
Rocky Enterprise Linux 9.2 Manual Pages on command 'bpf.2'

$ man bpf.2

BPF(2) Linux Programmer's Manual BPF(2)

NAME

 bpf - perform a command on an extended BPF map or program

SYNOPSIS

 #include <linux/bpf.h>

 int bpf(int cmd, union bpf_attr *attr, unsigned int size);

DESCRIPTION

 The bpf() system call performs a range of operations related to ex?

 tended Berkeley Packet Filters. Extended BPF (or eBPF) is similar to

 the original ("classic") BPF (cBPF) used to filter network packets.

 For both cBPF and eBPF programs, the kernel statically analyzes the

 programs before loading them, in order to ensure that they cannot harm

 the running system.

 eBPF extends cBPF in multiple ways, including the ability to call a

 fixed set of in-kernel helper functions (via the BPF_CALL opcode exten?

 sion provided by eBPF) and access shared data structures such as eBPF

 maps.

 Extended BPF Design/Architecture Page 1/21

 eBPF maps are a generic data structure for storage of different data

 types. Data types are generally treated as binary blobs, so a user

 just specifies the size of the key and the size of the value at map-

 creation time. In other words, a key/value for a given map can have an

 arbitrary structure.

 A user process can create multiple maps (with key/value-pairs being

 opaque bytes of data) and access them via file descriptors. Different

 eBPF programs can access the same maps in parallel. It's up to the

 user process and eBPF program to decide what they store inside maps.

 There's one special map type, called a program array. This type of map

 stores file descriptors referring to other eBPF programs. When a

 lookup in the map is performed, the program flow is redirected in-place

 to the beginning of another eBPF program and does not return back to

 the calling program. The level of nesting has a fixed limit of 32, so

 that infinite loops cannot be crafted. At run time, the program file

 descriptors stored in the map can be modified, so program functionality

 can be altered based on specific requirements. All programs referred

 to in a program-array map must have been previously loaded into the

 kernel via bpf(). If a map lookup fails, the current program continues

 its execution. See BPF_MAP_TYPE_PROG_ARRAY below for further details.

 Generally, eBPF programs are loaded by the user process and automati?

 cally unloaded when the process exits. In some cases, for example,

 tc-bpf(8), the program will continue to stay alive inside the kernel

 even after the process that loaded the program exits. In that case,

 the tc subsystem holds a reference to the eBPF program after the file

 descriptor has been closed by the user-space program. Thus, whether a

 specific program continues to live inside the kernel depends on how it

 is further attached to a given kernel subsystem after it was loaded via

 bpf().

 Each eBPF program is a set of instructions that is safe to run until

 its completion. An in-kernel verifier statically determines that the

 eBPF program terminates and is safe to execute. During verification,

 the kernel increments reference counts for each of the maps that the Page 2/21

 eBPF program uses, so that the attached maps can't be removed until the

 program is unloaded.

 eBPF programs can be attached to different events. These events can be

 the arrival of network packets, tracing events, classification events

 by network queueing disciplines (for eBPF programs attached to a tc(8)

 classifier), and other types that may be added in the future. A new

 event triggers execution of the eBPF program, which may store informa?

 tion about the event in eBPF maps. Beyond storing data, eBPF programs

 may call a fixed set of in-kernel helper functions.

 The same eBPF program can be attached to multiple events and different

 eBPF programs can access the same map:

 tracing tracing tracing packet packet packet

 event A event B event C on eth0 on eth1 on eth2

 | | | | | ^

 | | | | v |

 --> tracing <-- tracing socket tc ingress tc egress

 prog_1 prog_2 prog_3 classifier action

 | | | | prog_4 prog_5

 |--- -----| |------| map_3 | |

 map_1 map_2 --| map_4 |--

 Arguments

 The operation to be performed by the bpf() system call is determined by

 the cmd argument. Each operation takes an accompanying argument, pro?

 vided via attr, which is a pointer to a union of type bpf_attr (see be?

 low). The size argument is the size of the union pointed to by attr.

 The value provided in cmd is one of the following:

 BPF_MAP_CREATE

 Create a map and return a file descriptor that refers to the

 map. The close-on-exec file descriptor flag (see fcntl(2)) is

 automatically enabled for the new file descriptor.

 BPF_MAP_LOOKUP_ELEM

 Look up an element by key in a specified map and return its

 value. Page 3/21

 BPF_MAP_UPDATE_ELEM

 Create or update an element (key/value pair) in a specified map.

 BPF_MAP_DELETE_ELEM

 Look up and delete an element by key in a specified map.

 BPF_MAP_GET_NEXT_KEY

 Look up an element by key in a specified map and return the key

 of the next element.

 BPF_PROG_LOAD

 Verify and load an eBPF program, returning a new file descriptor

 associated with the program. The close-on-exec file descriptor

 flag (see fcntl(2)) is automatically enabled for the new file

 descriptor.

 The bpf_attr union consists of various anonymous structures that

 are used by different bpf() commands:

 union bpf_attr {

 struct { /* Used by BPF_MAP_CREATE */

 __u32 map_type;

 __u32 key_size; /* size of key in bytes */

 __u32 value_size; /* size of value in bytes */

 __u32 max_entries; /* maximum number of entries

 in a map */

 };

 struct { /* Used by BPF_MAP_*_ELEM and BPF_MAP_GET_NEXT_KEY

 commands */

 __u32 map_fd;

 __aligned_u64 key;

 union {

 __aligned_u64 value;

 __aligned_u64 next_key;

 };

 __u64 flags;

 };

 struct { /* Used by BPF_PROG_LOAD */ Page 4/21

 __u32 prog_type;

 __u32 insn_cnt;

 __aligned_u64 insns; /* 'const struct bpf_insn *' */

 __aligned_u64 license; /* 'const char *' */

 __u32 log_level; /* verbosity level of verifier */

 __u32 log_size; /* size of user buffer */

 __aligned_u64 log_buf; /* user supplied 'char *'

 buffer */

 __u32 kern_version;

 /* checked when prog_type=kprobe

 (since Linux 4.1) */

 };

 } __attribute__((aligned(8)));

 eBPF maps

 Maps are a generic data structure for storage of different types of

 data. They allow sharing of data between eBPF kernel programs, and

 also between kernel and user-space applications.

 Each map type has the following attributes:

 * type

 * maximum number of elements

 * key size in bytes

 * value size in bytes

 The following wrapper functions demonstrate how various bpf() commands

 can be used to access the maps. The functions use the cmd argument to

 invoke different operations.

 BPF_MAP_CREATE

 The BPF_MAP_CREATE command creates a new map, returning a new

 file descriptor that refers to the map.

 int

 bpf_create_map(enum bpf_map_type map_type,

 unsigned int key_size,

 unsigned int value_size,

 unsigned int max_entries) Page 5/21

 {

 union bpf_attr attr = {

 .map_type = map_type,

 .key_size = key_size,

 .value_size = value_size,

 .max_entries = max_entries

 };

 return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));

 }

 The new map has the type specified by map_type, and attributes

 as specified in key_size, value_size, and max_entries. On suc?

 cess, this operation returns a file descriptor. On error, -1 is

 returned and errno is set to EINVAL, EPERM, or ENOMEM.

 The key_size and value_size attributes will be used by the veri?

 fier during program loading to check that the program is calling

 bpf_map_*_elem() helper functions with a correctly initialized

 key and to check that the program doesn't access the map element

 value beyond the specified value_size. For example, when a map

 is created with a key_size of 8 and the eBPF program calls

 bpf_map_lookup_elem(map_fd, fp - 4)

 the program will be rejected, since the in-kernel helper func?

 tion

 bpf_map_lookup_elem(map_fd, void *key)

 expects to read 8 bytes from the location pointed to by key, but

 the fp - 4 (where fp is the top of the stack) starting address

 will cause out-of-bounds stack access.

 Similarly, when a map is created with a value_size of 1 and the

 eBPF program contains

 value = bpf_map_lookup_elem(...);

 *(u32 *) value = 1;

 the program will be rejected, since it accesses the value

 pointer beyond the specified 1 byte value_size limit.

 Currently, the following values are supported for map_type: Page 6/21

 enum bpf_map_type {

 BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */

 BPF_MAP_TYPE_HASH,

 BPF_MAP_TYPE_ARRAY,

 BPF_MAP_TYPE_PROG_ARRAY,

 BPF_MAP_TYPE_PERF_EVENT_ARRAY,

 BPF_MAP_TYPE_PERCPU_HASH,

 BPF_MAP_TYPE_PERCPU_ARRAY,

 BPF_MAP_TYPE_STACK_TRACE,

 BPF_MAP_TYPE_CGROUP_ARRAY,

 BPF_MAP_TYPE_LRU_HASH,

 BPF_MAP_TYPE_LRU_PERCPU_HASH,

 BPF_MAP_TYPE_LPM_TRIE,

 BPF_MAP_TYPE_ARRAY_OF_MAPS,

 BPF_MAP_TYPE_HASH_OF_MAPS,

 BPF_MAP_TYPE_DEVMAP,

 BPF_MAP_TYPE_SOCKMAP,

 BPF_MAP_TYPE_CPUMAP,

 BPF_MAP_TYPE_XSKMAP,

 BPF_MAP_TYPE_SOCKHASH,

 BPF_MAP_TYPE_CGROUP_STORAGE,

 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,

 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,

 BPF_MAP_TYPE_QUEUE,

 BPF_MAP_TYPE_STACK,

 /* See /usr/include/linux/bpf.h for the full list. */

 };

 map_type selects one of the available map implementations in the

 kernel. For all map types, eBPF programs access maps with the

 same bpf_map_lookup_elem() and bpf_map_update_elem() helper

 functions. Further details of the various map types are given

 below.

 BPF_MAP_LOOKUP_ELEM Page 7/21

 The BPF_MAP_LOOKUP_ELEM command looks up an element with a given

 key in the map referred to by the file descriptor fd.

 int

 bpf_lookup_elem(int fd, const void *key, void *value)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 .value = ptr_to_u64(value),

 };

 return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));

 }

 If an element is found, the operation returns zero and stores

 the element's value into value, which must point to a buffer of

 value_size bytes.

 If no element is found, the operation returns -1 and sets errno

 to ENOENT.

 BPF_MAP_UPDATE_ELEM

 The BPF_MAP_UPDATE_ELEM command creates or updates an element

 with a given key/value in the map referred to by the file de?

 scriptor fd.

 int

 bpf_update_elem(int fd, const void *key, const void *value,

 uint64_t flags)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 .value = ptr_to_u64(value),

 .flags = flags,

 };

 return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));

 } Page 8/21

 The flags argument should be specified as one of the following:

 BPF_ANY

 Create a new element or update an existing element.

 BPF_NOEXIST

 Create a new element only if it did not exist.

 BPF_EXIST

 Update an existing element.

 On success, the operation returns zero. On error, -1 is re?

 turned and errno is set to EINVAL, EPERM, ENOMEM, or E2BIG.

 E2BIG indicates that the number of elements in the map reached

 the max_entries limit specified at map creation time. EEXIST

 will be returned if flags specifies BPF_NOEXIST and the element

 with key already exists in the map. ENOENT will be returned if

 flags specifies BPF_EXIST and the element with key doesn't exist

 in the map.

 BPF_MAP_DELETE_ELEM

 The BPF_MAP_DELETE_ELEM command deletes the element whose key is

 key from the map referred to by the file descriptor fd.

 int

 bpf_delete_elem(int fd, const void *key)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 };

 return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));

 }

 On success, zero is returned. If the element is not found, -1

 is returned and errno is set to ENOENT.

 BPF_MAP_GET_NEXT_KEY

 The BPF_MAP_GET_NEXT_KEY command looks up an element by key in

 the map referred to by the file descriptor fd and sets the

 next_key pointer to the key of the next element. Page 9/21

 int

 bpf_get_next_key(int fd, const void *key, void *next_key)

 {

 union bpf_attr attr = {

 .map_fd = fd,

 .key = ptr_to_u64(key),

 .next_key = ptr_to_u64(next_key),

 };

 return bpf(BPF_MAP_GET_NEXT_KEY, &attr, sizeof(attr));

 }

 If key is found, the operation returns zero and sets the

 next_key pointer to the key of the next element. If key is not

 found, the operation returns zero and sets the next_key pointer

 to the key of the first element. If key is the last element, -1

 is returned and errno is set to ENOENT. Other possible errno

 values are ENOMEM, EFAULT, EPERM, and EINVAL. This method can

 be used to iterate over all elements in the map.

 close(map_fd)

 Delete the map referred to by the file descriptor map_fd. When

 the user-space program that created a map exits, all maps will

 be deleted automatically (but see NOTES).

 eBPF map types

 The following map types are supported:

 BPF_MAP_TYPE_HASH

 Hash-table maps have the following characteristics:

 * Maps are created and destroyed by user-space programs. Both

 user-space and eBPF programs can perform lookup, update, and

 delete operations.

 * The kernel takes care of allocating and freeing key/value

 pairs.

 * The map_update_elem() helper will fail to insert new element

 when the max_entries limit is reached. (This ensures that

 eBPF programs cannot exhaust memory.) Page 10/21

 * map_update_elem() replaces existing elements atomically.

 Hash-table maps are optimized for speed of lookup.

 BPF_MAP_TYPE_ARRAY

 Array maps have the following characteristics:

 * Optimized for fastest possible lookup. In the future the

 verifier/JIT compiler may recognize lookup() operations that

 employ a constant key and optimize it into constant pointer.

 It is possible to optimize a non-constant key into direct

 pointer arithmetic as well, since pointers and value_size are

 constant for the life of the eBPF program. In other words,

 array_map_lookup_elem() may be 'inlined' by the verifier/JIT

 compiler while preserving concurrent access to this map from

 user space.

 * All array elements pre-allocated and zero initialized at init

 time

 * The key is an array index, and must be exactly four bytes.

 * map_delete_elem() fails with the error EINVAL, since elements

 cannot be deleted.

 * map_update_elem() replaces elements in a nonatomic fashion;

 for atomic updates, a hash-table map should be used instead.

 There is however one special case that can also be used with

 arrays: the atomic built-in __sync_fetch_and_add() can be

 used on 32 and 64 bit atomic counters. For example, it can

 be applied on the whole value itself if it represents a sin?

 gle counter, or in case of a structure containing multiple

 counters, it could be used on individual counters. This is

 quite often useful for aggregation and accounting of events.

 Among the uses for array maps are the following:

 * As "global" eBPF variables: an array of 1 element whose key

 is (index) 0 and where the value is a collection of 'global'

 variables which eBPF programs can use to keep state between

 events.

 * Aggregation of tracing events into a fixed set of buckets. Page 11/21

 * Accounting of networking events, for example, number of pack?

 ets and packet sizes.

 BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)

 A program array map is a special kind of array map whose map

 values contain only file descriptors referring to other eBPF

 programs. Thus, both the key_size and value_size must be ex?

 actly four bytes. This map is used in conjunction with the

 bpf_tail_call() helper.

 This means that an eBPF program with a program array map at?

 tached to it can call from kernel side into

 void bpf_tail_call(void *context, void *prog_map,

 unsigned int index);

 and therefore replace its own program flow with the one from the

 program at the given program array slot, if present. This can

 be regarded as kind of a jump table to a different eBPF program.

 The invoked program will then reuse the same stack. When a jump

 into the new program has been performed, it won't return to the

 old program anymore.

 If no eBPF program is found at the given index of the program

 array (because the map slot doesn't contain a valid program file

 descriptor, the specified lookup index/key is out of bounds, or

 the limit of 32 nested calls has been exceed), execution contin?

 ues with the current eBPF program. This can be used as a fall-

 through for default cases.

 A program array map is useful, for example, in tracing or net?

 working, to handle individual system calls or protocols in their

 own subprograms and use their identifiers as an individual map

 index. This approach may result in performance benefits, and

 also makes it possible to overcome the maximum instruction limit

 of a single eBPF program. In dynamic environments, a user-space

 daemon might atomically replace individual subprograms at run-

 time with newer versions to alter overall program behavior, for

 instance, if global policies change. Page 12/21

 eBPF programs

 The BPF_PROG_LOAD command is used to load an eBPF program into the ker?

 nel. The return value for this command is a new file descriptor asso?

 ciated with this eBPF program.

 char bpf_log_buf[LOG_BUF_SIZE];

 int

 bpf_prog_load(enum bpf_prog_type type,

 const struct bpf_insn *insns, int insn_cnt,

 const char *license)

 {

 union bpf_attr attr = {

 .prog_type = type,

 .insns = ptr_to_u64(insns),

 .insn_cnt = insn_cnt,

 .license = ptr_to_u64(license),

 .log_buf = ptr_to_u64(bpf_log_buf),

 .log_size = LOG_BUF_SIZE,

 .log_level = 1,

 };

 return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));

 }

 prog_type is one of the available program types:

 enum bpf_prog_type {

 BPF_PROG_TYPE_UNSPEC, /* Reserve 0 as invalid

 program type */

 BPF_PROG_TYPE_SOCKET_FILTER,

 BPF_PROG_TYPE_KPROBE,

 BPF_PROG_TYPE_SCHED_CLS,

 BPF_PROG_TYPE_SCHED_ACT,

 BPF_PROG_TYPE_TRACEPOINT,

 BPF_PROG_TYPE_XDP,

 BPF_PROG_TYPE_PERF_EVENT,

 BPF_PROG_TYPE_CGROUP_SKB, Page 13/21

 BPF_PROG_TYPE_CGROUP_SOCK,

 BPF_PROG_TYPE_LWT_IN,

 BPF_PROG_TYPE_LWT_OUT,

 BPF_PROG_TYPE_LWT_XMIT,

 BPF_PROG_TYPE_SOCK_OPS,

 BPF_PROG_TYPE_SK_SKB,

 BPF_PROG_TYPE_CGROUP_DEVICE,

 BPF_PROG_TYPE_SK_MSG,

 BPF_PROG_TYPE_RAW_TRACEPOINT,

 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,

 BPF_PROG_TYPE_LWT_SEG6LOCAL,

 BPF_PROG_TYPE_LIRC_MODE2,

 BPF_PROG_TYPE_SK_REUSEPORT,

 BPF_PROG_TYPE_FLOW_DISSECTOR,

 /* See /usr/include/linux/bpf.h for the full list. */

 };

 For further details of eBPF program types, see below.

 The remaining fields of bpf_attr are set as follows:

 * insns is an array of struct bpf_insn instructions.

 * insn_cnt is the number of instructions in the program referred to by

 insns.

 * license is a license string, which must be GPL compatible to call

 helper functions marked gpl_only. (The licensing rules are the same

 as for kernel modules, so that also dual licenses, such as "Dual

 BSD/GPL", may be used.)

 * log_buf is a pointer to a caller-allocated buffer in which the in-

 kernel verifier can store the verification log. This log is a

 multi-line string that can be checked by the program author in order

 to understand how the verifier came to the conclusion that the eBPF

 program is unsafe. The format of the output can change at any time

 as the verifier evolves.

 * log_size size of the buffer pointed to by log_buf. If the size of

 the buffer is not large enough to store all verifier messages, -1 is Page 14/21

 returned and errno is set to ENOSPC.

 * log_level verbosity level of the verifier. A value of zero means

 that the verifier will not provide a log; in this case, log_buf must

 be a NULL pointer, and log_size must be zero.

 Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will

 unload the eBPF program (but see NOTES).

 Maps are accessible from eBPF programs and are used to exchange data

 between eBPF programs and between eBPF programs and user-space pro?

 grams. For example, eBPF programs can process various events (like

 kprobe, packets) and store their data into a map, and user-space pro?

 grams can then fetch data from the map. Conversely, user-space pro?

 grams can use a map as a configuration mechanism, populating the map

 with values checked by the eBPF program, which then modifies its behav?

 ior on the fly according to those values.

 eBPF program types

 The eBPF program type (prog_type) determines the subset of kernel

 helper functions that the program may call. The program type also de?

 termines the program input (context)?the format of struct bpf_context

 (which is the data blob passed into the eBPF program as the first argu?

 ment).

 For example, a tracing program does not have the exact same subset of

 helper functions as a socket filter program (though they may have some

 helpers in common). Similarly, the input (context) for a tracing pro?

 gram is a set of register values, while for a socket filter it is a

 network packet.

 The set of functions available to eBPF programs of a given type may in?

 crease in the future.

 The following program types are supported:

 BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)

 Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTER

 is:

 bpf_map_lookup_elem(map_fd, void *key)

 /* look up key in a map_fd */ Page 15/21

 bpf_map_update_elem(map_fd, void *key, void *value)

 /* update key/value */

 bpf_map_delete_elem(map_fd, void *key)

 /* delete key in a map_fd */

 The bpf_context argument is a pointer to a struct __sk_buff.

 BPF_PROG_TYPE_KPROBE (since Linux 4.1)

 [To be documented]

 BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)

 [To be documented]

 BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)

 [To be documented]

 Events

 Once a program is loaded, it can be attached to an event. Various ker?

 nel subsystems have different ways to do so.

 Since Linux 3.19, the following call will attach the program prog_fd to

 the socket sockfd, which was created by an earlier call to socket(2):

 setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_BPF,

 &prog_fd, sizeof(prog_fd));

 Since Linux 4.1, the following call may be used to attach the eBPF pro?

 gram referred to by the file descriptor prog_fd to a perf event file

 descriptor, event_fd, that was created by a previous call to

 perf_event_open(2):

 ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);

RETURN VALUE

 For a successful call, the return value depends on the operation:

 BPF_MAP_CREATE

 The new file descriptor associated with the eBPF map.

 BPF_PROG_LOAD

 The new file descriptor associated with the eBPF program.

 All other commands

 Zero.

 On error, -1 is returned, and errno is set appropriately.

ERRORS Page 16/21

 E2BIG The eBPF program is too large or a map reached the max_entries

 limit (maximum number of elements).

 EACCES For BPF_PROG_LOAD, even though all program instructions are

 valid, the program has been rejected because it was deemed un?

 safe. This may be because it may have accessed a disallowed

 memory region or an uninitialized stack/register or because the

 function constraints don't match the actual types or because

 there was a misaligned memory access. In this case, it is rec?

 ommended to call bpf() again with log_level = 1 and examine

 log_buf for the specific reason provided by the verifier.

 EBADF fd is not an open file descriptor.

 EFAULT One of the pointers (key or value or log_buf or insns) is out?

 side the accessible address space.

 EINVAL The value specified in cmd is not recognized by this kernel.

 EINVAL For BPF_MAP_CREATE, either map_type or attributes are invalid.

 EINVAL For BPF_MAP_*_ELEM commands, some of the fields of union

 bpf_attr that are not used by this command are not set to zero.

 EINVAL For BPF_PROG_LOAD, indicates an attempt to load an invalid pro?

 gram. eBPF programs can be deemed invalid due to unrecognized

 instructions, the use of reserved fields, jumps out of range,

 infinite loops or calls of unknown functions.

 ENOENT For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indicates that

 the element with the given key was not found.

 ENOMEM Cannot allocate sufficient memory.

 EPERM The call was made without sufficient privilege (without the

 CAP_SYS_ADMIN capability).

VERSIONS

 The bpf() system call first appeared in Linux 3.18.

CONFORMING TO

 The bpf() system call is Linux-specific.

NOTES

 Prior to Linux 4.4, all bpf() commands require the caller to have the

 CAP_SYS_ADMIN capability. From Linux 4.4 onwards, an unprivileged user Page 17/21

 may create limited programs of type BPF_PROG_TYPE_SOCKET_FILTER and as?

 sociated maps. However they may not store kernel pointers within the

 maps and are presently limited to the following helper functions:

 * get_random

 * get_smp_processor_id

 * tail_call

 * ktime_get_ns

 Unprivileged access may be blocked by writing the value 1 to the file

 /proc/sys/kernel/unprivileged_bpf_disabled.

 eBPF objects (maps and programs) can be shared between processes. For

 example, after fork(2), the child inherits file descriptors referring

 to the same eBPF objects. In addition, file descriptors referring to

 eBPF objects can be transferred over UNIX domain sockets. File de?

 scriptors referring to eBPF objects can be duplicated in the usual way,

 using dup(2) and similar calls. An eBPF object is deallocated only af?

 ter all file descriptors referring to the object have been closed.

 eBPF programs can be written in a restricted C that is compiled (using

 the clang compiler) into eBPF bytecode. Various features are omitted

 from this restricted C, such as loops, global variables, variadic func?

 tions, floating-point numbers, and passing structures as function argu?

 ments. Some examples can be found in the samples/bpf/*_kern.c files in

 the kernel source tree.

 The kernel contains a just-in-time (JIT) compiler that translates eBPF

 bytecode into native machine code for better performance. In kernels

 before Linux 4.15, the JIT compiler is disabled by default, but its op?

 eration can be controlled by writing one of the following integer

 strings to the file /proc/sys/net/core/bpf_jit_enable:

 0 Disable JIT compilation (default).

 1 Normal compilation.

 2 Debugging mode. The generated opcodes are dumped in hexadecimal

 into the kernel log. These opcodes can then be disassembled using

 the program tools/net/bpf_jit_disasm.c provided in the kernel source

 tree. Page 18/21

 Since Linux 4.15, the kernel may configured with the CONFIG_BPF_JIT_AL?

 WAYS_ON option. In this case, the JIT compiler is always enabled, and

 the bpf_jit_enable is initialized to 1 and is immutable. (This kernel

 configuration option was provided as a mitigation for one of the Spec?

 tre attacks against the BPF interpreter.)

 The JIT compiler for eBPF is currently available for the following ar?

 chitectures:

 * x86-64 (since Linux 3.18; cBPF since Linux 3.0);

 * ARM32 (since Linux 3.18; cBPF since Linux 3.4);

 * SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);

 * ARM-64 (since Linux 3.18);

 * s390 (since Linux 4.1; cBPF since Linux 3.7);

 * PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);

 * SPARC 64 (since Linux 4.12);

 * x86-32 (since Linux 4.18);

 * MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);

 * riscv (since Linux 5.1).

EXAMPLES

 /* bpf+sockets example:

 * 1. create array map of 256 elements

 * 2. load program that counts number of packets received

 * r0 = skb->data[ETH_HLEN + offsetof(struct iphdr, protocol)]

 * map[r0]++

 * 3. attach prog_fd to raw socket via setsockopt()

 * 4. print number of received TCP/UDP packets every second

 */

 int

 main(int argc, char **argv)

 {

 int sock, map_fd, prog_fd, key;

 long long value = 0, tcp_cnt, udp_cnt;

 map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key),

 sizeof(value), 256); Page 19/21

 if (map_fd < 0) {

 printf("failed to create map '%s'\n", strerror(errno));

 /* likely not run as root */

 return 1;

 }

 struct bpf_insn prog[] = {

 BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* r6 = r1 */

 BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)),

 /* r0 = ip->proto */

 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),

 /* *(u32 *)(fp - 4) = r0 */

 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* r2 = fp */

 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = r2 - 4 */

 BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* r1 = map_fd */

 BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),

 /* r0 = map_lookup(r1, r2) */

 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

 /* if (r0 == 0) goto pc+2 */

 BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */

 BPF_XADD(BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0),

 /* lock *(u64 *) r0 += r1 */

 BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */

 BPF_EXIT_INSN(), /* return r0 */

 };

 prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog,

 sizeof(prog) / sizeof(prog[0]), "GPL");

 sock = open_raw_sock("lo");

 assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd,

 sizeof(prog_fd)) == 0);

 for (;;) {

 key = IPPROTO_TCP;

 assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);

 key = IPPROTO_UDP; Page 20/21

 assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);

 printf("TCP %lld UDP %lld packets\n", tcp_cnt, udp_cnt);

 sleep(1);

 }

 return 0;

 }

 Some complete working code can be found in the samples/bpf directory in

 the kernel source tree.

SEE ALSO

 seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf(8)

 Both classic and extended BPF are explained in the kernel source file

 Documentation/networking/filter.txt.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 BPF(2)

Page 21/21

