
Rocky Enterprise Linux 9.2 Manual Pages on command 'bpftool-gen.8'

$ man bpftool-gen.8

BPFTOOL-GEN(8) BPFTOOL-GEN(8)

NAME

 bpftool-gen - tool for BPF code-generation

SYNOPSIS

 bpftool [OPTIONS] gen COMMAND

 OPTIONS := { { -j | --json } [{ -p | --pretty }] | { -d | --debug }

 | { -l | --legacy } | { -L | --use-loader } }

 COMMAND := { object | skeleton | help }

GEN COMMANDS

 bpftool gen object OUTPUT_FILE INPUT_FILE [INPUT_FILE...]

 bpftool gen skeleton FILE [name OBJECT_NAME]

 bpftool gen subskeleton FILE [name OBJECT_NAME]

 bpftool gen min_core_btf INPUT OUTPUT OBJECT [OBJECT...]

 bpftool gen help

DESCRIPTION

 bpftool gen object OUTPUT_FILE INPUT_FILE [INPUT_FILE...]

 Statically link (combine) together one or more INPUT_FILE's

 into a single resulting OUTPUT_FILE. All the files involved Page 1/12

 are BPF ELF object files.

 The rules of BPF static linking are mostly the same as for

 user-space object files, but in addition to combining data

 and instruction sections, .BTF and .BTF.ext (if present in

 any of the input files) data are combined together. .BTF data

 is deduplicated, so all the common types across INPUT_FILE's

 will only be represented once in the resulting BTF informa?

 tion.

 BPF static linking allows to partition BPF source code into

 individually compiled files that are then linked into a sin?

 gle resulting BPF object file, which can be used to generated

 BPF skeleton (with gen skeleton command) or passed directly

 into libbpf (using bpf_object__open() family of APIs).

 bpftool gen skeleton FILE

 Generate BPF skeleton C header file for a given FILE.

 BPF skeleton is an alternative interface to existing libbpf

 APIs for working with BPF objects. Skeleton code is intended

 to significantly shorten and simplify code to load and work

 with BPF programs from userspace side. Generated code is tai?

 lored to specific input BPF object FILE, reflecting its

 structure by listing out available maps, program, variables,

 etc. Skeleton eliminates the need to lookup mentioned compo?

 nents by name. Instead, if skeleton instantiation succeeds,

 they are populated in skeleton structure as valid libbpf

 types (e.g., struct bpf_map pointer) and can be passed to ex?

 isting generic libbpf APIs.

 In addition to simple and reliable access to maps and pro?

 grams, skeleton provides a storage for BPF links (struct

 bpf_link) for each BPF program within BPF object. When re?

 quested, supported BPF programs will be automatically at?

 tached and resulting BPF links stored for further use by user

 in pre-allocated fields in skeleton struct. For BPF programs

 that can't be automatically attached by libbpf, user can at? Page 2/12

 tach them manually, but store resulting BPF link in per-pro?

 gram link field. All such set up links will be automatically

 destroyed on BPF skeleton destruction. This eliminates the

 need for users to manage links manually and rely on libbpf

 support to detach programs and free up resources.

 Another facility provided by BPF skeleton is an interface to

 global variables of all supported kinds: mutable, read-only,

 as well as extern ones. This interface allows to pre-setup

 initial values of variables before BPF object is loaded and

 verified by kernel. For non-read-only variables, the same in?

 terface can be used to fetch values of global variables on

 userspace side, even if they are modified by BPF code.

 During skeleton generation, contents of source BPF object

 FILE is embedded within generated code and is thus not neces?

 sary to keep around. This ensures skeleton and BPF object

 file are matching 1-to-1 and always stay in sync. Generated

 code is dual-licensed under LGPL-2.1 and BSD-2-Clause li?

 censes.

 It is a design goal and guarantee that skeleton interfaces

 are interoperable with generic libbpf APIs. User should al?

 ways be able to use skeleton API to create and load BPF ob?

 ject, and later use libbpf APIs to keep working with specific

 maps, programs, etc.

 As part of skeleton, few custom functions are generated.

 Each of them is prefixed with object name. Object name can

 either be derived from object file name, i.e., if BPF object

 file name is example.o, BPF object name will be example. Ob?

 ject name can be also specified explicitly through name OB?

 JECT_NAME parameter. The following custom functions are pro?

 vided (assuming example as the object name):

 ? example__open and example__open_opts. These functions are

 used to instantiate skeleton. It corresponds to libbpf's

 bpf_object__open() API. _opts variants accepts extra Page 3/12

 bpf_object_open_opts options.

 ? example__load. This function creates maps, loads and veri?

 fies BPF programs, initializes global data maps. It corre?

 sponds to libppf's bpf_object__load() API.

 ? example__open_and_load combines example__open and exam?

 ple__load invocations in one commonly used operation.

 ? example__attach and example__detach This pair of functions

 allow to attach and detach, correspondingly, already loaded

 BPF object. Only BPF programs of types supported by libbpf

 for auto-attachment will be auto-attached and their corre?

 sponding BPF links instantiated. For other BPF programs,

 user can manually create a BPF link and assign it to corre?

 sponding fields in skeleton struct. example__detach will

 detach both links created automatically, as well as those

 populated by user manually.

 ? example__destroy Detach and unload BPF programs, free up

 all the resources used by skeleton and BPF object.

 If BPF object has global variables, corresponding structs

 with memory layout corresponding to global data data section

 layout will be created. Currently supported ones are: .data,

 .bss, .rodata, and .kconfig structs/data sections. These

 data sections/structs can be used to set up initial values of

 variables, if set before example__load. Afterwards, if tar?

 get kernel supports memory-mapped BPF arrays, same structs

 can be used to fetch and update (non-read-only) data from

 userspace, with same simplicity as for BPF side.

 bpftool gen subskeleton FILE

 Generate BPF subskeleton C header file for a given FILE.

 Subskeletons are similar to skeletons, except they do not own

 the corresponding maps, programs, or global variables. They

 require that the object file used to generate them is already

 loaded into a bpf_object by some other means.

 This functionality is useful when a library is included into Page 4/12

 a larger BPF program. A subskeleton for the library would

 have access to all objects and globals defined in it, without

 having to know about the larger program.

 Consequently, there are only two functions defined for sub?

 skeletons:

 ? example__open(bpf_object*) Instantiates a subskeleton from

 an already opened (but not necessarily loaded) bpf_object.

 ? example__destroy() Frees the storage for the subskeleton

 but does not unload any BPF programs or maps.

 bpftool gen min_core_btf INPUT OUTPUT OBJECT [OBJECT...]

 Generate a minimum BTF file as OUTPUT, derived from a given

 INPUT BTF file, containing all needed BTF types so one, or

 more, given eBPF objects CO-RE relocations may be satisfied.

 When kernels aren't compiled with CONFIG_DEBUG_INFO_BTF,

 libbpf, when loading an eBPF object, has to rely on external

 BTF files to be able to calculate CO-RE relocations.

 Usually, an external BTF file is built from existing kernel

 DWARF data using pahole. It contains all the types used by

 its respective kernel image and, because of that, is big.

 The min_core_btf feature builds smaller BTF files, customized

 to one or multiple eBPF objects, so they can be distributed

 together with an eBPF CO-RE based application, turning the

 application portable to different kernel versions.

 Check examples bellow for more information how to use it.

 bpftool gen help

 Print short help message.

OPTIONS

 -h, --help

 Print short help message (similar to bpftool help).

 -V, --version

 Print bpftool's version number (similar to bpftool version),

 the number of the libbpf version in use, and optional fea?

 tures that were included when bpftool was compiled. Optional Page 5/12

 features include linking against libbfd to provide the disas?

 sembler for JIT-ted programs (bpftool prog dump jited) and

 usage of BPF skeletons (some features like bpftool prog pro?

 file or showing pids associated to BPF objects may rely on

 it).

 -j, --json

 Generate JSON output. For commands that cannot produce JSON,

 this option has no effect.

 -p, --pretty

 Generate human-readable JSON output. Implies -j.

 -d, --debug

 Print all logs available, even debug-level information. This

 includes logs from libbpf as well as from the verifier, when

 attempting to load programs.

 -l, --legacy

 Use legacy libbpf mode which has more relaxed BPF program re?

 quirements. By default, bpftool has more strict requirements

 about section names, changes pinning logic and doesn't sup?

 port some of the older non-BTF map declarations.

 See

 https://github.com/libbpf/libbpf/wiki/Libbpf:-the-road-to-v1.0

 for details.

 -L, --use-loader

 For skeletons, generate a "light" skeleton (also known as

 "loader" skeleton). A light skeleton contains a loader eBPF

 program. It does not use the majority of the libbpf infra?

 structure, and does not need libelf.

EXAMPLES

 $ cat example1.bpf.c

 #include <stdbool.h>

 #include <linux/ptrace.h>

 #include <linux/bpf.h>

 #include <bpf/bpf_helpers.h> Page 6/12

 const volatile int param1 = 42;

 bool global_flag = true;

 struct { int x; } data = {};

 SEC("raw_tp/sys_enter")

 int handle_sys_enter(struct pt_regs *ctx)

 {

 static long my_static_var;

 if (global_flag)

 my_static_var++;

 else

 data.x += param1;

 return 0;

 }

 $ cat example2.bpf.c

 #include <linux/ptrace.h>

 #include <linux/bpf.h>

 #include <bpf/bpf_helpers.h>

 struct {

 __uint(type, BPF_MAP_TYPE_HASH);

 __uint(max_entries, 128);

 __type(key, int);

 __type(value, long);

 } my_map SEC(".maps");

 SEC("raw_tp/sys_exit")

 int handle_sys_exit(struct pt_regs *ctx)

 {

 int zero = 0;

 bpf_map_lookup_elem(&my_map, &zero);

 return 0;

 }

 This is example BPF application with two BPF programs and a mix of BPF

 maps and global variables. Source code is split across two source code

 files. Page 7/12

 $ clang -target bpf -g example1.bpf.c -o example1.bpf.o

 $ clang -target bpf -g example2.bpf.c -o example2.bpf.o

 $ bpftool gen object example.bpf.o example1.bpf.o example2.bpf.o

 This set of commands compiles example1.bpf.c and example2.bpf.c indi?

 vidually and then statically links respective object files into the fi?

 nal BPF ELF object file example.bpf.o.

 $ bpftool gen skeleton example.bpf.o name example | tee example.skel.h

 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */

 /* THIS FILE IS AUTOGENERATED! */

 #ifndef __EXAMPLE_SKEL_H__

 #define __EXAMPLE_SKEL_H__

 #include <stdlib.h>

 #include <bpf/libbpf.h>

 struct example {

 struct bpf_object_skeleton *skeleton;

 struct bpf_object *obj;

 struct {

 struct bpf_map *rodata;

 struct bpf_map *data;

 struct bpf_map *bss;

 struct bpf_map *my_map;

 } maps;

 struct {

 struct bpf_program *handle_sys_enter;

 struct bpf_program *handle_sys_exit;

 } progs;

 struct {

 struct bpf_link *handle_sys_enter;

 struct bpf_link *handle_sys_exit;

 } links;

 struct example__bss {

 struct {

 int x; Page 8/12

 } data;

 } *bss;

 struct example__data {

 _Bool global_flag;

 long int handle_sys_enter_my_static_var;

 } *data;

 struct example__rodata {

 int param1;

 } *rodata;

 };

 static void example__destroy(struct example *obj);

 static inline struct example *example__open_opts(

 const struct bpf_object_open_opts *opts);

 static inline struct example *example__open();

 static inline int example__load(struct example *obj);

 static inline struct example *example__open_and_load();

 static inline int example__attach(struct example *obj);

 static inline void example__detach(struct example *obj);

 #endif /* __EXAMPLE_SKEL_H__ */

 $ cat example.c

 #include "example.skel.h"

 int main()

 {

 struct example *skel;

 int err = 0;

 skel = example__open();

 if (!skel)

 goto cleanup;

 skel->rodata->param1 = 128;

 err = example__load(skel);

 if (err)

 goto cleanup;

 err = example__attach(skel); Page 9/12

 if (err)

 goto cleanup;

 /* all libbpf APIs are usable */

 printf("my_map name: %s\n", bpf_map__name(skel->maps.my_map));

 printf("sys_enter prog FD: %d\n",

 bpf_program__fd(skel->progs.handle_sys_enter));

 /* detach and re-attach sys_exit program */

 bpf_link__destroy(skel->links.handle_sys_exit);

 skel->links.handle_sys_exit =

 bpf_program__attach(skel->progs.handle_sys_exit);

 printf("my_static_var: %ld\n",

 skel->bss->handle_sys_enter_my_static_var);

 cleanup:

 example__destroy(skel);

 return err;

 }

 # ./example

 my_map name: my_map

 sys_enter prog FD: 8

 my_static_var: 7

 This is a stripped-out version of skeleton generated for above example

 code.

 min_core_btf

 $ bpftool btf dump file 5.4.0-example.btf format raw

 [1] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)

 [2] CONST '(anon)' type_id=1

 [3] VOLATILE '(anon)' type_id=1

 [4] ARRAY '(anon)' type_id=1 index_type_id=21 nr_elems=2

 [5] PTR '(anon)' type_id=8

 [6] CONST '(anon)' type_id=5

 [7] INT 'char' size=1 bits_offset=0 nr_bits=8 encoding=(none)

 [8] CONST '(anon)' type_id=7

 [9] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none) Page 10/12

 <long output>

 $ bpftool btf dump file one.bpf.o format raw

 [1] PTR '(anon)' type_id=2

 [2] STRUCT 'trace_event_raw_sys_enter' size=64 vlen=4

 'ent' type_id=3 bits_offset=0

 'id' type_id=7 bits_offset=64

 'args' type_id=9 bits_offset=128

 '__data' type_id=12 bits_offset=512

 [3] STRUCT 'trace_entry' size=8 vlen=4

 'type' type_id=4 bits_offset=0

 'flags' type_id=5 bits_offset=16

 'preempt_count' type_id=5 bits_offset=24

 <long output>

 $ bpftool gen min_core_btf 5.4.0-example.btf 5.4.0-smaller.btf

 one.bpf.o

 $ bpftool btf dump file 5.4.0-smaller.btf format raw

 [1] TYPEDEF 'pid_t' type_id=6

 [2] STRUCT 'trace_event_raw_sys_enter' size=64 vlen=1

 'args' type_id=4 bits_offset=128

 [3] STRUCT 'task_struct' size=9216 vlen=2

 'pid' type_id=1 bits_offset=17920

 'real_parent' type_id=7 bits_offset=18048

 [4] ARRAY '(anon)' type_id=5 index_type_id=8 nr_elems=6

 [5] INT 'long unsigned int' size=8 bits_offset=0 nr_bits=64 encoding=(none)

 [6] TYPEDEF '__kernel_pid_t' type_id=8

 [7] PTR '(anon)' type_id=3

 [8] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED

 <end>

 Now, the "5.4.0-smaller.btf" file may be used by libbpf as an external

 BTF file when loading the "one.bpf.o" object into the "5.4.0-example"

 kernel. Note that the generated BTF file won't allow other eBPF objects

 to be loaded, just the ones given to min_core_btf.

 LIBBPF_OPTS(bpf_object_open_opts, opts, .btf_custom_path = "5.4.0-smaller.btf"); Page 11/12

 struct bpf_object *obj;

 obj = bpf_object__open_file("one.bpf.o", &opts);

 ...

SEE ALSO

 bpf(2), bpf-helpers(7), bpftool(8), bpftool-btf(8),

 bpftool-cgroup(8), bpftool-feature(8), bpftool-iter(8),

 bpftool-link(8), bpftool-map(8), bpftool-net(8), bpftool-perf(8),

 bpftool-prog(8), bpftool-struct_ops(8)

 BPFTOOL-GEN(8)

Page 12/12

