
Rocky Enterprise Linux 9.2 Manual Pages on command 'bc.1'

$ man bc.1

bc(1)                       General Commands Manual                      bc(1)

NAME

       bc - An arbitrary precision calculator language

SYNTAX

       bc [ -hlwsqv ] [long-options] [  file ... ]

DESCRIPTION

       bc  is a language that supports arbitrary precision numbers with inter?

       active execution of statements.  There are  some  similarities  in  the

       syntax  to  the  C  programming  language.   A standard math library is

       available by command line option.  If requested, the  math  library  is

       defined before processing any files.  bc starts by processing code from

       all the files listed on the command line in the  order  listed.   After

       all  files  have been processed, bc reads from the standard input.  All

       code is executed as it is read.  (If a file contains a command to  halt

       the processor, bc will never read from the standard input.)

       This  version  of  bc contains several extensions beyond traditional bc

       implementations and the POSIX draft standard.  Command line options can

       cause these extensions to print a warning or to be rejected.  This doc? Page 1/21



       ument describes the language accepted by  this  processor.   Extensions

       will be identified as such.

   OPTIONS

       -h, --help

              Print the usage and exit.

       -i, --interactive

              Force interactive mode.

       -l, --mathlib

              Define the standard math library.

       -w, --warn

              Give warnings for extensions to POSIX bc.

       -s, --standard

              Process exactly the POSIX bc language.

       -q, --quiet

              Do not print the normal GNU bc welcome.

       -v, --version

              Print the version number and copyright and quit.

   NUMBERS

       The most basic element in bc is the number.  Numbers are arbitrary pre?

       cision numbers.  This precision is both in the  integer  part  and  the

       fractional part.  All numbers are represented internally in decimal and

       all computation is done in decimal.  (This  version  truncates  results

       from divide and multiply operations.)  There are two attributes of num?

       bers, the length and the scale.  The length is the total number of dec?

       imal digits used by bc to represent a number and the scale is the total

       number of decimal digits after the decimal point.  For example:

               .000001 has a length of 6 and scale of 6.

               1935.000 has a length of 7 and a scale of 3.

   VARIABLES

       Numbers are stored in two types of variables, simple variables and  ar?

       rays.   Both simple variables and array variables are named.  Names be?

       gin with a letter followed by any number of letters, digits and  under?

       scores.  All letters must be lower case.  (Full alpha-numeric names are Page 2/21



       an extension. In POSIX bc all names are a single  lower  case  letter.)

       The type of variable is clear by the context because all array variable

       names will be followed by brackets ([]).

       There are four special variables, scale, ibase, obase, and last.  scale

       defines  how  some  operations use digits after the decimal point.  The

       default value of scale is 0. ibase and obase define the conversion base

       for input and output numbers.  The default for both input and output is

       base 10.  last (an extension) is a variable that has the value  of  the

       last  printed  number.  These will be discussed in further detail where

       appropriate.  All of these variables may have values assigned  to  them

       as well as used in expressions.

   COMMENTS

       Comments in bc start with the characters /* and end with the characters

       */.  Comments may start anywhere and appear as a single  space  in  the

       input.   (This causes comments to delimit other input items.  For exam?

       ple, a comment can not be found in the  middle  of  a  variable  name.)

       Comments  include  any newlines (end of line) between the start and the

       end of the comment.

       To support the use of scripts for bc, a single line  comment  has  been

       added  as  an extension.  A single line comment starts at a # character

       and continues to the next end of the line.  The end of  line  character

       is not part of the comment and is processed normally.

   EXPRESSIONS

       The  numbers  are manipulated by expressions and statements.  Since the

       language was designed to be interactive, statements and expressions are

       executed  as  soon  as possible.  There is no "main" program.  Instead,

       code is executed as it is encountered.  (Functions, discussed in detail

       later, are defined when encountered.)

       A  simple expression is just a constant. bc converts constants into in?

       ternal decimal numbers using the current input base, specified  by  the

       variable ibase. (There is an exception in functions.)  The legal values

       of ibase are 2 through 36. (Bases greater than 16  are  an  extension.)

       Assigning a value outside this range to ibase will result in a value of Page 3/21



       2 or 36.  Input numbers may contain the characters 0-9 and A-Z.  (Note:

       They must be capitals.  Lower case letters are variable names.)  Single

       digit numbers always have the value of  the  digit  regardless  of  the

       value of ibase. (i.e. A = 10.)  For multi-digit numbers, bc changes all

       input digits greater or equal to ibase to the value of  ibase-1.   This

       makes  the number ZZZ always be the largest 3 digit number of the input

       base.

       Full expressions are similar to many other high level languages.  Since

       there  is only one kind of number, there are no rules for mixing types.

       Instead, there are rules on the scale of expressions.  Every expression

       has  a  scale.  This is derived from the scale of original numbers, the

       operation performed and in many cases, the value of the variable scale.

       Legal  values  of the variable scale are 0 to the maximum number repre?

       sentable by a C integer.

       In the following descriptions of legal expressions, "expr" refers to  a

       complete  expression and "var" refers to a simple or an array variable.

       A simple variable is just a

              name

       and an array variable is specified as

              name[expr]

       Unless specifically mentioned the scale of the result  is  the  maximum

       scale of the expressions involved.

       - expr The result is the negation of the expression.

       ++ var The  variable is incremented by one and the new value is the re?

              sult of the expression.

       -- var The variable is decremented by one and the new value is the  re?

              sult of the expression.

       var ++

               The  result  of the expression is the value of the variable and

              then the variable is incremented by one.

       var -- The result of the expression is the value of  the  variable  and

              then the variable is decremented by one.

       expr + expr Page 4/21



              The result of the expression is the sum of the two expressions.

       expr - expr

              The  result  of  the expression is the difference of the two ex?

              pressions.

       expr * expr

              The result of the expression is the product of the  two  expres?

              sions.   If  a and b are the scales of the two expressions, then

              the scale of the result is: min(a+b,max(scale,a,b))

       expr / expr

              The result of the expression is the quotient of the two  expres?

              sions.   The  scale  of  the result is the value of the variable

              scale.

       expr % expr

              The result of the expression is the "remainder" and it  is  com?

              puted  in  the following way.  To compute a%b, first a/b is com?

              puted to scale digits.  That result is used to compute a-(a/b)*b

              to  the scale of the maximum of scale+scale(b) and scale(a).  If

              scale is set to zero and both expressions are integers this  ex?

              pression is the integer remainder function.

       expr ^ expr

              The result of the expression is the value of the first raised to

              the second. The second expression must be an integer.   (If  the

              second  expression is not an integer, a warning is generated and

              the expression is truncated to get an integer value.)  The scale

              of  the result is scale if the exponent is negative.  If the ex?

              ponent is positive the scale of the result is the minimum of the

              scale  of  the  first expression times the value of the exponent

              and the maximum of scale and the scale of the first  expression.

              (e.g.  scale(a^b) = min(scale(a)*b, max( scale, scale(a))).)  It

              should be noted that expr^0 will always return the value of 1.

       ( expr )

              This alters the standard precedence to force the  evaluation  of

              the expression. Page 5/21



       var = expr

              The variable is assigned the value of the expression.

       var <op>= expr

              This  is  equivalent to "var = var <op> expr" with the exception

              that the "var" part is evaluated only once.   This  can  make  a

              difference if "var" is an array.

       Relational  expressions  are  a  special kind of expression that always

       evaluate to 0 or 1, 0 if the relation is false and 1 if the relation is

       true.   These  may  appear in any legal expression.  (POSIX bc requires

       that relational expressions are used only in if, while, and for  state?

       ments  and that only one relational test may be done in them.)  The re?

       lational operators are

       expr1 < expr2

              The result is 1 if expr1 is strictly less than expr2.

       expr1 <= expr2

              The result is 1 if expr1 is less than or equal to expr2.

       expr1 > expr2

              The result is 1 if expr1 is strictly greater than expr2.

       expr1 >= expr2

              The result is 1 if expr1 is greater than or equal to expr2.

       expr1 == expr2

              The result is 1 if expr1 is equal to expr2.

       expr1 != expr2

              The result is 1 if expr1 is not equal to expr2.

       Boolean operations are also legal.  (POSIX bc does NOT have boolean op?

       erations).  The result of all boolean operations are 0 and 1 (for false

       and true) as in relational expressions.  The boolean operators are:

       !expr  The result is 1 if expr is 0.

       expr && expr

              The result is 1 if both expressions are non-zero.

       expr || expr

              The result is 1 if either expression is non-zero.

       The expression precedence is as follows: (lowest to highest) Page 6/21



              || operator, left associative

              && operator, left associative

              ! operator, nonassociative

              Relational operators, left associative

              Assignment operator, right associative

              + and - operators, left associative

              *, / and % operators, left associative

              ^ operator, right associative

              unary - operator, nonassociative

              ++ and -- operators, nonassociative

       This precedence was chosen so that POSIX compliant bc programs will run

       correctly. This will cause the use of the relational and logical opera?

       tors to have some unusual behavior when used  with  assignment  expres?

       sions.  Consider the expression:

              a = 3 < 5

       Most C programmers would assume this would assign the result of "3 < 5"

       (the value 1) to the variable "a".  What this does in bc is assign  the

       value 3 to the variable "a" and then compare 3 to 5.  It is best to use

       parenthesis when using relational and logical operators  with  the  as?

       signment operators.

       There  are  a  few  more  special  expressions that are provided in bc.

       These have to do with user defined functions  and  standard  functions.

       They  all  appear  as "name(parameters)".  See the section on functions

       for user defined functions.  The standard functions are:

       length ( expression )

              The value of the length function is the  number  of  significant

              digits in the expression.

       read ( )

              The  read  function  (an  extension) will read a number from the

              standard input, regardless of where the function  occurs.    Be?

              ware,  this  can cause problems with the mixing of data and pro?

              gram in the standard input.  The best use for this  function  is

              in  a previously written program that needs input from the user, Page 7/21



              but never allows program code to be input from  the  user.   The

              value  of the read function is the number read from the standard

              input using the current value of the variable ibase for the con?

              version base.

       scale ( expression )

              The  value  of  the scale function is the number of digits after

              the decimal point in the expression.

       sqrt ( expression )

              The value of the sqrt function is the square root of the expres?

              sion.  If the expression is negative, a run time error is gener?

              ated.

   STATEMENTS

       Statements (as in most algebraic languages) provide the  sequencing  of

       expression  evaluation.  In bc statements are executed "as soon as pos?

       sible."  Execution happens when a newline in encountered and  there  is

       one or more complete statements.  Due to this immediate execution, new?

       lines are very important in bc. In fact, both a semicolon and a newline

       are  used  as  statement separators.  An improperly placed newline will

       cause a syntax error.  Because newlines are statement separators, it is

       possible  to  hide a newline by using the backslash character.  The se?

       quence "\<nl>", where <nl> is the newline appears to bc  as  whitespace

       instead of a newline.  A statement list is a series of statements sepa?

       rated by semicolons and newlines.  The following is a list of bc state?

       ments  and what they do: (Things enclosed in brackets ([]) are optional

       parts of the statement.)

       expression

              This statement does one of two things.  If the expression starts

              with  "<variable>  <assignment>  ...", it is considered to be an

              assignment statement.  If the expression is  not  an  assignment

              statement,  the  expression is evaluated and printed to the out?

              put.  After the number is printed, a newline  is  printed.   For

              example,  "a=1" is an assignment statement and "(a=1)" is an ex?

              pression that has an embedded assignment.  All numbers that  are Page 8/21



              printed are printed in the base specified by the variable obase.

              The legal values for obase are 2 through BC_BASE_MAX.  (See  the

              section  LIMITS.)   For  bases 2 through 16, the usual method of

              writing numbers is used.  For bases greater than 16, bc  uses  a

              multi-character  digit method of printing the numbers where each

              higher base digit is printed as a base 10  number.   The  multi-

              character  digits  are separated by spaces.  Each digit contains

              the number of characters required  to  represent  the  base  ten

              value  of  "obase-1".  Since numbers are of arbitrary precision,

              some numbers may not be  printable  on  a  single  output  line.

              These  long  numbers will be split across lines using the "\" as

              the last character on a line.  The maximum number of  characters

              printed  per  line  is 70.  Due to the interactive nature of bc,

              printing a number  causes  the  side  effect  of  assigning  the

              printed value to the special variable last. This allows the user

              to recover the last value printed without having to  retype  the

              expression  that printed the number.  Assigning to last is legal

              and will overwrite the last  printed  value  with  the  assigned

              value.  The newly assigned value will remain until the next num?

              ber is printed or another value is assigned to last.  (Some  in?

              stallations  may  allow  the use of a single period (.) which is

              not part of a number as a short hand notation for for last.)

       string The string is printed to the output.  Strings start with a  dou?

              ble  quote  character  and contain all characters until the next

              double quote character.  All characters are take literally,  in?

              cluding  any newline.  No newline character is printed after the

              string.

       print list

              The print statement (an extension) provides  another  method  of

              output.   The  "list" is a list of strings and expressions sepa?

              rated by commas.  Each string or expression is  printed  in  the

              order  of the list.  No terminating newline is printed.  Expres?

              sions are evaluated and their value is printed and  assigned  to Page 9/21



              the variable last. Strings in the print statement are printed to

              the output and may contain special characters.  Special  charac?

              ters  start with the backslash character (\).  The special char?

              acters  recognized  by  bc  are  "a"  (alert   or   bell),   "b"

              (backspace),  "f"  (form feed), "n" (newline), "r" (carriage re?

              turn), "q" (double quote), "t" (tab), and "\" (backslash).   Any

              other character following the backslash will be ignored.

       { statement_list }

              This  is  the compound statement.  It allows multiple statements

              to be grouped together for execution.

       if ( expression ) statement1 [else statement2]

              The if statement evaluates the expression  and  executes  state?

              ment1  or  statement2  depending on the value of the expression.

              If the expression  is  non-zero,  statement1  is  executed.   If

              statement2 is present and the value of the expression is 0, then

              statement2 is executed.  (The else clause is an extension.)

       while ( expression ) statement

              The while statement will execute the statement while the expres?

              sion  is non-zero.  It evaluates the expression before each exe?

              cution of the statement.   Termination of the loop is caused  by

              a zero expression value or the execution of a break statement.

       for ( [expression1] ; [expression2] ; [expression3] ) statement

              The  for statement controls repeated execution of the statement.

              Expression1 is evaluated before the loop.  Expression2 is evalu?

              ated before each execution of the statement.  If it is non-zero,

              the statement is evaluated.  If it is zero, the loop  is  termi?

              nated.   After  each  execution of the statement, expression3 is

              evaluated before the reevaluation of  expression2.   If  expres?

              sion1  or  expression3  are missing, nothing is evaluated at the

              point they would be evaluated.  If expression2 is missing, it is

              the  same as substituting the value 1 for expression2.  (The op?

              tional expressions are an extension. POSIX bc requires all three

              expressions.)   The  following  is  equivalent  code for the for Page 10/21



              statement:

              expression1;

              while (expression2) {

                 statement;

                 expression3;

              }

       break  This statement causes a forced exit of the most recent enclosing

              while statement or for statement.

       continue

              The  continue  statement  (an extension)  causes the most recent

              enclosing for statement to start the next iteration.

       halt   The halt statement (an extension) is an executed statement  that

              causes  the  bc processor to quit only when it is executed.  For

              example, "if (0 == 1) halt" will not cause bc to  terminate  be?

              cause the halt is not executed.

       return Return  the  value 0 from a function.  (See the section on func?

              tions.)

       return ( expression )

              Return the value of the expression from a  function.   (See  the

              section on functions.)  As an extension, the parenthesis are not

              required.

   PSEUDO STATEMENTS

       These statements are not statements in the traditional sense.  They are

       not  executed  statements.   Their  function  is performed at "compile"

       time.

       limits Print the local limits enforced by  the  local  version  of  bc.

              This is an extension.

       quit   When the quit statement is read, the bc processor is terminated,

              regardless of where the quit statement is found.   For  example,

              "if (0 == 1) quit" will cause bc to terminate.

       warranty

              Print a longer warranty notice.  This is an extension.

   FUNCTIONS Page 11/21



       Functions  provide  a method of defining a computation that can be exe?

       cuted later.  Functions in bc always compute a value and return  it  to

       the  caller.   Function  definitions  are "dynamic" in the sense that a

       function is undefined until a definition is encountered in  the  input.

       That  definition is then used until another definition function for the

       same name is encountered.  The new definition then replaces  the  older

       definition.  A function is defined as follows:

              define name ( parameters ) { newline

                  auto_list   statement_list }

       A function call is just an expression of the form "name(parameters)".

       Parameters are numbers or arrays (an extension).  In the function defi?

       nition, zero or more parameters are defined by listing their names sep?

       arated by commas.  All parameters are call by value parameters.  Arrays

       are specified in the parameter definition  by  the  notation  "name[]".

       In the function call, actual parameters are full expressions for number

       parameters.  The same notation is used for passing arrays as for defin?

       ing  array parameters.  The named array is passed by value to the func?

       tion.  Since function definitions are dynamic,  parameter  numbers  and

       types are checked when a function is called.  Any mismatch in number or

       types of parameters will cause a runtime error.  A runtime  error  will

       also occur for the call to an undefined function.

       The  auto_list  is  an  optional list of variables that are for "local"

       use.  The syntax of the auto list (if present) is "auto name,  ...  ;".

       (The  semicolon  is  optional.)  Each name is the name of an auto vari?

       able.  Arrays may be specified by using the same notation  as  used  in

       parameters.   These  variables have their values pushed onto a stack at

       the start of the function.  The variables are then initialized to  zero

       and  used  throughout the execution of the function.  At function exit,

       these variables are popped so that the original value (at the  time  of

       the function call) of these variables are restored.  The parameters are

       really auto variables that are initialized to a value provided  in  the

       function  call.   Auto  variables  are different than traditional local

       variables because if function A calls function B, B may access function Page 12/21



       A's  auto  variables by just using the same name, unless function B has

       called them auto variables.  Due to the fact that  auto  variables  and

       parameters are pushed onto a stack, bc supports recursive functions.

       The  function  body  is a list of bc statements.  Again, statements are

       separated by semicolons or newlines.  Return statements cause the  ter?

       mination  of  a function and the return of a value.  There are two ver?

       sions of the return statement.  The first form, "return",  returns  the

       value  0 to the calling expression.  The second form, "return ( expres?

       sion )", computes the value of the expression and returns that value to

       the calling expression.  There is an implied "return (0)" at the end of

       every function.  This allows a function to terminate and return 0 with?

       out an explicit return statement.

       Functions  also  change the usage of the variable ibase.  All constants

       in the function body will be converted using the value of ibase at  the

       time of the function call.  Changes of ibase will be ignored during the

       execution of the function except for the standard function read,  which

       will always use the current value of ibase for conversion of numbers.

       Several  extensions have been added to functions.  First, the format of

       the definition has been slightly relaxed.  The  standard  requires  the

       opening  brace  be on the same line as the define keyword and all other

       parts must be on following lines.  This version of bc  will  allow  any

       number  of newlines before and after the opening brace of the function.

       For example, the following definitions are legal.

              define d (n) { return (2*n); }

              define d (n)

                { return (2*n); }

       Functions may be defined as void.  A void funtion returns no value  and

       thus  may not be used in any place that needs a value.  A void function

       does not produce any output when called by itself  on  an  input  line.

       The  key  word void is placed between the key word define and the func?

       tion name.  For example, consider the following session.

              define py (y) { print "--->", y, "<---", "\n"; }

              define void px (x) { print "--->", x, "<---", "\n"; } Page 13/21



              py(1)

              --->1<---

              0

              px(1)

              --->1<---

       Since py is not a void function, the call of py(1) prints  the  desired

       output and then prints a second line that is the value of the function.

       Since the value of a function that is  not  given  an  explicit  return

       statement  is zero, the zero is printed.  For px(1), no zero is printed

       because the function is a void function.

       Also, call by variable for arrays was added.   To  declare  a  call  by

       variable  array, the declaration of the array parameter in the function

       definition looks like "*name[]".  The call to the function remains  the

       same as call by value arrays.

   MATH LIBRARY

       If  bc  is  invoked with the -l option, a math library is preloaded and

       the default scale is set to 20.   The  math  functions  will  calculate

       their results to the scale set at the time of their call.  The math li?

       brary defines the following functions:

       s (x)  The sine of x, x is in radians.

       c (x)  The cosine of x, x is in radians.

       a (x)  The arctangent of x, arctangent returns radians.

       l (x)  The natural logarithm of x.

       e (x)  The exponential function of raising e to the value x.

       j (n,x)

              The Bessel function of integer order n of x.

   EXAMPLES

       In /bin/sh,  the following will assign the value of "pi" to  the  shell

       variable pi.

               pi=$(echo "scale=10; 4*a(1)" | bc -l)

       The following is the definition of the exponential function used in the

       math library.  This function is written in POSIX bc.

              scale = 20 Page 14/21



              /* Uses the fact that e^x = (e^(x/2))^2

                 When x is small enough, we use the series:

                   e^x = 1 + x + x^2/2! + x^3/3! + ...

              */

              define e(x) {

                auto  a, d, e, f, i, m, v, z

                /* Check the sign of x. */

                if (x<0) {

                  m = 1

                  x = -x

                }

                /* Precondition x. */

                z = scale;

                scale = 4 + z + .44*x;

                while (x > 1) {

                  f += 1;

                  x /= 2;

                }

                /* Initialize the variables. */

                v = 1+x

                a = x

                d = 1

                for (i=2; 1; i++) {

                  e = (a *= x) / (d *= i)

                  if (e == 0) {

                    if (f>0) while (f--)  v = v*v;

                    scale = z

                    if (m) return (1/v);

                    return (v/1);

                  }

                  v += e

                }

              } Page 15/21



       The following is code that uses the extended features of bc  to  imple?

       ment a simple program for calculating checkbook balances.  This program

       is best kept in a file so that it can be used many times without having

       to retype it at every use.

              scale=2

              print "\nCheck book program!\n"

              print "  Remember, deposits are negative transactions.\n"

              print "  Exit by a 0 transaction.\n\n"

              print "Initial balance? "; bal = read()

              bal /= 1

              print "\n"

              while (1) {

                "current balance = "; bal

                "transaction? "; trans = read()

                if (trans == 0) break;

                bal -= trans

                bal /= 1

              }

              quit

       The following is the definition of the recursive factorial function.

              define f (x) {

                if (x <= 1) return (1);

                return (f(x-1) * x);

              }

   READLINE AND LIBEDIT OPTIONS

       GNU bc can be compiled (via a configure option) to use the GNU readline

       input editor library or the BSD libedit library.  This allows the  user

       to do editing of lines before sending them to bc.  It also allows for a

       history of previous lines typed.  When this option is selected, bc  has

       one  more special variable.  This special variable, history is the num?

       ber of lines of history retained.  For readline, a value  of  -1  means

       that  an  unlimited  number of history lines are retained.  Setting the

       value of history to a positive number restricts the number  of  history Page 16/21



       lines  to  the  number given.  The value of 0 disables the history fea?

       ture.  The default value is 100. For more information,  read  the  user

       manuals  for  the GNU readline, history and BSD libedit libraries.  One

       can not enable both readline and libedit at the same time.

   DIFFERENCES

       This version of bc was implemented from the POSIX P1003.2/D11 draft and

       contains  several  differences and extensions relative to the draft and

       traditional implementations.  It is not implemented in the  traditional

       way  using  dc(1).   This  version is a single process which parses and

       runs a byte code translation of the  program.   There  is  an  "undocu?

       mented"  option (-c) that causes the program to output the byte code to

       the standard output instead of running it.  It was mainly used for  de?

       bugging the parser and preparing the math library.

       A  major  source  of  differences is extensions, where a feature is ex?

       tended to add more functionality and additions, where new features  are

       added.  The following is the list of differences and extensions.

       LANG environment

              This  version does not conform to the POSIX standard in the pro?

              cessing of the LANG environment  variable  and  all  environment

              variables starting with LC_.

       names  Traditional and POSIX bc have single letter names for functions,

              variables and arrays.  They have been extended to be multi-char?

              acter  names  that  start with a letter and may contain letters,

              numbers and the underscore character.

       Strings

              Strings are not allowed to contain NUL characters.   POSIX  says

              all characters must be included in strings.

       last   POSIX bc does not have a last variable.  Some implementations of

              bc use the period (.) in a similar way.

       comparisons

              POSIX bc allows comparisons only in the if statement, the  while

              statement,  and  the  second  expression  of  the for statement.

              Also, only one relational operation is allowed in each of  those Page 17/21



              statements.

       if statement, else clause

              POSIX bc does not have an else clause.

       for statement

              POSIX  bc  requires  all  expressions  to  be present in the for

              statement.

       &&, ||, !

              POSIX bc does not have the logical operators.

       read function

              POSIX bc does not have a read function.

       print statement

              POSIX bc does not have a print statement .

       continue statement

              POSIX bc does not have a continue statement.

       return statement

              POSIX bc requires parentheses around the return expression.

       array parameters

              POSIX bc does not (currently) support array parameters in  full.

              The POSIX grammar allows for arrays in function definitions, but

              does not provide a method to specify an array as an  actual  pa?

              rameter.   (This  is  most  likely an oversight in the grammar.)

              Traditional implementations of bc have only call by value  array

              parameters.

       function format

              POSIX  bc requires the opening brace on the same line as the de?

              fine key word and the auto statement on the next line.

       =+, =-, =*, =/, =%, =^

              POSIX bc does not require these "old style" assignment operators

              to be defined.  This version may allow these "old style" assign?

              ments.  Use the limits statement to see if the installed version

              supports  them.   If  it does support the "old style" assignment

              operators, the statement "a =- 1" will decrement a by 1  instead

              of setting a to the value -1. Page 18/21



       spaces in numbers

              Other  implementations of bc allow spaces in numbers.  For exam?

              ple, "x=1 3" would assign the value 13 to the variable  x.   The

              same statement would cause a syntax error in this version of bc.

       errors and execution

              This  implementation  varies from other implementations in terms

              of what code will be executed when syntax and other  errors  are

              found  in the program.  If a syntax error is found in a function

              definition, error recovery tries to  find  the  beginning  of  a

              statement and continue to parse the function.  Once a syntax er?

              ror is found in the function, the function will not be  callable

              and  becomes undefined.  Syntax errors in the interactive execu?

              tion code will invalidate the current execution block.  The exe?

              cution  block is terminated by an end of line that appears after

              a complete sequence of statements.  For example,

              a = 1

              b = 2

       has two execution blocks and

              { a = 1

                b = 2 }

       has one execution block.  Any runtime error will terminate  the  execu?

       tion of the current execution block.  A runtime warning will not termi?

       nate the current execution block.

       Interrupts

              During an interactive session, the SIGINT signal (usually gener?

              ated  by  the  control-C character from the terminal) will cause

              execution of the current execution block to be interrupted.   It

              will display a "runtime" error indicating which function was in?

              terrupted.  After all runtime structures have been cleaned up, a

              message  will be printed to notify the user that bc is ready for

              more input.  All previously defined functions remain defined and

              the  value  of all non-auto variables are the value at the point

              of interruption.  All auto variables and function parameters are Page 19/21



              removed  during  the clean up process.  During a non-interactive

              session, the SIGINT signal will terminate the entire run of bc.

   LIMITS

       The following are the limits currently in place for this bc  processor.

       Some  of them may have been changed by an installation.  Use the limits

       statement to see the actual values.

       BC_BASE_MAX

              The maximum output base is currently set at  999.   The  maximum

              input base is 16.

       BC_DIM_MAX

              This  is  currently  an arbitrary limit of 65535 as distributed.

              Your installation may be different.

       BC_SCALE_MAX

              The number of digits after  the  decimal  point  is  limited  to

              INT_MAX  digits.   Also, the number of digits before the decimal

              point is limited to INT_MAX digits.

       BC_STRING_MAX

              The limit on the number of characters in  a  string  is  INT_MAX

              characters.

       exponent

              The  value of the exponent in the raise operation (^) is limited

              to LONG_MAX.

       variable names

              The current limit on the number of unique  names  is  32767  for

              each of simple variables, arrays and functions.

ENVIRONMENT VARIABLES

       The following environment variables are processed by bc:

       POSIXLY_CORRECT

              This is the same as the -s option.

       BC_ENV_ARGS

              This is another mechanism to get arguments to bc.  The format is

              the same as the command line  arguments.   These  arguments  are

              processed  first,  so  any files listed in the environment argu? Page 20/21



              ments are processed before  any  command  line  argument  files.

              This  allows  the user to set up "standard" options and files to

              be processed at every invocation of bc.  The files in the  envi?

              ronment  variables  would typically contain function definitions

              for functions the user wants defined every time bc is run.

       BC_LINE_LENGTH

              This should be an integer specifying the number of characters in

              an output line for numbers. This includes the backslash and new?

              line characters for long numbers.  As an extension, the value of

              zero  disables  the multi-line feature.  Any other value of this

              variable that is less than 3 sets the line length to 70.

DIAGNOSTICS

       If any file on the command line can not be opened, bc will report  that

       the file is unavailable and terminate.  Also, there are compile and run

       time diagnostics that should be self-explanatory.

BUGS

       Error recovery is not very good yet.

       Email bug reports to bug-bc@gnu.org.   Be  sure  to  include  the  word

       ``bc'' somewhere in the ``Subject:'' field.

AUTHOR

       Philip A. Nelson

       philnelson@acm.org

ACKNOWLEDGEMENTS

       The  author  would  like to thank Steve Sommars (Steve.Sommars@att.com)

       for his extensive help in testing the implementation.  Many great  sug?

       gestions were given.  This is a much better product due to his involve?

       ment.

GNU Project                       2006-06-11                             bc(1)

Page 21/21


