
Rocky Enterprise Linux 9.2 Manual Pages on command 'bpf-helpers.7'

$ man bpf-helpers.7

BPF-HELPERS(7)                                                  BPF-HELPERS(7)

NAME

       BPF-HELPERS - list of eBPF helper functions

DESCRIPTION

       The  extended  Berkeley Packet Filter (eBPF) subsystem consists in pro?

       grams written in a pseudo-assembly language, then attached  to  one  of

       the  several  kernel hooks and run in reaction of specific events. This

       framework differs from the older, "classic" BPF (or "cBPF") in  several

       aspects,  one  of  them being the ability to call special functions (or

       "helpers") from within a program.  These functions are restricted to  a

       white-list of helpers defined in the kernel.

       These helpers are used by eBPF programs to interact with the system, or

       with the context in which they work. For instance, they can be used  to

       print  debugging messages, to get the time since the system was booted,

       to interact with eBPF maps, or to  manipulate  network  packets.  Since

       there  are  several eBPF program types, and that they do not run in the

       same context, each program  type  can  only  call  a  subset  of  those

       helpers. Page 1/73



       Due  to  eBPF  conventions,  a helper can not have more than five argu?

       ments.

       Internally, eBPF programs call directly into the compiled helper  func?

       tions  without  requiring  any foreign-function interface. As a result,

       calling helpers introduces no overhead, thus offering excellent perfor?

       mance.

       This  document is an attempt to list and document the helpers available

       to eBPF developers. They are sorted by chronological order (the  oldest

       helpers in the kernel at the top).

HELPERS

       void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)

              Description

                     Perform a lookup in map for an entry associated to key.

              Return Map  value  associated  to  key,  or NULL if no entry was

                     found.

       long bpf_map_update_elem(struct bpf_map *map, const  void  *key,  const

       void *value, u64 flags)

              Description

                     Add or update the value of the entry associated to key in

                     map with value. flags is one of:

                     BPF_NOEXIST

                            The entry for key must not exist in the map.

                     BPF_EXIST

                            The entry for key must already exist in the map.

                     BPF_ANY

                            No condition on the existence  of  the  entry  for

                            key.

                     Flag  value  BPF_NOEXIST cannot be used for maps of types

                     BPF_MAP_TYPE_ARRAY or BPF_MAP_TYPE_PERCPU_ARRAY  (all el?

                     ements always exist), the helper would return an error.

              Return 0 on success, or a negative error in case of failure.

       long bpf_map_delete_elem(struct bpf_map *map, const void *key)

              Description Page 2/73



                     Delete entry with key from map.

              Return 0 on success, or a negative error in case of failure.

       long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)

              Description

                     For  tracing  programs, safely attempt to read size bytes

                     from kernel space address unsafe_ptr and store  the  data

                     in dst.

                     Generally,       use       bpf_probe_read_user()       or

                     bpf_probe_read_kernel() instead.

              Return 0 on success, or a negative error in case of failure.

       u64 bpf_ktime_get_ns(void)

              Description

                     Return the time elapsed since system  boot,  in  nanosec?

                     onds.   Does  not  include time the system was suspended.

                     See: clock_gettime(CLOCK_MONOTONIC)

              Return Current ktime.

       long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)

              Description

                     This helper is a "printk()-like" facility for  debugging.

                     It  prints  a  message  defined  by  format  fmt (of size

                     fmt_size) to  file  /sys/kernel/debug/tracing/trace  from

                     DebugFS, if available. It can take up to three additional

                     u64 arguments (as an eBPF helpers, the  total  number  of

                     arguments is limited to five).

                     Each  time the helper is called, it appends a line to the

                     trace.  Lines are discarded while /sys/kernel/debug/trac?

                     ing/trace    is    open,    use   /sys/kernel/debug/trac?

                     ing/trace_pipe to avoid this.  The format of the trace is

                     customizable,  and  the exact output one will get depends

                     on the options set in /sys/kernel/debug/tracing/trace_op?

                     tions  (see  also  the  README file under the same direc?

                     tory). However, it usually defaults to something like:

                        telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg> Page 3/73



                     In the above:

                        ? telnet is the name of the current task.

                        ? 470 is the PID of the current task.

                        ? 001 is the CPU number on which the task is running.

                        ? In .N.., each character refers to a set  of  options

                          (whether   irqs  are  enabled,  scheduling  options,

                          whether hard/softirqs are  running,  level  of  pre?

                          empt_disabled    respectively).    N    means   that

                          TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED are set.

                        ? 419421.045894 is a timestamp.

                        ? 0x00000001 is a fake value used by BPF for  the  in?

                          struction pointer register.

                        ? <formatted msg> is the message formatted with fmt.

                     The  conversion  specifiers supported by fmt are similar,

                     but more limited than for printk(). They are %d, %i,  %u,

                     %x,  %ld,  %li, %lu, %lx, %lld, %lli, %llu, %llx, %p, %s.

                     No modifier (size of field, padding with zeroes, etc.) is

                     available,  and the helper will return -EINVAL (but print

                     nothing) if it encounters an unknown specifier.

                     Also, note that bpf_trace_printk() is  slow,  and  should

                     only  be  used for debugging purposes. For this reason, a

                     notice block (spanning several lines) is printed to  ker?

                     nel  logs  and  states that the helper should not be used

                     "for production use" the first time this helper  is  used

                     (or more precisely, when trace_printk() buffers are allo?

                     cated). For passing values to  user  space,  perf  events

                     should be preferred.

              Return The  number of bytes written to the buffer, or a negative

                     error in case of failure.

       u32 bpf_get_prandom_u32(void)

              Description

                     Get a pseudo-random number.

                     From a security point of view, this helper uses  its  own Page 4/73



                     pseudo-random internal state, and cannot be used to infer

                     the seed of other random functions in  the  kernel.  How?

                     ever,  it is essential to note that the generator used by

                     the helper is not cryptographically secure.

              Return A random 32-bit unsigned value.

       u32 bpf_get_smp_processor_id(void)

              Description

                     Get the SMP  (symmetric  multiprocessing)  processor  id.

                     Note  that  all  programs  run  with preemption disabled,

                     which means that the SMP processor id  is  stable  during

                     all the execution of the program.

              Return The SMP id of the processor running the program.

       long  bpf_skb_store_bytes(struct  sk_buff  *skb, u32 offset, const void

       *from, u32 len, u64 flags)

              Description

                     Store len bytes from address from into the packet associ?

                     ated  to  skb,  at  offset.  flags  are  a combination of

                     BPF_F_RECOMPUTE_CSUM (automatically recompute the  check?

                     sum for the packet after storing the bytes) and BPF_F_IN?

                     VALIDATE_HASH (set skb->hash, skb->swhash and skb->l4hash

                     to 0).

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64

       to, u64 size)

              Description

                     Recompute the layer 3 (e.g. IP) checksum for  the  packet

                     associated  to  skb.  Computation  is incremental, so the

                     helper must know the former value  of  the  header  field Page 5/73



                     that  was  modified  (from),  the new value of this field

                     (to), and the number of bytes (2 or 4)  for  this  field,

                     stored  in  size.  Alternatively, it is possible to store

                     the difference between the previous and the new values of

                     the  header  field  in to, by setting from and size to 0.

                     For both methods, offset indicates the location of the IP

                     checksum within the packet.

                     This  helper  works  in combination with bpf_csum_diff(),

                     which does not update the checksum in-place,  but  offers

                     more  flexibility and can handle sizes larger than 2 or 4

                     for the checksum to update.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64

       to, u64 flags)

              Description

                     Recompute  the  layer  4 (e.g. TCP, UDP or ICMP) checksum

                     for the packet associated to skb. Computation  is  incre?

                     mental,  so  the helper must know the former value of the

                     header field that was modified (from), the new  value  of

                     this  field  (to),  and  the number of bytes (2 or 4) for

                     this field, stored on the lowest four bits of flags.  Al?

                     ternatively,  it  is possible to store the difference be?

                     tween the previous and the new values of the header field

                     in  to, by setting from and the four lowest bits of flags

                     to 0. For both methods, offset indicates the location  of

                     the  IP  checksum  within  the packet. In addition to the

                     size of the field, flags can be added (bitwise OR) actual

                     flags. With BPF_F_MARK_MANGLED_0, a null checksum is left Page 6/73



                     untouched (unless BPF_F_MARK_ENFORCE is added  as  well),

                     and for updates resulting in a null checksum the value is

                     set to CSUM_MANGLED_0 instead. Flag BPF_F_PSEUDO_HDR  in?

                     dicates   the  checksum  is  to  be  computed  against  a

                     pseudo-header.

                     This helper works in  combination  with  bpf_csum_diff(),

                     which  does  not update the checksum in-place, but offers

                     more flexibility and can handle sizes larger than 2 or  4

                     for the checksum to update.

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_tail_call(void  *ctx, struct bpf_map *prog_array_map, u32 in?

       dex)

              Description

                     This special helper is used to trigger a "tail call",  or

                     in  other  words,  to jump into another eBPF program. The

                     same stack frame is used (but values on stack and in reg?

                     isters  for the caller are not accessible to the callee).

                     This mechanism allows for program  chaining,  either  for

                     raising  the  maximum  number  of available eBPF instruc?

                     tions,  or  to  execute  given  programs  in  conditional

                     blocks.  For security reasons, there is an upper limit to

                     the number of successive tail  calls  that  can  be  per?

                     formed.

                     Upon  call  of  this helper, the program attempts to jump

                     into a program referenced  at  index  index  in  prog_ar?

                     ray_map,  a  special map of type BPF_MAP_TYPE_PROG_ARRAY,

                     and passes ctx, a pointer to the context.

                     If the call succeeds, the  kernel  immediately  runs  the Page 7/73



                     first instruction of the new program. This is not a func?

                     tion call, and it never returns to the previous  program.

                     If the call fails, then the helper has no effect, and the

                     caller continues to run its  subsequent  instructions.  A

                     call  can  fail  if  the destination program for the jump

                     does not exist (i.e. index is superior to the  number  of

                     entries  in  prog_array_map), or if the maximum number of

                     tail calls has been reached for this chain  of  programs.

                     This  limit  is  defined  in  the  kernel  by  the  macro

                     MAX_TAIL_CALL_CNT (not accessible to user  space),  which

                     is currently set to 32.

              Return 0 on success, or a negative error in case of failure.

       long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)

              Description

                     Clone  and  redirect  the packet associated to skb to an?

                     other net device  of  index  ifindex.  Both  ingress  and

                     egress  interfaces  can  be  used  for  redirection.  The

                     BPF_F_INGRESS value in flags is used to make the distinc?

                     tion  (ingress  path  is selected if the flag is present,

                     egress path otherwise).  This is the only flag  supported

                     for now.

                     In comparison with bpf_redirect() helper, bpf_clone_redi?

                     rect() has the associated cost of duplicating the  packet

                     buffer, but this can be executed out of the eBPF program.

                     Conversely, bpf_redirect() is more efficient, but  it  is

                     handled through an action code where the redirection hap?

                     pens only after the eBPF program has returned.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure. Page 8/73



       u64 bpf_get_current_pid_tgid(void)

              Return A 64-bit integer containing the current tgid and pid, and

                     created   as   such:  current_task->tgid  <<  32  |  cur?

                     rent_task->pid.

       u64 bpf_get_current_uid_gid(void)

              Return A 64-bit integer containing the current GID and UID,  and

                     created as such: current_gid << 32 | current_uid.

       long bpf_get_current_comm(void *buf, u32 size_of_buf)

              Description

                     Copy  the  comm attribute of the current task into buf of

                     size_of_buf. The comm attribute contains the name of  the

                     executable (excluding the path) for the current task. The

                     size_of_buf must be strictly positive.  On  success,  the

                     helper  makes  sure  that  the  buf is NUL-terminated. On

                     failure, it is filled with zeroes.

              Return 0 on success, or a negative error in case of failure.

       u32 bpf_get_cgroup_classid(struct sk_buff *skb)

              Description

                     Retrieve the classid for the current task, i.e.  for  the

                     net_cls cgroup to which skb belongs.

                     This  helper  can  be  used on TC egress path, but not on

                     ingress.

                     The net_cls cgroup provides an interface to  tag  network

                     packets based on a user-provided identifier for all traf?

                     fic coming  from  the  tasks  belonging  to  the  related

                     cgroup. See also the related kernel documentation, avail?

                     able from the Linux  sources  in  file  Documentation/ad?

                     min-guide/cgroup-v1/net_cls.rst.

                     The  Linux kernel has two versions for cgroups: there are

                     cgroups v1 and cgroups v2. Both are available  to  users,

                     who  can use a mixture of them, but note that the net_cls

                     cgroup is for cgroup v1 only. This makes it  incompatible

                     with   BPF   programs   run   on   cgroups,  which  is  a Page 9/73



                     cgroup-v2-only feature (a socket can only hold  data  for

                     one version of cgroups at a time).

                     This  helper is only available is the kernel was compiled

                     with the CONFIG_CGROUP_NET_CLASSID  configuration  option

                     set to "y" or to "m".

              Return The classid, or 0 for the default unconfigured classid.

       long  bpf_skb_vlan_push(struct  sk_buff  *skb,  __be16  vlan_proto, u16

       vlan_tci)

              Description

                     Push a vlan_tci (VLAN tag control information) of  proto?

                     col  vlan_proto to the packet associated to skb, then up?

                     date the checksum. Note that if vlan_proto  is  different

                     from ETH_P_8021Q and ETH_P_8021AD, it is considered to be

                     ETH_P_8021Q.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_vlan_pop(struct sk_buff *skb)

              Description

                     Pop a VLAN header from the packet associated to skb.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct  bpf_tunnel_key

       *key, u32 size, u64 flags)

              Description

                     Get  tunnel  metadata. This helper takes a pointer key to Page 10/73



                     an empty struct bpf_tunnel_key  of  size,  that  will  be

                     filled  with tunnel metadata for the packet associated to

                     skb.  The flags can be set to  BPF_F_TUNINFO_IPV6,  which

                     indicates  that  the tunnel is based on IPv6 protocol in?

                     stead of IPv4.

                     The struct bpf_tunnel_key is an object  that  generalizes

                     the principal parameters used by various tunneling proto?

                     cols into a single struct. This way, it can  be  used  to

                     easily  make  a decision based on the contents of the en?

                     capsulation header, "summarized" in this struct. In  par?

                     ticular,  it holds the IP address of the remote end (IPv4

                     or IPv6, depending on the case)  in  key->remote_ipv4  or

                     key->remote_ipv6. Also, this struct exposes the key->tun?

                     nel_id, which is generally mapped to a VNI (Virtual  Net?

                     work  Identifier),  making  it programmable together with

                     the bpf_skb_set_tunnel_key() helper.

                     Let's imagine that the following code is part of  a  pro?

                     gram  attached to the TC ingress interface, on one end of

                     a GRE tunnel, and is supposed to filter out all  messages

                     coming  from  remote  ends  with  IPv4 address other than

                     10.0.0.1:

                        int ret;

                        struct bpf_tunnel_key key = {};

                        ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);

                        if (ret < 0)

                                return TC_ACT_SHOT;     // drop packet

                        if (key.remote_ipv4 != 0x0a000001)

                                return TC_ACT_SHOT;     // drop packet

                        return TC_ACT_OK;               // accept packet

                     This interface can also be used  with  all  encapsulation

                     devices  that can operate in "collect metadata" mode: in?

                     stead of having one network device per specific  configu?

                     ration,  the "collect metadata" mode only requires a sin? Page 11/73



                     gle device where the configuration can be extracted  from

                     this helper.

                     This  can  be  used together with various tunnels such as

                     VXLan, Geneve, GRE or IP in IP (IPIP).

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct  bpf_tunnel_key

       *key, u32 size, u64 flags)

              Description

                     Populate  tunnel  metadata  for packet associated to skb.

                     The tunnel metadata is set to the  contents  of  key,  of

                     size.  The  flags can be set to a combination of the fol?

                     lowing values:

                     BPF_F_TUNINFO_IPV6

                            Indicate that the tunnel is based on IPv6 protocol

                            instead of IPv4.

                     BPF_F_ZERO_CSUM_TX

                            For  IPv4  packets,  add a flag to tunnel metadata

                            indicating that  checksum  computation  should  be

                            skipped and checksum set to zeroes.

                     BPF_F_DONT_FRAGMENT

                            Add  a flag to tunnel metadata indicating that the

                            packet should not be fragmented.

                     BPF_F_SEQ_NUMBER

                            Add a flag to tunnel metadata  indicating  that  a

                            sequence  number  should be added to tunnel header

                            before sending the packet. This flag was added for

                            GRE  encapsulation,  but  might be used with other

                            protocols as well in the future.

                     Here is a typical usage on the transmit path:

                        struct bpf_tunnel_key key;

                             populate key ...

                        bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);

                        bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); Page 12/73



                     See also the description of the  bpf_skb_get_tunnel_key()

                     helper for additional information.

              Return 0 on success, or a negative error in case of failure.

       u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)

              Description

                     Read  the  value of a perf event counter. This helper re?

                     lies on a map of type BPF_MAP_TYPE_PERF_EVENT_ARRAY.  The

                     nature  of the perf event counter is selected when map is

                     updated with perf event file descriptors. The map  is  an

                     array  whose  size  is  the number of available CPUs, and

                     each cell contains a value relative to one CPU. The value

                     to  retrieve is indicated by flags, that contains the in?

                     dex of the CPU to look up, masked with  BPF_F_INDEX_MASK.

                     Alternatively,  flags  can be set to BPF_F_CURRENT_CPU to

                     indicate that the value for the current CPU should be re?

                     trieved.

                     Note that before Linux 4.13, only hardware perf event can

                     be retrieved.

                     Also,    be    aware    that     the     newer     helper

                     bpf_perf_event_read_value()     is    recommended    over

                     bpf_perf_event_read() in general. The latter has some ABI

                     quirks where error and counter value are used as a return

                     code (which is wrong to do  since  ranges  may  overlap).

                     This  issue  is  fixed  with bpf_perf_event_read_value(),

                     which at the same time provides more  features  over  the

                     bpf_perf_event_read()  interface. Please refer to the de?

                     scription of bpf_perf_event_read_value() for details.

              Return The value of the perf event counter read from the map, or

                     a negative error code in case of failure.

       long bpf_redirect(u32 ifindex, u64 flags)

              Description

                     Redirect  the  packet  to  another  net  device  of index

                     ifindex.    This   helper   is   somewhat   similar    to Page 13/73



                     bpf_clone_redirect(),  except  that  the  packet  is  not

                     cloned, which provides increased performance.

                     Except for XDP, both ingress and egress interfaces can be

                     used for redirection. The BPF_F_INGRESS value in flags is

                     used to make the distinction (ingress path is selected if

                     the  flag  is present, egress path otherwise). Currently,

                     XDP only supports redirection to  the  egress  interface,

                     and accepts no flag at all.

                     The  same  effect  can  also  be  attained  with the more

                     generic bpf_redirect_map(), which uses a BPF map to store

                     the  redirect  target instead of providing it directly to

                     the helper.

              Return For XDP, the helper returns XDP_REDIRECT  on  success  or

                     XDP_ABORTED on error. For other program types, the values

                     are TC_ACT_REDIRECT on success or TC_ACT_SHOT on error.

       u32 bpf_get_route_realm(struct sk_buff *skb)

              Description

                     Retrieve the realm or the  route,  that  is  to  say  the

                     tclassid  field of the destination for the skb. The iden?

                     tifier retrieved is a user-provided tag, similar  to  the

                     one  used  with  the  net_cls cgroup (see description for

                     bpf_get_cgroup_classid() helper), but here  this  tag  is

                     held by a route (a destination entry), not by a task.

                     Retrieving  this  identifier  works  with  the  clsact TC

                     egress hook (see also  tc-bpf(8)),  or  alternatively  on

                     conventional  classful  egress  qdiscs,  but  not  on  TC

                     ingress path. In case of clsact TC egress hook, this  has

                     the advantage that, internally, the destination entry has

                     not been dropped yet in the transmit path. Therefore, the

                     destination  entry  does not need to be artificially held

                     via netif_keep_dst() for a classful qdisc until  the  skb

                     is freed.

                     This  helper is available only if the kernel was compiled Page 14/73



                     with CONFIG_IP_ROUTE_CLASSID configuration option.

              Return The realm of the route for the packet associated to  skb,

                     or 0 if none was found.

       long  bpf_perf_event_output(void  *ctx, struct bpf_map *map, u64 flags,

       void *data, u64 size)

              Description

                     Write raw data blob into a special BPF perf event held by

                     map  of  type  BPF_MAP_TYPE_PERF_EVENT_ARRAY.  This  perf

                     event must have the following attributes: PERF_SAMPLE_RAW

                     as   sample_type,   PERF_TYPE_SOFTWARE   as   type,   and

                     PERF_COUNT_SW_BPF_OUTPUT as config.

                     The flags are used to indicate the index in map for which

                     the value must be put, masked with BPF_F_INDEX_MASK.  Al?

                     ternatively, flags can be set to BPF_F_CURRENT_CPU to in?

                     dicate  that  the index of the current CPU core should be

                     used.

                     The value to write, of size, is passed through eBPF stack

                     and pointed by data.

                     The  context  of  the program ctx needs also be passed to

                     the helper.

                     On user space, a program willing to read the values needs

                     to  call  perf_event_open() on the perf event (either for

                     one or for all CPUs) and to  store  the  file  descriptor

                     into  the  map. This must be done before the eBPF program

                     can send data into it. An example is  available  in  file

                     samples/bpf/trace_output_user.c   in   the  Linux  kernel

                     source tree (the eBPF  program  counterpart  is  in  sam?

                     ples/bpf/trace_output_kern.c).

                     bpf_perf_event_output()  achieves better performance than

                     bpf_trace_printk() for sharing data with user space,  and

                     is much better suitable for streaming data from eBPF pro?

                     grams.

                     Note that this helper is not restricted  to  tracing  use Page 15/73



                     cases and can be used with programs attached to TC or XDP

                     as well, where it allows for passing data to  user  space

                     listeners. Data can be:

                     ? Only custom structs,

                     ? Only the packet payload, or

                     ? A combination of both.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)

              Description

                     This helper was provided as an easy way to load data from

                     a packet. It can be used to load len  bytes  from  offset

                     from  the  packet  associated  to  skb,  into  the buffer

                     pointed by to.

                     Since Linux 4.7, usage of this helper has mostly been re?

                     placed by "direct packet access", enabling packet data to

                     be manipulated with skb->data and skb->data_end  pointing

                     respectively  to the first byte of packet data and to the

                     byte after the last byte of packet data. However, it  re?

                     mains  useful  if  one wishes to read large quantities of

                     data at once from a packet into the eBPF stack.

              Return 0 on success, or a negative error in case of failure.

       long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)

              Description

                     Walk a user or a kernel  stack  and  return  its  id.  To

                     achieve this, the helper needs ctx, which is a pointer to

                     the context on which the tracing program is executed, and

                     a pointer to a map of type BPF_MAP_TYPE_STACK_TRACE.

                     The  last  argument,  flags,  holds  the  number of stack

                     frames  to  skip   (from   0   to   255),   masked   with

                     BPF_F_SKIP_FIELD_MASK. The next bits can be used to set a

                     combination of the following flags:

                     BPF_F_USER_STACK

                            Collect a user space stack  instead  of  a  kernel Page 16/73



                            stack.

                     BPF_F_FAST_STACK_CMP

                            Compare stacks by hash only.

                     BPF_F_REUSE_STACKID

                            If   two  different  stacks  hash  into  the  same

                            stackid, discard the old one.

                     The stack id retrieved is a 32 bit  long  integer  handle

                     which  can be further combined with other data (including

                     other stack ids) and used as a key into maps. This can be

                     useful  for generating a variety of graphs (such as flame

                     graphs or off-cpu graphs).

                     For walking a stack, this helper is an  improvement  over

                     bpf_probe_read(),  which  can be used with unrolled loops

                     but is not efficient and consumes a lot of eBPF  instruc?

                     tions.   Instead,  bpf_get_stackid()  can  collect  up to

                     PERF_MAX_STACK_DEPTH both kernel and  user  frames.  Note

                     that  this  limit  can be controlled with the sysctl pro?

                     gram, and that it should be manually increased  in  order

                     to profile long user stacks (such as stacks for Java pro?

                     grams). To do so, use:

                        # sysctl kernel.perf_event_max_stack=<new value>

              Return The positive or null stack id on success, or  a  negative

                     error in case of failure.

       s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size,

       __wsum seed)

              Description

                     Compute  a  checksum  difference,  from  the  raw  buffer

                     pointed by from, of length from_size (that must be a mul?

                     tiple of 4), towards the raw buffer  pointed  by  to,  of

                     size to_size (same remark). An optional seed can be added

                     to the value (this can be cascaded,  the  seed  may  come

                     from a previous call to the helper).

                     This is flexible enough to be used in several ways: Page 17/73



                     ? With from_size == 0, to_size > 0 and seed set to check?

                       sum, it can be used when pushing new data.

                     ? With from_size > 0, to_size == 0 and seed set to check?

                       sum, it can be used when removing data from a packet.

                     ? With  from_size  > 0, to_size > 0 and seed set to 0, it

                       can be used to compute a diff. Note that from_size  and

                       to_size do not need to be equal.

                     This   helper   can   be   used   in   combination   with

                     bpf_l3_csum_replace() and bpf_l4_csum_replace(), to which

                     one   can   feed   in   the   difference   computed  with

                     bpf_csum_diff().

              Return The checksum result, or a negative error code in case  of

                     failure.

       long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

              Description

                     Retrieve  tunnel  options metadata for the packet associ?

                     ated to skb, and store the raw tunnel option data to  the

                     buffer opt of size.

                     This  helper  can be used with encapsulation devices that

                     can operate in "collect metadata" mode (please  refer  to

                     the  related  note in the description of bpf_skb_get_tun?

                     nel_key() for more details). A particular  example  where

                     this can be used is in combination with the Geneve encap?

                     sulation protocol, where  it  allows  for  pushing  (with

                     bpf_skb_get_tunnel_opt() helper) and retrieving arbitrary

                     TLVs (Type-Length-Value headers) from the  eBPF  program.

                     This allows for full customization of these headers.

              Return The size of the option data retrieved.

       long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

              Description

                     Set  tunnel options metadata for the packet associated to

                     skb to the option data contained in the raw buffer opt of

                     size. Page 18/73



                     See  also the description of the bpf_skb_get_tunnel_opt()

                     helper for additional information.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)

              Description

                     Change the protocol of the skb to proto.  Currently  sup?

                     ported are transition from IPv4 to IPv6, and from IPv6 to

                     IPv4. The helper takes care of  the  groundwork  for  the

                     transition,  including  resizing  the  socket buffer. The

                     eBPF program is expected to fill the new headers, if any,

                     via skb_store_bytes() and to recompute the checksums with

                     bpf_l3_csum_replace() and bpf_l4_csum_replace(). The main

                     case  for  this helper is to perform NAT64 operations out

                     of an eBPF program.

                     Internally, the GSO type is marked as dodgy so that head?

                     ers  are  checked  and  segments  are recalculated by the

                     GSO/GRO engine.  The size for GSO target  is  adapted  as

                     well.

                     All  values  for flags are reserved for future usage, and

                     must be left at zero.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_change_type(struct sk_buff *skb, u32 type)

              Description

                     Change the packet type for the packet associated to  skb.

                     This  comes down to setting skb->pkt_type to type, except

                     the  eBPF  program  does  not  have  a  write  access  to

                     skb->pkt_type beside this helper. Using a helper here al?

                     lows for graceful handling of errors. Page 19/73



                     The major  use  case  is  to  change  incoming  skb*s  to

                     **PACKET_HOST* in a programmatic way instead of having to

                     recirculate via redirect(..., BPF_F_INGRESS),  for  exam?

                     ple.

                     Note  that type only allows certain values. At this time,

                     they are:

                     PACKET_HOST

                            Packet is for us.

                     PACKET_BROADCAST

                            Send packet to all.

                     PACKET_MULTICAST

                            Send packet to group.

                     PACKET_OTHERHOST

                            Send packet to someone else.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32

       index)

              Description

                     Check  whether skb is a descendant of the cgroup2 held by

                     map of type BPF_MAP_TYPE_CGROUP_ARRAY, at index.

              Return The return value depends on the result of the  test,  and

                     can be:

                     ? 0, if the skb failed the cgroup2 descendant test.

                     ? 1, if the skb succeeded the cgroup2 descendant test.

                     ? A negative error code, if an error occurred.

       u32 bpf_get_hash_recalc(struct sk_buff *skb)

              Description

                     Retrieve  the hash of the packet, skb->hash. If it is not

                     set, in particular if the hash was cleared  due  to  man?

                     gling,  recompute  this  hash. Later accesses to the hash

                     can be done directly with skb->hash.

                     Calling bpf_set_hash_invalid(), changing a packet  proto?

                     type     with    bpf_skb_change_proto(),    or    calling Page 20/73



                     bpf_skb_store_bytes() with the BPF_F_INVALIDATE_HASH  are

                     actions  susceptible  to  clear the hash and to trigger a

                     new computation for the  next  call  to  bpf_get_hash_re?

                     calc().

              Return The 32-bit hash.

       u64 bpf_get_current_task(void)

              Return A pointer to the current task struct.

       long bpf_probe_write_user(void *dst, const void *src, u32 len)

              Description

                     Attempt  in a safe way to write len bytes from the buffer

                     src to dst in memory. It only works for threads that  are

                     in  user  context, and dst must be a valid user space ad?

                     dress.

                     This helper should not be used to implement any  kind  of

                     security mechanism because of TOC-TOU attacks, but rather

                     to debug, divert, and manipulate execution of  semi-coop?

                     erative processes.

                     Keep  in mind that this feature is meant for experiments,

                     and it has a risk of crashing the system and running pro?

                     grams.  Therefore, when an eBPF program using this helper

                     is attached, a warning including PID and process name  is

                     printed to kernel logs.

              Return 0 on success, or a negative error in case of failure.

       long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)

              Description

                     Check  whether the probe is being run is the context of a

                     given subset of the cgroup2  hierarchy.  The  cgroup2  to

                     test is held by map of type BPF_MAP_TYPE_CGROUP_ARRAY, at

                     index.

              Return The return value depends on the result of the  test,  and

                     can be:

                     ? 0, if the skb task belongs to the cgroup2.

                     ? 1, if the skb task does not belong to the cgroup2. Page 21/73



                     ? A negative error code, if an error occurred.

       long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)

              Description

                     Resize (trim or grow) the packet associated to skb to the

                     new len. The flags are reserved  for  future  usage,  and

                     must be left at zero.

                     The  basic  idea  is  that the helper performs the needed

                     work to change the size of the packet, then the eBPF pro?

                     gram    rewrites    the    rest    via    helpers    like

                     bpf_skb_store_bytes(),             bpf_l3_csum_replace(),

                     bpf_l3_csum_replace()  and  others. This helper is a slow

                     path utility intended for replies with control  messages.

                     And  because it is targeted for slow path, the helper it?

                     self can afford to be slow: it implicitly linearizes, un?

                     clones and drops offloads from the skb.

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_pull_data(struct sk_buff *skb, u32 len)

              Description

                     Pull in non-linear data in case the skb is non-linear and

                     not all of len are part of the linear section.  Make  len

                     bytes  from skb readable and writable. If a zero value is

                     passed for len, then the  whole  length  of  the  skb  is

                     pulled.

                     This  helper  is only needed for reading and writing with

                     direct packet access.

                     For direct packet access, testing that offsets to  access

                     are  within  packet boundaries (test on skb->data_end) is

                     susceptible to fail if offsets are invalid, or if the re? Page 22/73



                     quested  data is in non-linear parts of the skb. On fail?

                     ure the program can just bail out, or in the  case  of  a

                     non-linear  buffer,  use a helper to make the data avail?

                     able. The bpf_skb_load_bytes() helper is a first solution

                     to  access  the  data.  Another  one  consists  in  using

                     bpf_skb_pull_data to pull in once the  non-linear  parts,

                     then retesting and eventually access the data.

                     At  the  same  time,  this also makes sure the skb is un?

                     cloned, which is a necessary condition for direct  write.

                     As this needs to be an invariant for the write part only,

                     the verifier detects writes and adds a prologue  that  is

                     calling  bpf_skb_pull_data()  to  effectively unclone the

                     skb from the very beginning in case it is indeed cloned.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)

              Description

                     Add the checksum csum into skb->csum in case  the  driver

                     has  supplied  a checksum for the entire packet into that

                     field. Return an error otherwise. This helper is intended

                     to  be  used in combination with bpf_csum_diff(), in par?

                     ticular when the checksum needs to be updated after  data

                     has  been  written  into the packet through direct packet

                     access.

              Return The checksum on success, or a negative error code in case

                     of failure.

       void bpf_set_hash_invalid(struct sk_buff *skb)

              Description

                     Invalidate  the  current  skb->hash. It can be used after Page 23/73



                     mangling on headers through direct packet access, in  or?

                     der  to indicate that the hash is outdated and to trigger

                     a recalculation the next time the kernel tries to  access

                     this  hash  or  when  the bpf_get_hash_recalc() helper is

                     called.

       long bpf_get_numa_node_id(void)

              Description

                     Return the id of the current NUMA node. The  primary  use

                     case  for this helper is the selection of sockets for the

                     local NUMA node, when the program is attached to  sockets

                     using   the  SO_ATTACH_REUSEPORT_EBPF  option  (see  also

                     socket(7)), but the helper is  also  available  to  other

                     eBPF  program  types,  similarly  to  bpf_get_smp_proces?

                     sor_id().

              Return The id of current NUMA node.

       long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)

              Description

                     Grows headroom of packet associated to  skb  and  adjusts

                     the  offset  of  the  MAC  header accordingly, adding len

                     bytes of space. It automatically extends and  reallocates

                     memory as required.

                     This  helper  can  be used on a layer 3 skb to push a MAC

                     header for redirection into a layer 2 device.

                     All values for flags are reserved for future  usage,  and

                     must be left at zero.

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)

              Description Page 24/73



                     Adjust  (move)  xdp_md->data by delta bytes. Note that it

                     is possible to use  a  negative  value  for  delta.  This

                     helper  can  be used to prepare the packet for pushing or

                     popping headers.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)

              Description

                     Copy a NUL terminated string from an  unsafe  kernel  ad?

                     dress  unsafe_ptr to dst. See bpf_probe_read_kernel_str()

                     for more details.

                     Generally,     use      bpf_probe_read_user_str()      or

                     bpf_probe_read_kernel_str() instead.

              Return On  success,  the strictly positive length of the string,

                     including the trailing NUL character. On error,  a  nega?

                     tive value.

       u64 bpf_get_socket_cookie(struct sk_buff *skb)

              Description

                     If  the struct sk_buff pointed by skb has a known socket,

                     retrieve the cookie (generated by  the  kernel)  of  this

                     socket.   If  no  cookie has been set yet, generate a new

                     cookie. Once generated, the socket cookie remains  stable

                     for the life of the socket. This helper can be useful for

                     monitoring per socket networking traffic statistics as it

                     provides  a  global socket identifier that can be assumed

                     unique.

              Return A 8-byte long non-decreasing number on success, or  0  if

                     the socket field is missing inside skb.

       u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) Page 25/73



              Description

                     Equivalent to bpf_get_socket_cookie() helper that accepts

                     skb, but gets socket from struct bpf_sock_addr context.

              Return A 8-byte long non-decreasing number.

       u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)

              Description

                     Equivalent to bpf_get_socket_cookie() helper that accepts

                     skb, but gets socket from struct bpf_sock_ops context.

              Return A 8-byte long non-decreasing number.

       u32 bpf_get_socket_uid(struct sk_buff *skb)

              Return The  owner  UID  of  the socket associated to skb. If the

                     socket is NULL, or if it is not a full socket (i.e. if it

                     is  a time-wait or a request socket instead), overflowuid

                     value is returned (note that overflowuid  might  also  be

                     the actual UID value for the socket).

       long bpf_set_hash(struct sk_buff *skb, u32 hash)

              Description

                     Set  the  full  hash for skb (set the field skb->hash) to

                     value hash.

              Return 0

       long bpf_setsockopt(void *bpf_socket,  int  level,  int  optname,  void

       *optval, int optlen)

              Description

                     Emulate  a  call to setsockopt() on the socket associated

                     to bpf_socket, which must be a full socket. The level  at

                     which  the option resides and the name optname of the op?

                     tion must be specified, see setsockopt(2) for more infor?

                     mation.   The option value of length optlen is pointed by

                     optval.

                     bpf_socket should be one of the following:

                     ? struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

                     ? struct bpf_sock_addr for  BPF_CGROUP_INET4_CONNECT  and

                       BPF_CGROUP_INET6_CONNECT. Page 26/73



                     This helper actually implements a subset of setsockopt().

                     It supports the following levels:

                     ? SOL_SOCKET,  which  supports  the  following  optnames:

                       SO_RCVBUF,  SO_SNDBUF, SO_MAX_PACING_RATE, SO_PRIORITY,

                       SO_RCVLOWAT, SO_MARK, SO_BINDTODEVICE, SO_KEEPALIVE.

                     ? IPPROTO_TCP, which  supports  the  following  optnames:

                       TCP_CONGESTION,    TCP_BPF_IW,   TCP_BPF_SNDCWND_CLAMP,

                       TCP_SAVE_SYN, TCP_KEEPIDLE, TCP_KEEPINTVL, TCP_KEEPCNT,

                       TCP_SYNCNT, TCP_USER_TIMEOUT.

                     ? IPPROTO_IP, which supports optname IP_TOS.

                     ? IPPROTO_IPV6, which supports optname IPV6_TCLASS.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_skb_adjust_room(struct  sk_buff *skb, s32 len_diff, u32 mode,

       u64 flags)

              Description

                     Grow or shrink the room for data in the packet associated

                     to skb by len_diff, and according to the selected mode.

                     By  default, the helper will reset any offloaded checksum

                     indicator of  the  skb  to  CHECKSUM_NONE.  This  can  be

                     avoided by the following flag:

                     ? BPF_F_ADJ_ROOM_NO_CSUM_RESET:  Do  not  reset offloaded

                       checksum data of the skb to CHECKSUM_NONE.

                     There are two supported modes at this time:

                     ? BPF_ADJ_ROOM_MAC: Adjust room at the  mac  layer  (room

                       space is added or removed below the layer 2 header).

                     ? BPF_ADJ_ROOM_NET:  Adjust  room  at  the  network layer

                       (room space is added  or  removed  below  the  layer  3

                       header).

                     The following flags are supported at this time:

                     ? BPF_F_ADJ_ROOM_FIXED_GSO:  Do not adjust gso_size.  Ad?

                       justing mss in this way is not allowed for datagrams.

                     ? BPF_F_ADJ_ROOM_ENCAP_L3_IPV4,        BPF_F_ADJ_ROOM_EN?

                       CAP_L3_IPV6: Any new space is reserved to hold a tunnel Page 27/73



                       header.  Configure skb offsets and other fields accord?

                       ingly.

                     ? BPF_F_ADJ_ROOM_ENCAP_L4_GRE,         BPF_F_ADJ_ROOM_EN?

                       CAP_L4_UDP: Use with ENCAP_L3 flags to further  specify

                       the tunnel type.

                     ? BPF_F_ADJ_ROOM_ENCAP_L2(len):   Use   with  ENCAP_L3/L4

                       flags to further specify the tunnel type;  len  is  the

                       length of the inner MAC header.

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)

              Description

                     Redirect  the packet to the endpoint referenced by map at

                     index key. Depending on its type, this  map  can  contain

                     references to net devices (for forwarding packets through

                     other ports), or to CPUs (for redirecting XDP  frames  to

                     another  CPU; but this is only implemented for native XDP

                     (with driver support) as of this writing).

                     The lower two bits of flags are used as the  return  code

                     if the map lookup fails. This is so that the return value

                     can be one of the XDP program return codes up to  XDP_TX,

                     as chosen by the caller. Any higher bits in the flags ar?

                     gument must be unset.

                     See also bpf_redirect(), which only supports  redirecting

                     to an ifindex, but doesn't require a map to do so.

              Return XDP_REDIRECT  on  success,  or the value of the two lower

                     bits of the flags argument on error.

       long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map,  u32

       key, u64 flags) Page 28/73



              Description

                     Redirect  the  packet to the socket referenced by map (of

                     type BPF_MAP_TYPE_SOCKMAP) at index key. Both ingress and

                     egress  interfaces  can  be  used  for  redirection.  The

                     BPF_F_INGRESS value in flags is used to make the distinc?

                     tion  (ingress  path  is selected if the flag is present,

                     egress path otherwise). This is the only  flag  supported

                     for now.

              Return SK_PASS on success, or SK_DROP on error.

       long  bpf_sock_map_update(struct  bpf_sock_ops  *skops,  struct bpf_map

       *map, void *key, u64 flags)

              Description

                     Add an entry to, or update a map referencing sockets. The

                     skops  is used as a new value for the entry associated to

                     key. flags is one of:

                     BPF_NOEXIST

                            The entry for key must not exist in the map.

                     BPF_EXIST

                            The entry for key must already exist in the map.

                     BPF_ANY

                            No condition on the existence  of  the  entry  for

                            key.

                     If  the map has eBPF programs (parser and verdict), those

                     will be inherited by  the  socket  being  added.  If  the

                     socket is already attached to eBPF programs, this results

                     in an error.

              Return 0 on success, or a negative error in case of failure.

       long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)

              Description

                     Adjust the address pointed by xdp_md->data_meta by  delta

                     (which can be positive or negative). Note that this oper?

                     ation modifies the address stored in xdp_md->data, so the

                     latter  must  be  loaded  only  after the helper has been Page 29/73



                     called.

                     The use of xdp_md->data_meta is optional and programs are

                     not  required  to  use it. The rationale is that when the

                     packet is processed with XDP (e.g. as DoS filter), it  is

                     possible  to  push further meta data along with it before

                     passing to the stack, and to give the guarantee  that  an

                     ingress  eBPF  program attached as a TC classifier on the

                     same device can pick this up for further post-processing.

                     Since  TC  works with socket buffers, it remains possible

                     to set from XDP the mark or priority pointers,  or  other

                     pointers  for  the  socket  buffer.   Having this scratch

                     space generic and programmable allows for more  flexibil?

                     ity  as the user is free to store whatever meta data they

                     need.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_perf_event_read_value(struct bpf_map *map, u64  flags,  struct

       bpf_perf_event_value *buf, u32 buf_size)

              Description

                     Read the value of a perf event counter, and store it into

                     buf of size buf_size. This helper relies on a map of type

                     BPF_MAP_TYPE_PERF_EVENT_ARRAY.  The  nature  of  the perf

                     event counter is selected when map is updated  with  perf

                     event file descriptors. The map is an array whose size is

                     the number of available CPUs, and each  cell  contains  a

                     value relative to one CPU. The value to retrieve is indi?

                     cated by flags, that contains the index  of  the  CPU  to

                     look  up,  masked  with  BPF_F_INDEX_MASK. Alternatively,

                     flags can be set to BPF_F_CURRENT_CPU  to  indicate  that Page 30/73



                     the value for the current CPU should be retrieved.

                     This    helper    behaves    in    a    way    close   to

                     bpf_perf_event_read() helper, save that instead  of  just

                     returning the value observed, it fills the buf structure.

                     This allows for additional data to be retrieved: in  par?

                     ticular,  the  enabled and running times (in buf->enabled

                     and buf->running, respectively) are copied.  In  general,

                     bpf_perf_event_read_value()     is    recommended    over

                     bpf_perf_event_read(), which has some ABI issues and pro?

                     vides fewer functionalities.

                     These  values are interesting, because hardware PMU (Per?

                     formance Monitoring Unit) counters are limited resources.

                     When  there  are  more  PMU based perf events opened than

                     available counters, kernel will multiplex these events so

                     each  event  gets certain percentage (but not all) of the

                     PMU time. In case that multiplexing happens,  the  number

                     of  samples  or  counter  value will not reflect the case

                     compared to when no multiplexing occurs. This makes  com?

                     parison between different runs difficult.  Typically, the

                     counter value should be normalized  before  comparing  to

                     other  experiments.  The  usual  normalization is done as

                     follows.

                        normalized_counter = counter * t_enabled / t_running

                     Where t_enabled is the time enabled for event and  t_run?

                     ning  is the time running for event since last normaliza?

                     tion. The enabled and running times are accumulated since

                     the  perf  event  open. To achieve scaling factor between

                     two invocations of an eBPF program, users can use CPU  id

                     as  the key (which is typical for perf array usage model)

                     to remember the previous value and do the calculation in?

                     side the eBPF program.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_perf_prog_read_value(struct  bpf_perf_event_data *ctx, struct Page 31/73



       bpf_perf_event_value *buf, u32 buf_size)

              Description

                     For en eBPF program attached to a  perf  event,  retrieve

                     the  value  of  the  event  counter associated to ctx and

                     store it in the structure pointed  by  buf  and  of  size

                     buf_size.  Enabled  and  running times are also stored in

                     the    structure    (see    description     of     helper

                     bpf_perf_event_read_value() for more details).

              Return 0 on success, or a negative error in case of failure.

       long  bpf_getsockopt(void  *bpf_socket,  int  level,  int optname, void

       *optval, int optlen)

              Description

                     Emulate a call to getsockopt() on the  socket  associated

                     to  bpf_socket, which must be a full socket. The level at

                     which the option resides and the name optname of the  op?

                     tion must be specified, see getsockopt(2) for more infor?

                     mation.  The retrieved value is stored in  the  structure

                     pointed by opval and of length optlen.

                     bpf_socket should be one of the following:

                     ? struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

                     ? struct  bpf_sock_addr  for BPF_CGROUP_INET4_CONNECT and

                       BPF_CGROUP_INET6_CONNECT.

                     This helper actually implements a subset of getsockopt().

                     It supports the following levels:

                     ? IPPROTO_TCP, which supports optname TCP_CONGESTION.

                     ? IPPROTO_IP, which supports optname IP_TOS.

                     ? IPPROTO_IPV6, which supports optname IPV6_TCLASS.

              Return 0 on success, or a negative error in case of failure.

       long bpf_override_return(struct pt_regs *regs, u64 rc)

              Description

                     Used  for  error  injection,  this helper uses kprobes to

                     override the return value of the probed function, and  to

                     set  it to rc.  The first argument is the context regs on Page 32/73



                     which the kprobe works.

                     This helper works by setting the PC (program counter)  to

                     an  override function which is run in place of the origi?

                     nal probed function. This means the  probed  function  is

                     not  run  at  all.  The replacement function just returns

                     with the required value.

                     This helper has security implications, and thus  is  sub?

                     ject  to restrictions. It is only available if the kernel

                     was compiled with the CONFIG_BPF_KPROBE_OVERRIDE configu?

                     ration  option,  and  in this case it only works on func?

                     tions tagged with  ALLOW_ERROR_INJECTION  in  the  kernel

                     code.

                     Also,  the helper is only available for the architectures

                     having the CONFIG_FUNCTION_ERROR_INJECTION option. As  of

                     this writing, x86 architecture is the only one to support

                     this feature.

              Return 0

       long  bpf_sock_ops_cb_flags_set(struct  bpf_sock_ops   *bpf_sock,   int

       argval)

              Description

                     Attempt  to  set  the  value of the bpf_sock_ops_cb_flags

                     field for the full TCP socket associated to  bpf_sock_ops

                     to argval.

                     The  primary  use  of this field is to determine if there

                     should   be   calls   to   eBPF    programs    of    type

                     BPF_PROG_TYPE_SOCK_OPS at various points in the TCP code.

                     A program of the same type can change its value, per con?

                     nection  and  as necessary, when the connection is estab?

                     lished. This field is directly  accessible  for  reading,

                     but  this helper must be used for updates in order to re?

                     turn an error if an eBPF program tries to set a  callback

                     that is not supported in the current kernel.

                     argval is a flag array which can combine these flags: Page 33/73



                     ? BPF_SOCK_OPS_RTO_CB_FLAG (retransmission time out)

                     ? BPF_SOCK_OPS_RETRANS_CB_FLAG (retransmission)

                     ? BPF_SOCK_OPS_STATE_CB_FLAG (TCP state change)

                     ? BPF_SOCK_OPS_RTT_CB_FLAG (every RTT)

                     Therefore,  this function can be used to clear a callback

                     flag by setting the appropriate bit to zero. e.g. to dis?

                     able the RTO callback:

                     bpf_sock_ops_cb_flags_set(bpf_sock,

                            bpf_sock->bpf_sock_ops_cb_flags                  &

                            ~BPF_SOCK_OPS_RTO_CB_FLAG)

                     Here are some examples of where one could call such  eBPF

                     program:

                     ? When RTO fires.

                     ? When a packet is retransmitted.

                     ? When the connection terminates.

                     ? When a packet is sent.

                     ? When a packet is received.

              Return Code -EINVAL if the socket is not a full TCP socket; oth?

                     erwise, a positive number containing the bits that  could

                     not be set is returned (which comes down to 0 if all bits

                     were set as required).

       long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map,

       u32 key, u64 flags)

              Description

                     This  helper is used in programs implementing policies at

                     the socket level. If the message msg is allowed  to  pass

                     (i.e. if the verdict eBPF program returns SK_PASS), redi?

                     rect  it  to  the  socket  referenced  by  map  (of  type

                     BPF_MAP_TYPE_SOCKMAP)  at  index  key.  Both  ingress and

                     egress  interfaces  can  be  used  for  redirection.  The

                     BPF_F_INGRESS value in flags is used to make the distinc?

                     tion (ingress path is selected if the  flag  is  present,

                     egress  path  otherwise). This is the only flag supported Page 34/73



                     for now.

              Return SK_PASS on success, or SK_DROP on error.

       long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)

              Description

                     For socket policies, apply the verdict of the  eBPF  pro?

                     gram to the next bytes (number of bytes) of message msg.

                     For  example,  this  helper  can be used in the following

                     cases:

                     ? A single sendmsg() or sendfile() system  call  contains

                       multiple logical messages that the eBPF program is sup?

                       posed to read and for which it should apply a verdict.

                     ? An eBPF program only cares to read the first bytes of a

                       msg.  If  the message has a large payload, then setting

                       up and calling the  eBPF  program  repeatedly  for  all

                       bytes,  even though the verdict is already known, would

                       create unnecessary overhead.

                     When called from within an eBPF program, the helper  sets

                     a  counter  internal  to  the BPF infrastructure, that is

                     used to apply the last verdict  to  the  next  bytes.  If

                     bytes  is  smaller  than the current data being processed

                     from a sendmsg() or sendfile()  system  call,  the  first

                     bytes  will  be  sent and the eBPF program will be re-run

                     with the pointer for start of data pointing to byte  num?

                     ber  bytes  + 1. If bytes is larger than the current data

                     being processed, then the eBPF verdict will be applied to

                     multiple  sendmsg()  or  sendfile() calls until bytes are

                     consumed.

                     Note that if a socket closes with  the  internal  counter

                     holding  a  non-zero value, this is not a problem because

                     data is not being buffered for bytes and is sent as it is

                     received.

              Return 0

       long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) Page 35/73



              Description

                     For socket policies, prevent the execution of the verdict

                     eBPF program for message msg until  bytes  (byte  number)

                     have been accumulated.

                     This  can  be  used  when  one needs a specific number of

                     bytes before a verdict can be assigned, even if the  data

                     spans multiple sendmsg() or sendfile() calls. The extreme

                     case would be a user calling  sendmsg()  repeatedly  with

                     1-byte  long message segments. Obviously, this is bad for

                     performance, but it is still valid. If the  eBPF  program

                     needs  bytes  bytes to validate a header, this helper can

                     be used to prevent the eBPF program to  be  called  again

                     until bytes have been accumulated.

              Return 0

       long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64

       flags)

              Description

                     For socket policies, pull in non-linear  data  from  user

                     space   for   msg   and   set   pointers   msg->data  and

                     msg->data_end to start and end bytes  offsets  into  msg,

                     respectively.

                     If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg

                     it can only parse data that the (data, data_end) pointers

                     have already consumed. For sendmsg() hooks this is likely

                     the first scatterlist element. But for calls  relying  on

                     the  sendpage  handler (e.g. sendfile()) this will be the

                     range (0, 0) because the data is shared with  user  space

                     and  by  default  the objective is to avoid allowing user

                     space to modify data while (or after) eBPF verdict is be?

                     ing  decided. This helper can be used to pull in data and

                     to set the start and end pointer to  given  values.  Data

                     will  be copied if necessary (i.e. if data was not linear

                     and if start and end pointers do not point  to  the  same Page 36/73



                     chunk).

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used

                     in combination with direct packet access.

                     All  values  for flags are reserved for future usage, and

                     must be left at zero.

              Return 0 on success, or a negative error in case of failure.

       long bpf_bind(struct bpf_sock_addr *ctx,  struct  sockaddr  *addr,  int

       addr_len)

              Description

                     Bind  the socket associated to ctx to the address pointed

                     by addr, of length addr_len. This allows for making  out?

                     going  connection  from the desired IP address, which can

                     be useful for example when all processes inside a  cgroup

                     should  use one single IP address on a host that has mul?

                     tiple IP configured.

                     This helper works for IPv4 and IPv6, TCP and UDP sockets.

                     The   domain   (addr->sa_family)   must  be  AF_INET  (or

                     AF_INET6). It's advised to pass zero  port  (sin_port  or

                     sin6_port)  which  triggers  IP_BIND_ADDRESS_NO_PORT-like

                     behavior and lets the kernel efficiently pick up  an  un?

                     used  port as long as 4-tuple is unique. Passing non-zero

                     port might lead to degraded performance.

              Return 0 on success, or a negative error in case of failure.

       long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)

              Description

                     Adjust (move) xdp_md->data_end by delta bytes. It is pos?

                     sible  to  both  shrink and grow the packet tail.  Shrink

                     done via delta being a negative integer.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks Page 37/73



                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_skb_get_xfrm_state(struct  sk_buff  *skb,  u32  index,  struct

       bpf_xfrm_state *xfrm_state, u32 size, u64 flags)

              Description

                     Retrieve the XFRM state (IP transform framework, see also

                     ip-xfrm(8)) at index in XFRM "security path" for skb.

                     The   retrieved   value   is   stored   in   the   struct

                     bpf_xfrm_state pointed by xfrm_state and of length size.

                     All  values  for flags are reserved for future usage, and

                     must be left at zero.

                     This helper is available only if the kernel was  compiled

                     with CONFIG_XFRM configuration option.

              Return 0 on success, or a negative error in case of failure.

       long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)

              Description

                     Return  a  user or a kernel stack in bpf program provided

                     buffer.  To achieve this, the helper needs ctx, which  is

                     a  pointer to the context on which the tracing program is

                     executed.  To store the stacktrace, the bpf program  pro?

                     vides buf with a nonnegative size.

                     The  last  argument,  flags,  holds  the  number of stack

                     frames  to  skip   (from   0   to   255),   masked   with

                     BPF_F_SKIP_FIELD_MASK.  The  next bits can be used to set

                     the following flags:

                     BPF_F_USER_STACK

                            Collect a user space stack  instead  of  a  kernel

                            stack.

                     BPF_F_USER_BUILD_ID

                            Collect  buildid+offset  instead  of  ips for user

                            stack, only  valid  if  BPF_F_USER_STACK  is  also Page 38/73



                            specified.

                     bpf_get_stack()  can  collect  up to PERF_MAX_STACK_DEPTH

                     both kernel and user frames, subject to sufficient  large

                     buffer  size. Note that this limit can be controlled with

                     the sysctl program, and that it should  be  manually  in?

                     creased  in  order  to  profile long user stacks (such as

                     stacks for Java programs). To do so, use:

                        # sysctl kernel.perf_event_max_stack=<new value>

              Return A non-negative value equal to or less than size  on  suc?

                     cess, or a negative error in case of failure.

       long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to,

       u32 len, u32 start_header)

              Description

                     This helper is similar to bpf_skb_load_bytes() in that it

                     provides  an  easy way to load len bytes from offset from

                     the packet associated to skb, into the buffer pointed  by

                     to.  The  difference  to  bpf_skb_load_bytes()  is that a

                     fifth argument start_header exists in order to  select  a

                     base offset to start from. start_header can be one of:

                     BPF_HDR_START_MAC

                            Base offset to load data from is skb's mac header.

                     BPF_HDR_START_NET

                            Base  offset  to  load  data from is skb's network

                            header.

                     In general,  "direct  packet  access"  is  the  preferred

                     method  to access packet data, however, this helper is in

                     particular useful in socket filters where skb->data  does

                     not always point to the start of the mac header and where

                     "direct packet access" is not available.

              Return 0 on success, or a negative error in case of failure.

       long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen,

       u32 flags)

              Description Page 39/73



                     Do  FIB  lookup  in  kernel  tables  using  parameters in

                     params.  If lookup is successful and result shows  packet

                     is  to be forwarded, the neighbor tables are searched for

                     the nexthop.  If successful (ie., FIB lookup  shows  for?

                     warding  and nexthop is resolved), the nexthop address is

                     returned in ipv4_dst or ipv6_dst based on family, smac is

                     set  to mac address of egress device, dmac is set to nex?

                     thop mac address, rt_metric is set to metric  from  route

                     (IPv4/IPv6  only), and ifindex is set to the device index

                     of the nexthop from the FIB lookup.

                     plen argument is the size of the passed in struct.  flags

                     argument  can be a combination of one or more of the fol?

                     lowing values:

                     BPF_FIB_LOOKUP_DIRECT

                            Do a direct table lookup vs full lookup using  FIB

                            rules.

                     BPF_FIB_LOOKUP_OUTPUT

                            Perform lookup from an egress perspective (default

                            is ingress).

                     ctx is either struct xdp_md for XDP  programs  or  struct

                     sk_buff tc cls_act programs.

              Return

                     ? < 0 if any input argument is invalid

                     ? 0 on success (packet is forwarded, nexthop neighbor ex?

                       ists)

                     ? > 0 one of BPF_FIB_LKUP_RET_ codes explaining  why  the

                       packet is not forwarded or needs assist from full stack

       long  bpf_sock_hash_update(struct  bpf_sock_ops  *skops, struct bpf_map

       *map, void *key, u64 flags)

              Description

                     Add an entry to, or update  a  sockhash  map  referencing

                     sockets.   The skops is used as a new value for the entry

                     associated to key. flags is one of: Page 40/73



                     BPF_NOEXIST

                            The entry for key must not exist in the map.

                     BPF_EXIST

                            The entry for key must already exist in the map.

                     BPF_ANY

                            No condition on the existence  of  the  entry  for

                            key.

                     If  the map has eBPF programs (parser and verdict), those

                     will be inherited by  the  socket  being  added.  If  the

                     socket is already attached to eBPF programs, this results

                     in an error.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_msg_redirect_hash(struct  sk_msg_buff  *msg,  struct  bpf_map

       *map, void *key, u64 flags)

              Description

                     This  helper is used in programs implementing policies at

                     the socket level. If the message msg is allowed  to  pass

                     (i.e. if the verdict eBPF program returns SK_PASS), redi?

                     rect  it  to  the  socket  referenced  by  map  (of  type

                     BPF_MAP_TYPE_SOCKHASH)  using  hash key. Both ingress and

                     egress  interfaces  can  be  used  for  redirection.  The

                     BPF_F_INGRESS value in flags is used to make the distinc?

                     tion (ingress path is selected if the  flag  is  present,

                     egress  path  otherwise). This is the only flag supported

                     for now.

              Return SK_PASS on success, or SK_DROP on error.

       long bpf_sk_redirect_hash(struct sk_buff  *skb,  struct  bpf_map  *map,

       void *key, u64 flags)

              Description

                     This  helper is used in programs implementing policies at

                     the skb socket level. If the sk_buff skb  is  allowed  to

                     pass (i.e.  if the verdict eBPF program returns SK_PASS),

                     redirect it to the socket  referenced  by  map  (of  type Page 41/73



                     BPF_MAP_TYPE_SOCKHASH)  using  hash key. Both ingress and

                     egress  interfaces  can  be  used  for  redirection.  The

                     BPF_F_INGRESS value in flags is used to make the distinc?

                     tion (ingress path is selected if the  flag  is  present,

                     egress  otherwise).  This  is the only flag supported for

                     now.

              Return SK_PASS on success, or SK_DROP on error.

       long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void  *hdr,  u32

       len)

              Description

                     Encapsulate the packet associated to skb within a Layer 3

                     protocol header. This header is provided in the buffer at

                     address  hdr,  with len its size in bytes. type indicates

                     the protocol of the header and can be one of:

                     BPF_LWT_ENCAP_SEG6

                            IPv6 encapsulation  with  Segment  Routing  Header

                            (struct  ipv6_sr_hdr).  hdr only contains the SRH,

                            the IPv6 header is computed by the kernel.

                     BPF_LWT_ENCAP_SEG6_INLINE

                            Only works if skb contains an IPv6 packet.  Insert

                            a  Segment Routing Header (struct ipv6_sr_hdr) in?

                            side the IPv6 header.

                     BPF_LWT_ENCAP_IP

                            IP  encapsulation  (GRE/GUE/IPIP/etc).  The  outer

                            header  must  be IPv4 or IPv6, followed by zero or

                            more additional headers, up  to  LWT_BPF_MAX_HEAD?

                            ROOM  total bytes in all prepended headers. Please

                            note that if skb_is_gso(skb) is true, no more than

                            two  headers  can  be  prepended,  and  the  inner

                            header,  if  present,  should  be  either  GRE  or

                            UDP/GUE.

                     BPF_LWT_ENCAP_SEG6*  types  can be called by BPF programs

                     of type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP  type  can Page 42/73



                     be  called  by bpf programs of types BPF_PROG_TYPE_LWT_IN

                     and BPF_PROG_TYPE_LWT_XMIT.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_lwt_seg6_store_bytes(struct sk_buff *skb,  u32  offset,  const

       void *from, u32 len)

              Description

                     Store len bytes from address from into the packet associ?

                     ated to skb, at offset. Only the flags, tag and TLVs  in?

                     side  the  outermost  IPv6  Segment Routing Header can be

                     modified through this helper.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_lwt_seg6_adjust_srh(struct  sk_buff  *skb,  u32  offset,  s32

       delta)

              Description

                     Adjust  the  size allocated to TLVs in the outermost IPv6

                     Segment Routing Header contained in the packet associated

                     to  skb,  at position offset by delta bytes. Only offsets

                     after the segments are accepted. delta  can  be  as  well

                     positive (growing) as negative (shrinking).

                     A call to this helper is susceptible to change the under?

                     lying packet buffer. Therefore, at load time, all  checks

                     on  pointers  previously done by the verifier are invali?

                     dated and must be performed again, if the helper is  used Page 43/73



                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param,

       u32 param_len)

              Description

                     Apply an IPv6 Segment Routing action of  type  action  to

                     the packet associated to skb. Each action takes a parame?

                     ter contained at address param, and of  length  param_len

                     bytes.  action can be one of:

                     SEG6_LOCAL_ACTION_END_X

                            End.X action: Endpoint with Layer-3 cross-connect.

                            Type of param: struct in6_addr.

                     SEG6_LOCAL_ACTION_END_T

                            End.T action: Endpoint with  specific  IPv6  table

                            lookup.  Type of param: int.

                     SEG6_LOCAL_ACTION_END_B6

                            End.B6  action:  Endpoint bound to an SRv6 policy.

                            Type of param: struct ipv6_sr_hdr.

                     SEG6_LOCAL_ACTION_END_B6_ENCAP

                            End.B6.Encap action: Endpoint bound to an SRv6 en?

                            capsulation   policy.    Type   of  param:  struct

                            ipv6_sr_hdr.

                     A call to this helper is susceptible to change the under?

                     lying  packet buffer. Therefore, at load time, all checks

                     on pointers previously done by the verifier  are  invali?

                     dated  and must be performed again, if the helper is used

                     in combination with direct packet access.

              Return 0 on success, or a negative error in case of failure.

       long bpf_rc_repeat(void *ctx)

              Description

                     This helper is used in programs implementing IR decoding,

                     to report a successfully decoded repeat key message. This

                     delays the generation of a key up  event  for  previously Page 44/73



                     generated key down event.

                     Some  IR protocols like NEC have a special IR message for

                     repeating last button, for when a button is held down.

                     The ctx should point to the lirc sample  as  passed  into

                     the program.

                     This  helper is only available is the kernel was compiled

                     with the CONFIG_BPF_LIRC_MODE2 configuration  option  set

                     to "y".

              Return 0

       long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)

              Description

                     This helper is used in programs implementing IR decoding,

                     to report a successfully decoded key press with scancode,

                     toggle  value in the given protocol. The scancode will be

                     translated to a keycode using the rc keymap, and reported

                     as an input key down event. After a period a key up event

                     is generated. This period can be extended by calling  ei?

                     ther  bpf_rc_keydown()  again  with  the  same values, or

                     calling bpf_rc_repeat().

                     Some protocols include a toggle bit, in case  the  button

                     was  released and pressed again between consecutive scan?

                     codes.

                     The ctx should point to the lirc sample  as  passed  into

                     the program.

                     The  protocol  is  the  decoded protocol number (see enum

                     rc_proto for some predefined values).

                     This helper is only available is the kernel was  compiled

                     with  the  CONFIG_BPF_LIRC_MODE2 configuration option set

                     to "y".

              Return 0

       u64 bpf_skb_cgroup_id(struct sk_buff *skb)

              Description

                     Return the cgroup v2 id of the socket associated with the Page 45/73



                     skb.  This is roughly similar to the bpf_get_cgroup_clas?

                     sid() helper for cgroup v1 by providing a tag resp. iden?

                     tifier  that  can  be  matched on or used for map lookups

                     e.g. to implement policy. The cgroup v2  id  of  a  given

                     path  in  the  hierarchy is exposed in user space through

                     the f_handle API in order to get to the same 64-bit id.

                     This helper can be used on TC egress  path,  but  not  on

                     ingress, and is available only if the kernel was compiled

                     with the CONFIG_SOCK_CGROUP_DATA configuration option.

              Return The id is returned or 0 in case the id could not  be  re?

                     trieved.

       u64 bpf_get_current_cgroup_id(void)

              Return A  64-bit  integer containing the current cgroup id based

                     on the cgroup within which the current task is running.

       void *bpf_get_local_storage(void *map, u64 flags)

              Description

                     Get the pointer to the local storage area.  The type  and

                     the size of the local storage is defined by the map argu?

                     ment.  The flags meaning is specific for each  map  type,

                     and has to be 0 for cgroup local storage.

                     Depending  on  the BPF program type, a local storage area

                     can be shared between multiple instances of the BPF  pro?

                     gram, running simultaneously.

                     A  user should care about the synchronization by himself.

                     For example, by using the BPF_STX_XADD instruction to al?

                     ter the shared data.

              Return A pointer to the local storage area.

       long   bpf_sk_select_reuseport(struct  sk_reuseport_md  *reuse,  struct

       bpf_map *map, void *key, u64 flags)

              Description

                     Select a SO_REUSEPORT socket from  a  BPF_MAP_TYPE_REUSE?

                     PORT_ARRAY  map.  It checks the selected socket is match?

                     ing the incoming request in the socket buffer. Page 46/73



              Return 0 on success, or a negative error in case of failure.

       u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)

              Description

                     Return id of cgroup v2 that is ancestor of cgroup associ?

                     ated with the skb at the ancestor_level.  The root cgroup

                     is at ancestor_level zero and each step down the  hierar?

                     chy  increments  the level. If ancestor_level == level of

                     cgroup associated with skb, then  return  value  will  be

                     same as that of bpf_skb_cgroup_id().

                     The  helper  is  useful  to  implement  policies based on

                     cgroups that are upper in hierarchy than immediate cgroup

                     associated with skb.

                     The format of returned id and helper limitations are same

                     as in bpf_skb_cgroup_id().

              Return The id is returned or 0 in case the id could not  be  re?

                     trieved.

       struct  bpf_sock  *bpf_sk_lookup_tcp(void  *ctx,  struct bpf_sock_tuple

       *tuple, u32 tuple_size, u64 netns, u64 flags)

              Description

                     Look for TCP socket matching tuple, optionally in a child

                     network   namespace  netns.  The  return  value  must  be

                     checked, and if non-NULL, released via bpf_sk_release().

                     The ctx should point to the context of the program,  such

                     as the skb or socket (depending on the hook in use). This

                     is used to determine the base network namespace  for  the

                     lookup.

                     tuple_size must be one of:

                     sizeof(tuple->ipv4)

                            Look for an IPv4 socket.

                     sizeof(tuple->ipv6)

                            Look for an IPv6 socket.

                     If  the  netns  is a negative signed 32-bit integer, then

                     the socket lookup table in the netns associated with  the Page 47/73



                     ctx  will be used. For the TC hooks, this is the netns of

                     the device in the skb. For  socket  hooks,  this  is  the

                     netns of the socket.  If netns is any other signed 32-bit

                     value greater than or equal to zero then it specifies the

                     ID of the netns relative to the netns associated with the

                     ctx. netns values beyond the range of 32-bit integers are

                     reserved for future use.

                     All  values  for flags are reserved for future usage, and

                     must be left at zero.

                     This helper is available only if the kernel was  compiled

                     with CONFIG_NET configuration option.

              Return Pointer  to  struct bpf_sock, or NULL in case of failure.

                     For sockets with reuseport option,  the  struct  bpf_sock

                     result  is  from reuse->socks[] using the hash of the tu?

                     ple.

       struct bpf_sock  *bpf_sk_lookup_udp(void  *ctx,  struct  bpf_sock_tuple

       *tuple, u32 tuple_size, u64 netns, u64 flags)

              Description

                     Look for UDP socket matching tuple, optionally in a child

                     network  namespace  netns.  The  return  value  must   be

                     checked, and if non-NULL, released via bpf_sk_release().

                     The  ctx should point to the context of the program, such

                     as the skb or socket (depending on the hook in use). This

                     is  used  to determine the base network namespace for the

                     lookup.

                     tuple_size must be one of:

                     sizeof(tuple->ipv4)

                            Look for an IPv4 socket.

                     sizeof(tuple->ipv6)

                            Look for an IPv6 socket.

                     If the netns is a negative signed  32-bit  integer,  then

                     the  socket lookup table in the netns associated with the

                     ctx will be used. For the TC hooks, this is the netns  of Page 48/73



                     the  device  in  the  skb.  For socket hooks, this is the

                     netns of the socket.  If netns is any other signed 32-bit

                     value greater than or equal to zero then it specifies the

                     ID of the netns relative to the netns associated with the

                     ctx. netns values beyond the range of 32-bit integers are

                     reserved for future use.

                     All values for flags are reserved for future  usage,  and

                     must be left at zero.

                     This  helper is available only if the kernel was compiled

                     with CONFIG_NET configuration option.

              Return Pointer to struct bpf_sock, or NULL in case  of  failure.

                     For  sockets  with  reuseport option, the struct bpf_sock

                     result is from reuse->socks[] using the hash of  the  tu?

                     ple.

       long bpf_sk_release(struct bpf_sock *sock)

              Description

                     Release  the  reference  held  by  sock.  sock  must be a

                     non-NULL    pointer    that     was     returned     from

                     bpf_sk_lookup_xxx().

              Return 0 on success, or a negative error in case of failure.

       long  bpf_map_push_elem(struct  bpf_map  *map,  const  void *value, u64

       flags)

              Description

                     Push an element value in map. flags is one of:

                     BPF_EXIST

                            If the queue/stack is full, the oldest element  is

                            removed to make room for this.

              Return 0 on success, or a negative error in case of failure.

       long bpf_map_pop_elem(struct bpf_map *map, void *value)

              Description

                     Pop an element from map.

              Return 0 on success, or a negative error in case of failure.

       long bpf_map_peek_elem(struct bpf_map *map, void *value) Page 49/73



              Description

                     Get an element from map without removing it.

              Return 0 on success, or a negative error in case of failure.

       long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64

       flags)

              Description

                     For socket policies, insert len bytes into msg at  offset

                     start.

                     If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg

                     it may want to insert metadata or options into  the  msg.

                     This can later be read and used by any of the lower layer

                     BPF hooks.

                     This helper may fail if under memory pressure  (a  malloc

                     fails)  in these cases BPF programs will get an appropri?

                     ate error and BPF programs will need to handle them.

              Return 0 on success, or a negative error in case of failure.

       long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len,  u64

       flags)

              Description

                     Will  remove len bytes from a msg starting at byte start.

                     This may result in ENOMEM errors under certain situations

                     if an allocation and copy are required due to a full ring

                     buffer.  However, the helper will try to avoid doing  the

                     allocation  if  possible. Other errors can occur if input

                     parameters are invalid either due to start byte not being

                     valid  part  of  msg  payload  and/or  pop value being to

                     large.

              Return 0 on success, or a negative error in case of failure.

       long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)

              Description

                     This helper is used in programs implementing IR decoding,

                     to report a successfully decoded pointer movement.

                     The  ctx  should  point to the lirc sample as passed into Page 50/73



                     the program.

                     This helper is only available is the kernel was  compiled

                     with  the  CONFIG_BPF_LIRC_MODE2 configuration option set

                     to "y".

              Return 0

       long bpf_spin_lock(struct bpf_spin_lock *lock)

              Description

                     Acquire a spinlock represented by the pointer lock, which

                     is  stored  as  part of a value of a map. Taking the lock

                     allows to safely update the rest of the  fields  in  that

                     value. The spinlock can (and must) later be released with

                     a call to bpf_spin_unlock(lock).

                     Spinlocks in BPF programs come with a number of  restric?

                     tions and constraints:

                     ? bpf_spin_lock  objects  are only allowed inside maps of

                       types BPF_MAP_TYPE_HASH  and  BPF_MAP_TYPE_ARRAY  (this

                       list could be extended in the future).

                     ? BTF description of the map is mandatory.

                     ? The BPF program can take ONE lock at a time, since tak?

                       ing two or more could cause dead locks.

                     ? Only one struct bpf_spin_lock is allowed per  map  ele?

                       ment.

                     ? When  the  lock  is  taken, calls (either BPF to BPF or

                       helpers) are not allowed.

                     ? The BPF_LD_ABS and BPF_LD_IND instructions are not  al?

                       lowed inside a spinlock-ed region.

                     ? The  BPF program MUST call bpf_spin_unlock() to release

                       the lock, on all execution paths, before it returns.

                     ? The BPF program can access  struct  bpf_spin_lock  only

                       via  the bpf_spin_lock() and bpf_spin_unlock() helpers.

                       Loading or storing data into the  struct  bpf_spin_lock

                       lock; field of a map is not allowed.

                     ? To  use the bpf_spin_lock() helper, the BTF description Page 51/73



                       of the map value must  be  a  struct  and  have  struct

                       bpf_spin_lock  anyname; field at the top level.  Nested

                       lock inside another struct is not allowed.

                     ? The struct bpf_spin_lock lock field in a map value must

                       be aligned on a multiple of 4 bytes in that value.

                     ? Syscall  with command BPF_MAP_LOOKUP_ELEM does not copy

                       the bpf_spin_lock field to user space.

                     ? Syscall with  command  BPF_MAP_UPDATE_ELEM,  or  update

                       from  a  BPF  program,  do not update the bpf_spin_lock

                       field.

                     ? bpf_spin_lock cannot be on the stack or inside  a  net?

                       working packet (it can only be inside of a map values).

                     ? bpf_spin_lock is available to root only.

                     ? Tracing  programs and socket filter programs cannot use

                       bpf_spin_lock() due to insufficient  preemption  checks

                       (but this may change in the future).

                     ? bpf_spin_lock   is   not   allowed  in  inner  maps  of

                       map-in-map.

              Return 0

       long bpf_spin_unlock(struct bpf_spin_lock *lock)

              Description

                     Release  the  lock  previously  locked  by  a   call   to

                     bpf_spin_lock(lock).

              Return 0

       struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)

              Description

                     This  helper gets a struct bpf_sock pointer such that all

                     the fields in this bpf_sock can be accessed.

              Return A struct bpf_sock pointer on success, or NULL in case  of

                     failure.

       struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)

              Description

                     This  helper  gets  a  struct bpf_tcp_sock pointer from a Page 52/73



                     struct bpf_sock pointer.

              Return A struct bpf_tcp_sock pointer on success, or NULL in case

                     of failure.

       long bpf_skb_ecn_set_ce(struct sk_buff *skb)

              Description

                     Set  ECN  (Explicit  Congestion Notification) field of IP

                     header to CE (Congestion Encountered) if current value is

                     ECT (ECN Capable Transport). Otherwise, do nothing. Works

                     with IPv6 and IPv4.

              Return 1 if the CE flag is set (either  by  the  current  helper

                     call  or  because it was already present), 0 if it is not

                     set.

       struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)

              Description

                     Return a struct bpf_sock  pointer  in  TCP_LISTEN  state.

                     bpf_sk_release() is unnecessary and not allowed.

              Return A  struct bpf_sock pointer on success, or NULL in case of

                     failure.

       struct bpf_sock *bpf_skc_lookup_tcp(void  *ctx,  struct  bpf_sock_tuple

       *tuple, u32 tuple_size, u64 netns, u64 flags)

              Description

                     Look for TCP socket matching tuple, optionally in a child

                     network  namespace  netns.  The  return  value  must   be

                     checked, and if non-NULL, released via bpf_sk_release().

                     This function is identical to bpf_sk_lookup_tcp(), except

                     that it also returns timewait  or  request  sockets.  Use

                     bpf_sk_fullsock()  or  bpf_tcp_sock()  to access the full

                     structure.

                     This helper is available only if the kernel was  compiled

                     with CONFIG_NET configuration option.

              Return Pointer  to  struct bpf_sock, or NULL in case of failure.

                     For sockets with reuseport option,  the  struct  bpf_sock

                     result  is  from reuse->socks[] using the hash of the tu? Page 53/73



                     ple.

       long  bpf_tcp_check_syncookie(struct  bpf_sock  *sk,  void  *iph,   u32

       iph_len, struct tcphdr *th, u32 th_len)

              Description

                     Check  whether  iph and th contain a valid SYN cookie ACK

                     for the listening socket in sk.

                     iph points to the start of the IPv4 or IPv6 header, while

                     iph_len  contains  sizeof(struct  iphdr) or sizeof(struct

                     ip6hdr).

                     th points to the start of the TCP  header,  while  th_len

                     contains sizeof(struct tcphdr).

              Return 0 if iph and th are a valid SYN cookie ACK, or a negative

                     error otherwise.

       long bpf_sysctl_get_name(struct  bpf_sysctl  *ctx,  char  *buf,  size_t

       buf_len, u64 flags)

              Description

                     Get  name  of  sysctl in /proc/sys/ and copy it into pro?

                     vided by program buffer buf of size buf_len.

                     The  buffer  is  always  NUL  terminated,   unless   it's

                     zero-sized.

                     If  flags is zero, full name (e.g. "net/ipv4/tcp_mem") is

                     copied. Use BPF_F_SYSCTL_BASE_NAME flag to copy base name

                     only (e.g. "tcp_mem").

              Return Number  of  character  copied (not including the trailing

                     NUL).

                     -E2BIG if the buffer wasn't big enough (buf will  contain

                     truncated name in this case).

       long  bpf_sysctl_get_current_value(struct  bpf_sysctl  *ctx, char *buf,

       size_t buf_len)

              Description

                     Get current  value  of  sysctl  as  it  is  presented  in

                     /proc/sys  (incl.  newline, etc), and copy it as a string

                     into provided by program buffer buf of size buf_len. Page 54/73



                     The whole value is copied, no matter what  file  position

                     user space issued e.g. sys_read at.

                     The   buffer   is  always  NUL  terminated,  unless  it's

                     zero-sized.

              Return Number of character copied (not  including  the  trailing

                     NUL).

                     -E2BIG  if the buffer wasn't big enough (buf will contain

                     truncated name in this case).

                     -EINVAL if current value was  unavailable,  e.g.  because

                     sysctl is uninitialized and read returns -EIO for it.

       long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t

       buf_len)

              Description

                     Get new value being written by user space to sysctl  (be?

                     fore  the  actual  write happens) and copy it as a string

                     into provided by program buffer buf of size buf_len.

                     User space may write new value at file position > 0.

                     The  buffer  is  always  NUL  terminated,   unless   it's

                     zero-sized.

              Return Number  of  character  copied (not including the trailing

                     NUL).

                     -E2BIG if the buffer wasn't big enough (buf will  contain

                     truncated name in this case).

                     -EINVAL if sysctl is being read.

       long  bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf,

       size_t buf_len)

              Description

                     Override new value being written by user space to  sysctl

                     with  value  provided  by  program  in buffer buf of size

                     buf_len.

                     buf should contain a string in same form as  provided  by

                     user space on sysctl write.

                     User  space  may write new value at file position > 0. To Page 55/73



                     override the whole sysctl value file position  should  be

                     set to zero.

              Return 0 on success.

                     -E2BIG if the buf_len is too big.

                     -EINVAL if sysctl is being read.

       long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)

              Description

                     Convert the initial part of the string from buffer buf of

                     size buf_len to a long integer  according  to  the  given

                     base and save the result in res.

                     The  string  may  begin with an arbitrary amount of white

                     space (as determined by isspace(3)) followed by a  single

                     optional '-' sign.

                     Five  least  significant bits of flags encode base, other

                     bits are currently unused.

                     Base must be either 8, 10, 16 or 0 to detect it automati?

                     cally similar to user space strtol(3).

              Return Number  of  characters consumed on success. Must be posi?

                     tive but no more than buf_len.

                     -EINVAL if no valid digits were found or unsupported base

                     was provided.

                     -ERANGE if resulting value was out of range.

       long  bpf_strtoul(const  char *buf, size_t buf_len, u64 flags, unsigned

       long *res)

              Description

                     Convert the initial part of the string from buffer buf of

                     size buf_len to an unsigned long integer according to the

                     given base and save the result in res.

                     The string may begin with an arbitrary  amount  of  white

                     space (as determined by isspace(3)).

                     Five  least  significant bits of flags encode base, other

                     bits are currently unused.

                     Base must be either 8, 10, 16 or 0 to detect it automati? Page 56/73



                     cally similar to user space strtoul(3).

              Return Number  of  characters consumed on success. Must be posi?

                     tive but no more than buf_len.

                     -EINVAL if no valid digits were found or unsupported base

                     was provided.

                     -ERANGE if resulting value was out of range.

       void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void

       *value, u64 flags)

              Description

                     Get a bpf-local-storage from a sk.

                     Logically, it could be thought of getting the value  from

                     a  map  with  sk as the key.  From this perspective,  the

                     usage is not much different from bpf_map_lookup_elem(map,

                     &sk)  except  this helper enforces the key must be a full

                     socket and the  map  must  be  a  BPF_MAP_TYPE_SK_STORAGE

                     also.

                     Underneath,  the value is stored locally at sk instead of

                     the map.   The  map  is  used  as  the  bpf-local-storage

                     "type".  The  bpf-local-storage  "type" (i.e. the map) is

                     searched against all bpf-local-storages residing at sk.

                     An optional flags  (BPF_SK_STORAGE_GET_F_CREATE)  can  be

                     used such that a new bpf-local-storage will be created if

                     one does not exist.  value  can  be  used  together  with

                     BPF_SK_STORAGE_GET_F_CREATE  to specify the initial value

                     of a  bpf-local-storage.   If  value  is  NULL,  the  new

                     bpf-local-storage will be zero initialized.

              Return A bpf-local-storage pointer is returned on success.

                     NULL  if  not found or there was an error in adding a new

                     bpf-local-storage.

       long bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)

              Description

                     Delete a bpf-local-storage from a sk.

              Return 0 on success. Page 57/73



                     -ENOENT if the bpf-local-storage cannot be found.

       long bpf_send_signal(u32 sig)

              Description

                     Send signal sig to the process of the current task.   The

                     signal may be delivered to any of this process's threads.

              Return 0 on success or successfully queued.

                     -EBUSY if work queue under nmi is full.

                     -EINVAL if sig is invalid.

                     -EPERM if no permission to send the sig.

                     -EAGAIN if bpf program can try again.

       s64  bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len,

       struct tcphdr *th, u32 th_len)

              Description

                     Try to issue a SYN cookie for the packet with correspond?

                     ing  IP/TCP  headers, iph and th, on the listening socket

                     in sk.

                     iph points to the start of the IPv4 or IPv6 header, while

                     iph_len  contains  sizeof(struct  iphdr) or sizeof(struct

                     ip6hdr).

                     th points to the start of the TCP  header,  while  th_len

                     contains the length of the TCP header.

              Return On  success,  lower 32 bits hold the generated SYN cookie

                     in followed by 16 bits which hold the MSS value for  that

                     cookie, and the top 16 bits are unused.

                     On failure, the returned value is one of the following:

                     -EINVAL SYN cookie cannot be issued due to error

                     -ENOENT SYN cookie should not be issued (no SYN flood)

                     -EOPNOTSUPP  kernel  configuration  does  not  enable SYN

                     cookies

                     -EPROTONOSUPPORT IP packet version is not 4 or 6

       long bpf_skb_output(void *ctx, struct bpf_map  *map,  u64  flags,  void

       *data, u64 size)

              Description Page 58/73



                     Write raw data blob into a special BPF perf event held by

                     map  of  type  BPF_MAP_TYPE_PERF_EVENT_ARRAY.  This  perf

                     event must have the following attributes: PERF_SAMPLE_RAW

                     as   sample_type,   PERF_TYPE_SOFTWARE   as   type,   and

                     PERF_COUNT_SW_BPF_OUTPUT as config.

                     The flags are used to indicate the index in map for which

                     the value must be put, masked with BPF_F_INDEX_MASK.  Al?

                     ternatively, flags can be set to BPF_F_CURRENT_CPU to in?

                     dicate that the index of the current CPU core  should  be

                     used.

                     The value to write, of size, is passed through eBPF stack

                     and pointed by data.

                     ctx is a pointer to in-kernel struct sk_buff.

                     This helper is similar to bpf_perf_event_output() but re?

                     stricted to raw_tracepoint bpf programs.

              Return 0 on success, or a negative error in case of failure.

       long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)

              Description

                     Safely attempt to read size bytes from user space address

                     unsafe_ptr and store the data in dst.

              Return 0 on success, or a negative error in case of failure.

       long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)

              Description

                     Safely attempt to read size bytes from kernel  space  ad?

                     dress unsafe_ptr and store the data in dst.

              Return 0 on success, or a negative error in case of failure.

       long  bpf_probe_read_user_str(void  *dst,  u32  size,  const  void *un?

       safe_ptr)

              Description

                     Copy a NUL terminated string from an unsafe user  address

                     unsafe_ptr  to dst. The size should include the terminat?

                     ing NUL byte. In case the string length is  smaller  than

                     size, the target is not padded with further NUL bytes. If Page 59/73



                     the string length is larger than size, just size-1  bytes

                     are copied and the last byte is set to NUL.

                     On  success, the length of the copied string is returned.

                     This makes this helper useful  in  tracing  programs  for

                     reading  strings,  and more importantly to get its length

                     at runtime. See the following snippet:

                        SEC("kprobe/sys_open")

                        void bpf_sys_open(struct pt_regs *ctx)

                        {

                                char buf[PATHLEN]; // PATHLEN is defined to 256

                                int res = bpf_probe_read_user_str(buf, sizeof(buf),

                                                                  ctx->di);

                                // Consume buf, for example push it to

                                // userspace via bpf_perf_event_output(); we

                                // can use res (the string length) as event

                                // size, after checking its boundaries.

                        }

                     In comparison, using  bpf_probe_read_user()  helper  here

                     instead  to read the string would require to estimate the

                     length at compile time, and would often result in copying

                     more memory than necessary.

                     Another  useful  use  case  is  when  parsing  individual

                     process arguments  or  individual  environment  variables

                     navigating      current->mm->arg_start      and      cur?

                     rent->mm->env_start: using this  helper  and  the  return

                     value, one can quickly iterate at the right offset of the

                     memory area.

              Return On success, the strictly positive length of  the  string,

                     including  the  trailing NUL character. On error, a nega?

                     tive value.

       long bpf_probe_read_kernel_str(void *dst, u32  size,  const  void  *un?

       safe_ptr)

              Description Page 60/73



                     Copy  a  NUL  terminated string from an unsafe kernel ad?

                     dress  unsafe_ptr  to  dst.  Same   semantics   as   with

                     bpf_probe_read_user_str() apply.

              Return On  success,  the strictly positive length of the string,

                     including the trailing NUL character. On error,  a  nega?

                     tive value.

       long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)

              Description

                     Send  out a tcp-ack. tp is the in-kernel struct tcp_sock.

                     rcv_nxt is the ack_seq to be sent out.

              Return 0 on success, or a negative error in case of failure.

       long bpf_send_signal_thread(u32 sig)

              Description

                     Send signal sig to the thread corresponding to  the  cur?

                     rent task.

              Return 0 on success or successfully queued.

                     -EBUSY if work queue under nmi is full.

                     -EINVAL if sig is invalid.

                     -EPERM if no permission to send the sig.

                     -EAGAIN if bpf program can try again.

       u64 bpf_jiffies64(void)

              Description

                     Obtain the 64bit jiffies

              Return The 64 bit jiffies

       long   bpf_read_branch_records(struct  bpf_perf_event_data  *ctx,  void

       *buf, u32 size, u64 flags)

              Description

                     For an eBPF program attached to a  perf  event,  retrieve

                     the  branch records (struct perf_branch_entry) associated

                     to ctx and store it in the buffer pointed by  buf  up  to

                     size size bytes.

              Return On  success,  number of bytes written to buf. On error, a

                     negative value. Page 61/73



                     The flags can be set to BPF_F_GET_BRANCH_RECORDS_SIZE  to

                     instead  return the number of bytes required to store all

                     the branch entries. If this flag is set, buf may be NULL.

                     -EINVAL if arguments invalid or size not  a  multiple  of

                     sizeof(struct perf_branch_entry).

                     -ENOENT if architecture does not support branch records.

       long    bpf_get_ns_current_pid_tgid(u64    dev,    u64    ino,   struct

       bpf_pidns_info *nsdata, u32 size)

              Description

                     Returns 0 on success, values for pid  and  tgid  as  seen

                     from the current namespace will be returned in nsdata.

              Return 0 on success, or one of the following in case of failure:

                     -EINVAL  if  dev  and inum supplied don't match dev_t and

                     inode number with nsfs of current task, or if dev conver?

                     sion to dev_t lost high bits.

                     -ENOENT if pidns does not exists for the current task.

       long  bpf_xdp_output(void  *ctx,  struct  bpf_map *map, u64 flags, void

       *data, u64 size)

              Description

                     Write raw data blob into a special BPF perf event held by

                     map  of  type  BPF_MAP_TYPE_PERF_EVENT_ARRAY.  This  perf

                     event must have the following attributes: PERF_SAMPLE_RAW

                     as   sample_type,   PERF_TYPE_SOFTWARE   as   type,   and

                     PERF_COUNT_SW_BPF_OUTPUT as config.

                     The flags are used to indicate the index in map for which

                     the value must be put, masked with BPF_F_INDEX_MASK.  Al?

                     ternatively, flags can be set to BPF_F_CURRENT_CPU to in?

                     dicate  that  the index of the current CPU core should be

                     used.

                     The value to write, of size, is passed through eBPF stack

                     and pointed by data.

                     ctx is a pointer to in-kernel struct xdp_buff.

                     This  helper is similar to bpf_perf_eventoutput() but re? Page 62/73



                     stricted to raw_tracepoint bpf programs.

              Return 0 on success, or a negative error in case of failure.

       u64 bpf_get_netns_cookie(void *ctx)

              Description

                     Retrieve the cookie (generated by the kernel) of the net?

                     work namespace the input ctx is associated with. The net?

                     work namespace cookie remains stable for its lifetime and

                     provides  a global identifier that can be assumed unique.

                     If ctx is NULL, then the helper returns  the  cookie  for

                     the  initial network namespace. The cookie itself is very

                     similar to that of  bpf_get_socket_cookie()  helper,  but

                     for network namespaces instead of sockets.

              Return A 8-byte long opaque number.

       u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)

              Description

                     Return id of cgroup v2 that is ancestor of the cgroup as?

                     sociated with the current task at the ancestor_level. The

                     root  cgroup is at ancestor_level zero and each step down

                     the hierarchy increments the level. If ancestor_level  ==

                     level  of  cgroup  associated with the current task, then

                     return value will be the same  as  that  of  bpf_get_cur?

                     rent_cgroup_id().

                     The  helper  is  useful  to  implement  policies based on

                     cgroups that are upper in hierarchy than immediate cgroup

                     associated with the current task.

                     The format of returned id and helper limitations are same

                     as in bpf_get_current_cgroup_id().

              Return The id is returned or 0 in case the id could not  be  re?

                     trieved.

       long bpf_sk_assign(struct sk_buff *skb, struct bpf_sock *sk, u64 flags)

              Description

                     Helper  is overloaded depending on BPF program type. This

                     description  applies   to   BPF_PROG_TYPE_SCHED_CLS   and Page 63/73



                     BPF_PROG_TYPE_SCHED_ACT programs.

                     Assign  the sk to the skb. When combined with appropriate

                     routing configuration to receive the packet  towards  the

                     socket,  will  cause skb to be delivered to the specified

                     socket.  Subsequent redirection  of  skb  via   bpf_redi?

                     rect(),  bpf_clone_redirect() or other methods outside of

                     BPF may interfere with successful delivery to the socket.

                     This operation is only valid from TC ingress path.

                     The flags argument must be zero.

              Return 0 on success, or a negative error in case of failure:

                     -EINVAL if specified flags are not supported.

                     -ENOENT if the socket is unavailable for assignment.

                     -ENETUNREACH if the socket is unreachable (wrong netns).

                     -EOPNOTSUPP if the operation is not supported, for  exam?

                     ple a call from outside of TC ingress.

                     -ESOCKTNOSUPPORT  if  the  socket  type  is not supported

                     (reuseport).

       long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk,  u64

       flags)

              Description

                     Helper  is overloaded depending on BPF program type. This

                     description applies to BPF_PROG_TYPE_SK_LOOKUP programs.

                     Select the sk as a result of a socket lookup.

                     For the operation to succeed passed socket must  be  com?

                     patible  with  the packet description provided by the ctx

                     object.

                     L4 protocol (IPPROTO_TCP or IPPROTO_UDP) must be an exact

                     match. While IP family (AF_INET or AF_INET6) must be com?

                     patible, that is IPv6 sockets that are not v6-only can be

                     selected for IPv4 packets.

                     Only TCP listeners and UDP unconnected sockets can be se?

                     lected. sk can also be NULL to reset any previous  selec?

                     tion. Page 64/73



                     flags argument can combination of following values:

                     ? BPF_SK_LOOKUP_F_REPLACE to override the previous socket

                       selection, potentially done by a BPF program  that  ran

                       before us.

                     ? BPF_SK_LOOKUP_F_NO_REUSEPORT   to  skip  load-balancing

                       within reuseport group for the socket being selected.

                     On success ctx->sk will point to the selected socket.

              Return 0 on success, or a negative errno in case of failure.

                     ? -EAFNOSUPPORT if socket family (sk->family) is not com?

                       patible with packet family (ctx->family).

                     ? -EEXIST  if  socket  has  been already selected, poten?

                       tially by another program, and  BPF_SK_LOOKUP_F_REPLACE

                       flag was not specified.

                     ? -EINVAL if unsupported flags were specified.

                     ? -EPROTOTYPE   if   socket  L4  protocol  (sk->protocol)

                       doesn't match packet protocol (ctx->protocol).

                     ? -ESOCKTNOSUPPORT if socket is not in allowed state (TCP

                       listening or UDP unconnected).

       u64 bpf_ktime_get_boot_ns(void)

              Description

                     Return  the  time  elapsed since system boot, in nanosec?

                     onds.  Does include the time the  system  was  suspended.

                     See: clock_gettime(CLOCK_BOOTTIME)

              Return Current ktime.

       long  bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size,

       const void *data, u32 data_len)

              Description

                     bpf_seq_printf() uses seq_file seq_printf() to print  out

                     the  format  string.   The m represents the seq_file. The

                     fmt and fmt_size are for the format  string  itself.  The

                     data  and  data_len are format string arguments. The data

                     are a u64 array and corresponding  format  string  values

                     are  stored  in the array. For strings and pointers where Page 65/73



                     pointees are accessed, only the pointer values are stored

                     in  the  data array.  The data_len is the size of data in

                     bytes.

                     Formats %s, %p{i,I}{4,6} requires to read kernel  memory.

                     Reading  kernel memory may fail due to either invalid ad?

                     dress or valid  address  but  requiring  a  major  memory

                     fault.  If reading kernel memory fails, the string for %s

                     will  be  an  empty  string,  and  the  ip  address   for

                     %p{i,I}{4,6}  will  be 0. Not returning error to bpf pro?

                     gram is consistent with what bpf_trace_printk() does  for

                     now.

              Return 0 on success, or a negative error in case of failure:

                     -EBUSY  if  per-CPU  memory  copy buffer is busy, can try

                     again by returning 1 from bpf program.

                     -EINVAL if arguments  are  invalid,  or  if  fmt  is  in?

                     valid/unsupported.

                     -E2BIG if fmt contains too many format specifiers.

                     -EOVERFLOW  if an overflow happened: The same object will

                     be tried again.

       long bpf_seq_write(struct seq_file *m, const void *data, u32 len)

              Description

                     bpf_seq_write() uses seq_file seq_write()  to  write  the

                     data.   The  m  represents the seq_file. The data and len

                     represent the data to write in bytes.

              Return 0 on success, or a negative error in case of failure:

                     -EOVERFLOW if an overflow happened: The same object  will

                     be tried again.

       u64 bpf_sk_cgroup_id(struct bpf_sock *sk)

              Description

                     Return the cgroup v2 id of the socket sk.

                     sk  must be a non-NULL pointer to a full socket, e.g. one

                     returned  from  bpf_sk_lookup_xxx(),   bpf_sk_fullsock(),

                     etc.   The   format   of   returned  id  is  same  as  in Page 66/73



                     bpf_skb_cgroup_id().

                     This helper is available only if the kernel was  compiled

                     with the CONFIG_SOCK_CGROUP_DATA configuration option.

              Return The  id  is returned or 0 in case the id could not be re?

                     trieved.

       u64 bpf_sk_ancestor_cgroup_id(struct bpf_sock *sk, int ancestor_level)

              Description

                     Return id of cgroup v2 that is ancestor of cgroup associ?

                     ated  with the sk at the ancestor_level.  The root cgroup

                     is at ancestor_level zero and each step down the  hierar?

                     chy  increments  the level. If ancestor_level == level of

                     cgroup associated with sk, then return value will be same

                     as that of bpf_sk_cgroup_id().

                     The  helper  is  useful  to  implement  policies based on

                     cgroups that are upper in hierarchy than immediate cgroup

                     associated with sk.

                     The format of returned id and helper limitations are same

                     as in bpf_sk_cgroup_id().

              Return The id is returned or 0 in case the id could not  be  re?

                     trieved.

       long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)

              Description

                     Copy size bytes from data into a ring buffer ringbuf.  If

                     BPF_RB_NO_WAKEUP is specified in flags,  no  notification

                     of new data availability is sent.  If BPF_RB_FORCE_WAKEUP

                     is specified in flags, notification of  new  data  avail?

                     ability is sent unconditionally.

              Return 0 on success, or a negative error in case of failure.

       void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)

              Description

                     Reserve size bytes of payload in a ring buffer ringbuf.

              Return Valid  pointer with size bytes of memory available; NULL,

                     otherwise. Page 67/73



       void bpf_ringbuf_submit(void *data, u64 flags)

              Description

                     Submit reserved ring buffer sample, pointed to  by  data.

                     If  BPF_RB_NO_WAKEUP  is specified in flags, no notifica?

                     tion   of   new   data   availability   is   sent.     If

                     BPF_RB_FORCE_WAKEUP  is  specified in flags, notification

                     of new data availability is sent unconditionally.

              Return Nothing. Always succeeds.

       void bpf_ringbuf_discard(void *data, u64 flags)

              Description

                     Discard reserved ring buffer sample, pointed to by  data.

                     If  BPF_RB_NO_WAKEUP  is specified in flags, no notifica?

                     tion   of   new   data   availability   is   sent.     If

                     BPF_RB_FORCE_WAKEUP  is  specified in flags, notification

                     of new data availability is sent unconditionally.

              Return Nothing. Always succeeds.

       u64 bpf_ringbuf_query(void *ringbuf, u64 flags)

              Description

                     Query various characteristics of  provided  ring  buffer.

                     What exactly is queries is determined by flags:

                     ? BPF_RB_AVAIL_DATA: Amount of data not yet consumed.

                     ? BPF_RB_RING_SIZE: The size of ring buffer.

                     ? BPF_RB_CONS_POS: Consumer position (can wrap around).

                     ? BPF_RB_PROD_POS:   Producer(s)   position   (can   wrap

                       around).

                     Data returned is just a momentary snapshot of actual val?

                     ues  and  could be inaccurate, so this facility should be

                     used to power heuristics and for reporting, not  to  make

                     100% correct calculation.

              Return Requested value, or 0, if flags are not recognized.

       long bpf_csum_level(struct sk_buff *skb, u64 level)

              Description

                     Change  the  skbs checksum level by one layer up or down, Page 68/73



                     or reset it entirely to none in order to have  the  stack

                     perform  checksum  validation. The level is applicable to

                     the following protocols: TCP, UDP, GRE, SCTP,  FCOE.  For

                     example,  a  decap of | ETH | IP | UDP | GUE | IP | TCP |

                     into | ETH | IP |  TCP  |  through  bpf_skb_adjust_room()

                     helper  with passing in BPF_F_ADJ_ROOM_NO_CSUM_RESET flag

                     would  require  one   call   to   bpf_csum_level()   with

                     BPF_CSUM_LEVEL_DEC since the UDP header is removed. Simi?

                     larly, an encap of the latter into the  former  could  be

                     accompanied  by  a  helper  call to bpf_csum_level() with

                     BPF_CSUM_LEVEL_INC if the skb is  still  intended  to  be

                     processed  in  higher layers of the stack instead of just

                     egressing at tc.

                     There are three supported level settings at this time:

                     ? BPF_CSUM_LEVEL_INC: Increases skb->csum_level for  skbs

                       with CHECKSUM_UNNECESSARY.

                     ? BPF_CSUM_LEVEL_DEC:  Decreases skb->csum_level for skbs

                       with CHECKSUM_UNNECESSARY.

                     ? BPF_CSUM_LEVEL_RESET: Resets skb->csum_level to  0  and

                       sets  CHECKSUM_NONE to force checksum validation by the

                       stack.

                     ? BPF_CSUM_LEVEL_QUERY:  No-op,   returns   the   current

                       skb->csum_level.

              Return 0  on success, or a negative error in case of failure. In

                     the   case   of   BPF_CSUM_LEVEL_QUERY,    the    current

                     skb->csum_level  is returned or the error code -EACCES in

                     case the skb is not subject to CHECKSUM_UNNECESSARY.

       struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)

              Description

                     Dynamically cast a sk pointer to a tcp6_sock pointer.

              Return sk if casting is valid, or NULL otherwise.

       struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)

              Description Page 69/73



                     Dynamically cast a sk pointer to a tcp_sock pointer.

              Return sk if casting is valid, or NULL otherwise.

       struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)

              Description

                     Dynamically cast a  sk  pointer  to  a  tcp_timewait_sock

                     pointer.

              Return sk if casting is valid, or NULL otherwise.

       struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)

              Description

                     Dynamically  cast  a  sk  pointer  to  a tcp_request_sock

                     pointer.

              Return sk if casting is valid, or NULL otherwise.

       struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)

              Description

                     Dynamically cast a sk pointer to a udp6_sock pointer.

              Return sk if casting is valid, or NULL otherwise.

       long bpf_get_task_stack(struct task_struct *task, void *buf, u32  size,

       u64 flags)

              Description

                     Return  a  user or a kernel stack in bpf program provided

                     buffer.  To achieve this, the helper needs task, which is

                     a  valid  pointer  to  struct  task_struct.  To store the

                     stacktrace, the bpf program provides buf with a  nonnega?

                     tive size.

                     The  last  argument,  flags,  holds  the  number of stack

                     frames  to  skip   (from   0   to   255),   masked   with

                     BPF_F_SKIP_FIELD_MASK.  The  next bits can be used to set

                     the following flags:

                     BPF_F_USER_STACK

                            Collect a user space stack  instead  of  a  kernel

                            stack.

                     BPF_F_USER_BUILD_ID

                            Collect  buildid+offset  instead  of  ips for user Page 70/73



                            stack, only  valid  if  BPF_F_USER_STACK  is  also

                            specified.

                     bpf_get_task_stack()      can      collect      up     to

                     PERF_MAX_STACK_DEPTH both kernel and user frames, subject

                     to sufficient large buffer size. Note that this limit can

                     be controlled with the sysctl program, and that it should

                     be  manually  increased  in  order  to  profile long user

                     stacks (such as stacks for Java programs). To do so, use:

                        # sysctl kernel.perf_event_max_stack=<new value>

              Return A non-negative value equal to or less than size  on  suc?

                     cess, or a negative error in case of failure.

EXAMPLES

       Example  usage  for most of the eBPF helpers listed in this manual page

       are available within the Linux kernel sources, at the  following  loca?

       tions:

       ? samples/bpf/

       ? tools/testing/selftests/bpf/

LICENSE

       eBPF  programs  can  have  an associated license, passed along with the

       bytecode instructions to the kernel when the programs are  loaded.  The

       format  for  that string is identical to the one in use for kernel mod?

       ules (Dual licenses, such as "Dual BSD/GPL", may be used). Some  helper

       functions  are only accessible to programs that are compatible with the

       GNU Privacy License (GPL).

       In order to use such helpers, the eBPF program must be loaded with  the

       correct  license string passed (via attr) to the bpf() system call, and

       this generally translates into the C source code of  the  program  con?

       taining a line similar to the following:

          char ____license[] __attribute__((section("license"), used)) = "GPL";

IMPLEMENTATION

       This  manual  page  is  an  effort to document the existing eBPF helper

       functions.  But as of this writing, the BPF sub-system is  under  heavy

       development.  New  eBPF  program or map types are added, along with new Page 71/73



       helper functions. Some helpers are occasionally made available for  ad?

       ditional  program  types.  So in spite of the efforts of the community,

       this page might not be up-to-date. If you want  to  check  by  yourself

       what  helper  functions exist in your kernel, or what types of programs

       they can support, here are some files among the kernel  tree  that  you

       may be interested in:

       ? include/uapi/linux/bpf.h is the main BPF header. It contains the full

         list of all helper functions, as well as many other  BPF  definitions

         including  most  of  the  flags,  structs  or  constants  used by the

         helpers.

       ? net/core/filter.c contains the  definition  of  most  network-related

         helper  functions,  and the list of program types from which they can

         be used.

       ? kernel/trace/bpf_trace.c is the  equivalent  for  most  tracing  pro?

         gram-related helpers.

       ? kernel/bpf/verifier.c contains the functions used to check that valid

         types of eBPF maps are used with a given helper function.

       ? kernel/bpf/  directory  contains  other  files  in  which  additional

         helpers are defined (for cgroups, sockmaps, etc.).

       ? The  bpftool  utility can be used to probe the availability of helper

         functions on the system (as well as supported program and map  types,

         and  a  number  of  other  parameters). To do so, run bpftool feature

         probe (see bpftool-feature(8) for details). Add the unprivileged key?

         word to list features available to unprivileged users.

       Compatibility  between helper functions and program types can generally

       be found in the files where helper functions are defined. Look for  the

       struct  bpf_func_proto  objects and for functions returning them: these

       functions contain a list of helpers that a given program type can call.

       Note  that  the  default:  label  of the switch ... case used to filter

       helpers can call other functions, themselves allowing access  to  addi?

       tional helpers. The requirement for GPL license is also in those struct

       bpf_func_proto.

       Compatibility between helper functions and map types can  be  found  in Page 72/73



       the  check_map_func_compatibility()  function  in file kernel/bpf/veri?

       fier.c.

       Helper functions that invalidate the checks on data and data_end point?

       ers     for    network    processing    are    listed    in    function

       bpf_helper_changes_pkt_data() in file net/core/filter.c.

SEE ALSO

       bpf(2), bpftool(8), cgroups(7), ip(8), perf_event_open(2),  sendmsg(2),

       socket(7), tc-bpf(8)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A

       description of the project, information about reporting bugs,  and  the

       latest     version     of     this    page,    can    be    found    at

       https://www.kernel.org/doc/man-pages/.

                                                                BPF-HELPERS(7)

Page 73/73


