to

 set them using bundle config (e.g., bundle config set --local path

 foo).

 The options that can be configured are:

 bin Creates a directory (defaults to ~/bin) and place any executa?

 bles from the gem there. These executables run in Bundler?s con?

 text. If used, you might add this directory to your environ?

 ment?s PATH variable. For instance, if the rails gem comes with Page 2/11

 a rails executable, this flag will create a bin/rails executable

 that ensures that all referred dependencies will be resolved us?

 ing the bundled gems.

 deployment

 In deployment mode, Bundler will ?roll-out? the bundle for pro?

 duction use. Please check carefully if you want to have this op?

 tion enabled in development or test environments.

 path The location to install the specified gems to. This defaults to

 Rubygems? setting. Bundler shares this location with Rubygems,

 gem install ... will have gem installed there, too. Therefore,

 gems installed without a --path ... setting will show up by

 calling gem list. Accordingly, gems installed to other locations

 will not get listed.

 without

 A space-separated list of groups referencing gems to skip during

 installation.

 with A space-separated list of groups referencing gems to include

 during installation.

BUILD OPTIONS

 You can use bundle config to give Bundler the flags to pass to the gem

 installer every time bundler tries to install a particular gem.

 A very common example, the mysql gem, requires Snow Leopard users to

 pass configuration flags to gem install to specify where to find the

 mysql_config executable.

 gem install mysql -- --with-mysql-config=/usr/local/mysql/bin/mysql_config

 Since the specific location of that executable can change from machine

 to machine, you can specify these flags on a per-machine basis.

 bundle config set --global build.mysql --with-mysql-config=/usr/local/mysql/bin/mysql_config

 After running this command, every time bundler needs to install the

 mysql gem, it will pass along the flags you specified.

CONFIGURATION KEYS

 Configuration keys in bundler have two forms: the canonical form and

 the environment variable form. Page 3/11

 For instance, passing the --without flag to bundle install(1) bun?

 dle-install.1.html prevents Bundler from installing certain groups

 specified in the Gemfile(5). Bundler persists this value in app/.bun?

 dle/config so that calls to Bundler.setup do not try to find gems from

 the Gemfile that you didn?t install. Additionally, subsequent calls to

 bundle install(1) bundle-install.1.html remember this setting and skip

 those groups.

 The canonical form of this configuration is "without". To convert the

 canonical form to the environment variable form, capitalize it, and

 prepend BUNDLE_. The environment variable form of "without" is BUN?

 DLE_WITHOUT.

 Any periods in the configuration keys must be replaced with two under?

 scores when setting it via environment variables. The configuration key

 local.rack becomes the environment variable BUNDLE_LOCAL__RACK.

LIST OF AVAILABLE KEYS

 The following is a list of all configuration keys and their purpose.

 You can learn more about their operation in bundle install(1) bun?

 dle-install.1.html.

 ? allow_deployment_source_credential_changes (BUNDLE_ALLOW_DEPLOY?

 MENT_SOURCE_CREDENTIAL_CHANGES): When in deployment mode, allow

 changing the credentials to a gem?s source. Ex:

 https://some.host.com/gems/path/ -> https://user_name:pass?

 word@some.host.com/gems/path

 ? allow_offline_install (BUNDLE_ALLOW_OFFLINE_INSTALL): Allow Bundler

 to use cached data when installing without network access.

 ? auto_clean_without_path (BUNDLE_AUTO_CLEAN_WITHOUT_PATH): Automati?

 cally run bundle clean after installing when an explicit path has

 not been set and Bundler is not installing into the system gems.

 ? auto_install (BUNDLE_AUTO_INSTALL): Automatically run bundle in?

 stall when gems are missing.

 ? bin (BUNDLE_BIN): Install executables from gems in the bundle to

 the specified directory. Defaults to false.

 ? cache_all (BUNDLE_CACHE_ALL): Cache all gems, including path and Page 4/11

 git gems. This needs to be explicitly configured on bundler 1 and

 bundler 2, but will be the default on bundler 3.

 ? cache_all_platforms (BUNDLE_CACHE_ALL_PLATFORMS): Cache gems for

 all platforms.

 ? cache_path (BUNDLE_CACHE_PATH): The directory that bundler will

 place cached gems in when running bundle package, and that bundler

 will look in when installing gems. Defaults to vendor/cache.

 ? clean (BUNDLE_CLEAN): Whether Bundler should run bundle clean auto?

 matically after bundle install.

 ? console (BUNDLE_CONSOLE): The console that bundle console starts.

 Defaults to irb.

 ? default_install_uses_path (BUNDLE_DEFAULT_INSTALL_USES_PATH):

 Whether a bundle install without an explicit --path argument de?

 faults to installing gems in .bundle.

 ? deployment (BUNDLE_DEPLOYMENT): Disallow changes to the Gemfile.

 When the Gemfile is changed and the lockfile has not been updated,

 running Bundler commands will be blocked.

 ? disable_checksum_validation (BUNDLE_DISABLE_CHECKSUM_VALIDATION):

 Allow installing gems even if they do not match the checksum pro?

 vided by RubyGems.

 ? disable_exec_load (BUNDLE_DISABLE_EXEC_LOAD): Stop Bundler from us?

 ing load to launch an executable in-process in bundle exec.

 ? disable_local_branch_check (BUNDLE_DISABLE_LOCAL_BRANCH_CHECK): Al?

 low Bundler to use a local git override without a branch specified

 in the Gemfile.

 ? disable_local_revision_check (BUNDLE_DISABLE_LOCAL_REVISION_CHECK):

 Allow Bundler to use a local git override without checking if the

 revision present in the lockfile is present in the repository.

 ? disable_shared_gems (BUNDLE_DISABLE_SHARED_GEMS): Stop Bundler from

 accessing gems installed to RubyGems? normal location.

 ? disable_version_check (BUNDLE_DISABLE_VERSION_CHECK): Stop Bundler

 from checking if a newer Bundler version is available on

 rubygems.org. Page 5/11

 ? force_ruby_platform (BUNDLE_FORCE_RUBY_PLATFORM): Ignore the cur?

 rent machine?s platform and install only ruby platform gems. As a

 result, gems with native extensions will be compiled from source.

 ? frozen (BUNDLE_FROZEN): Disallow changes to the Gemfile. When the

 Gemfile is changed and the lockfile has not been updated, running

 Bundler commands will be blocked. Defaults to true when --deploy?

 ment is used.

 ? gem.github_username (BUNDLE_GEM__GITHUB_USERNAME): Sets a GitHub

 username or organization to be used in README file when you create

 a new gem via bundle gem command. It can be overridden by passing

 an explicit --github-username flag to bundle gem.

 ? gem.push_key (BUNDLE_GEM__PUSH_KEY): Sets the --key parameter for

 gem push when using the rake release command with a private gem?

 stash server.

 ? gemfile (BUNDLE_GEMFILE): The name of the file that bundler should

 use as the Gemfile. This location of this file also sets the root

 of the project, which is used to resolve relative paths in the Gem?

 file, among other things. By default, bundler will search up from

 the current working directory until it finds a Gemfile.

 ? global_gem_cache (BUNDLE_GLOBAL_GEM_CACHE): Whether Bundler should

 cache all gems globally, rather than locally to the installing Ruby

 installation.

 ? ignore_messages (BUNDLE_IGNORE_MESSAGES): When set, no post install

 messages will be printed. To silence a single gem, use dot notation

 like ignore_messages.httparty true.

 ? init_gems_rb (BUNDLE_INIT_GEMS_RB): Generate a gems.rb instead of a

 Gemfile when running bundle init.

 ? jobs (BUNDLE_JOBS): The number of gems Bundler can install in par?

 allel. Defaults to 1 on Windows, and to the the number of proces?

 sors on other platforms.

 ? no_install (BUNDLE_NO_INSTALL): Whether bundle package should skip

 installing gems.

 ? no_prune (BUNDLE_NO_PRUNE): Whether Bundler should leave outdated Page 6/11

 gems unpruned when caching.

 ? path (BUNDLE_PATH): The location on disk where all gems in your

 bundle will be located regardless of $GEM_HOME or $GEM_PATH values.

 Bundle gems not found in this location will be installed by bundle

 install. Defaults to Gem.dir. When --deployment is used, defaults

 to vendor/bundle.

 ? path.system (BUNDLE_PATH__SYSTEM): Whether Bundler will install

 gems into the default system path (Gem.dir).

 ? path_relative_to_cwd (BUNDLE_PATH_RELATIVE_TO_CWD) Makes --path

 relative to the CWD instead of the Gemfile.

 ? plugins (BUNDLE_PLUGINS): Enable Bundler?s experimental plugin sys?

 tem.

 ? prefer_patch (BUNDLE_PREFER_PATCH): Prefer updating only to next

 patch version during updates. Makes bundle update calls equivalent

 to bundler update --patch.

 ? print_only_version_number (BUNDLE_PRINT_ONLY_VERSION_NUMBER): Print

 only version number from bundler --version.

 ? redirect (BUNDLE_REDIRECT): The number of redirects allowed for

 network requests. Defaults to 5.

 ? retry (BUNDLE_RETRY): The number of times to retry failed network

 requests. Defaults to 3.

 ? setup_makes_kernel_gem_public (BUNDLE_SETUP_MAKES_KERNEL_GEM_PUB?

 LIC): Have Bundler.setup make the Kernel#gem method public, even

 though RubyGems declares it as private.

 ? shebang (BUNDLE_SHEBANG): The program name that should be invoked

 for generated binstubs. Defaults to the ruby install name used to

 generate the binstub.

 ? silence_deprecations (BUNDLE_SILENCE_DEPRECATIONS): Whether Bundler

 should silence deprecation warnings for behavior that will be

 changed in the next major version.

 ? silence_root_warning (BUNDLE_SILENCE_ROOT_WARNING): Silence the

 warning Bundler prints when installing gems as root.

 ? ssl_ca_cert (BUNDLE_SSL_CA_CERT): Path to a designated CA certifi? Page 7/11

 cate file or folder containing multiple certificates for trusted

 CAs in PEM format.

 ? ssl_client_cert (BUNDLE_SSL_CLIENT_CERT): Path to a designated file

 containing a X.509 client certificate and key in PEM format.

 ? ssl_verify_mode (BUNDLE_SSL_VERIFY_MODE): The SSL verification mode

 Bundler uses when making HTTPS requests. Defaults to verify peer.

 ? suppress_install_using_messages (BUNDLE_SUPPRESS_INSTALL_USING_MES?

 SAGES): Avoid printing Using ... messages during installation when

 the version of a gem has not changed.

 ? system_bindir (BUNDLE_SYSTEM_BINDIR): The location where RubyGems

 installs binstubs. Defaults to Gem.bindir.

 ? timeout (BUNDLE_TIMEOUT): The seconds allowed before timing out for

 network requests. Defaults to 10.

 ? update_requires_all_flag (BUNDLE_UPDATE_REQUIRES_ALL_FLAG): Require

 passing --all to bundle update when everything should be updated,

 and disallow passing no options to bundle update.

 ? user_agent (BUNDLE_USER_AGENT): The custom user agent fragment

 Bundler includes in API requests.

 ? with (BUNDLE_WITH): A :-separated list of groups whose gems bundler

 should install.

 ? without (BUNDLE_WITHOUT): A :-separated list of groups whose gems

 bundler should not install.

 In general, you should set these settings per-application by using the

 applicable flag to the bundle install(1) bundle-install.1.html or bun?

 dle package(1) bundle-package.1.html command.

 You can set them globally either via environment variables or bundle

 config, whichever is preferable for your setup. If you use both, envi?

 ronment variables will take preference over global settings.

LOCAL GIT REPOS

 Bundler also allows you to work against a git repository locally in?

 stead of using the remote version. This can be achieved by setting up a

 local override:

 bundle config set --local local.GEM_NAME /path/to/local/git/repository Page 8/11

 For example, in order to use a local Rack repository, a developer could

 call:

 bundle config set --local local.rack ~/Work/git/rack

 Now instead of checking out the remote git repository, the local over?

 ride will be used. Similar to a path source, every time the local git

 repository change, changes will be automatically picked up by Bundler.

 This means a commit in the local git repo will update the revision in

 the Gemfile.lock to the local git repo revision. This requires the same

 attention as git submodules. Before pushing to the remote, you need to

 ensure the local override was pushed, otherwise you may point to a com?

 mit that only exists in your local machine. You?ll also need to CGI es?

 cape your usernames and passwords as well.

 Bundler does many checks to ensure a developer won?t work with invalid

 references. Particularly, we force a developer to specify a branch in

 the Gemfile in order to use this feature. If the branch specified in

 the Gemfile and the current branch in the local git repository do not

 match, Bundler will abort. This ensures that a developer is always

 working against the correct branches, and prevents accidental locking

 to a different branch.

 Finally, Bundler also ensures that the current revision in the Gem?

 file.lock exists in the local git repository. By doing this, Bundler

 forces you to fetch the latest changes in the remotes.

MIRRORS OF GEM SOURCES

 Bundler supports overriding gem sources with mirrors. This allows you

 to configure rubygems.org as the gem source in your Gemfile while still

 using your mirror to fetch gems.

 bundle config set --global mirror.SOURCE_URL MIRROR_URL

 For example, to use a mirror of rubygems.org hosted at rubygems-mir?

 ror.org:

 bundle config set --global mirror.http://rubygems.org http://rubygems-mirror.org

 Each mirror also provides a fallback timeout setting. If the mirror

 does not respond within the fallback timeout, Bundler will try to use

 the original server instead of the mirror. Page 9/11

 bundle config set --global mirror.SOURCE_URL.fallback_timeout TIMEOUT

 For example, to fall back to rubygems.org after 3 seconds:

 bundle config set --global mirror.https://rubygems.org.fallback_timeout 3

 The default fallback timeout is 0.1 seconds, but the setting can cur?

 rently only accept whole seconds (for example, 1, 15, or 30).

CREDENTIALS FOR GEM SOURCES

 Bundler allows you to configure credentials for any gem source, which

 allows you to avoid putting secrets into your Gemfile.

 bundle config set --global SOURCE_HOSTNAME USERNAME:PASSWORD

 For example, to save the credentials of user claudette for the gem

 source at gems.longerous.com, you would run:

 bundle config set --global gems.longerous.com claudette:s00pers3krit

 Or you can set the credentials as an environment variable like this:

 export BUNDLE_GEMS__LONGEROUS__COM="claudette:s00pers3krit"

 For gems with a git source with HTTP(S) URL you can specify credentials

 like so:

 bundle config set --global https://github.com/rubygems/rubygems.git username:password

 Or you can set the credentials as an environment variable like so:

 export BUNDLE_GITHUB__COM=username:password

 This is especially useful for private repositories on hosts such as

 Github, where you can use personal OAuth tokens:

 export BUNDLE_GITHUB__COM=abcd0123generatedtoken:x-oauth-basic

 Note that any configured credentials will be redacted by informative

 commands such as bundle config list or bundle config get, unless you

 use the --parseable flag. This is to avoid unintentionally leaking cre?

 dentials when copy-pasting bundler output.

 Also note that to guarantee a sane mapping between valid environment

 variable names and valid host names, bundler makes the following trans?

 formations:

 ? Any - characters in a host name are mapped to a triple dash (___)

 in the corresponding environment variable.

 ? Any . characters in a host name are mapped to a double dash (__) in

 the corresponding environment variable. Page 10/11

 This means that if you have a gem server named my.gem-host.com, you?ll

 need to use the BUNDLE_MY__GEM___HOST__COM variable to configure cre?

 dentials for it through ENV.

CONFIGURE BUNDLER DIRECTORIES

 Bundler?s home, config, cache and plugin directories are able to be

 configured through environment variables. The default location for

 Bundler?s home directory is ~/.bundle, which all directories inherit

 from by default. The following outlines the available environment vari?

 ables and their default values

 BUNDLE_USER_HOME : $HOME/.bundle

 BUNDLE_USER_CACHE : $BUNDLE_USER_HOME/cache

 BUNDLE_USER_CONFIG : $BUNDLE_USER_HOME/config

 BUNDLE_USER_PLUGIN : $BUNDLE_USER_HOME/plugin

 December 2021 BUNDLE-CONFIG(1)

Page 11/11

