
Rocky Enterprise Linux 9.2 Manual Pages on command 'attributes.7'

$ man attributes.7

ATTRIBUTES(7) Linux Programmer's Manual ATTRIBUTES(7)

NAME

 attributes - POSIX safety concepts

DESCRIPTION

 Note: the text of this man page is based on the material taken from the

 "POSIX Safety Concepts" section of the GNU C Library manual. Further

 details on the topics described here can be found in that manual.

 Various function manual pages include a section ATTRIBUTES that de?

 scribes the safety of calling the function in various contexts. This

 section annotates functions with the following safety markings:

 MT-Safe

 MT-Safe or Thread-Safe functions are safe to call in the pres?

 ence of other threads. MT, in MT-Safe, stands for Multi Thread.

 Being MT-Safe does not imply a function is atomic, nor that it

 uses any of the memory synchronization mechanisms POSIX exposes

 to users. It is even possible that calling MT-Safe functions in

 sequence does not yield an MT-Safe combination. For example,

 having a thread call two MT-Safe functions one right after the Page 1/7

 other does not guarantee behavior equivalent to atomic execution

 of a combination of both functions, since concurrent calls in

 other threads may interfere in a destructive way.

 Whole-program optimizations that could inline functions across

 library interfaces may expose unsafe reordering, and so perform?

 ing inlining across the GNU C Library interface is not recom?

 mended. The documented MT-Safety status is not guaranteed under

 whole-program optimization. However, functions defined in user-

 visible headers are designed to be safe for inlining.

 MT-Unsafe

 MT-Unsafe functions are not safe to call in a multithreaded pro?

 grams.

 Other keywords that appear in safety notes are defined in subsequent

 sections.

 Conditionally safe features

 For some features that make functions unsafe to call in certain con?

 texts, there are known ways to avoid the safety problem other than re?

 fraining from calling the function altogether. The keywords that fol?

 low refer to such features, and each of their definitions indicates how

 the whole program needs to be constrained in order to remove the safety

 problem indicated by the keyword. Only when all the reasons that make

 a function unsafe are observed and addressed, by applying the docu?

 mented constraints, does the function become safe to call in a context.

 init Functions marked with init as an MT-Unsafe feature perform MT-

 Unsafe initialization when they are first called.

 Calling such a function at least once in single-threaded mode

 removes this specific cause for the function to be regarded as

 MT-Unsafe. If no other cause for that remains, the function can

 then be safely called after other threads are started.

 race Functions annotated with race as an MT-Safety issue operate on

 objects in ways that may cause data races or similar forms of

 destructive interference out of concurrent execution. In some

 cases, the objects are passed to the functions by users; in oth? Page 2/7

 ers, they are used by the functions to return values to users;

 in others, they are not even exposed to users.

 const Functions marked with const as an MT-Safety issue non-atomically

 modify internal objects that are better regarded as constant,

 because a substantial portion of the GNU C Library accesses them

 without synchronization. Unlike race, which causes both readers

 and writers of internal objects to be regarded as MT-Unsafe,

 this mark is applied to writers only. Writers remain MT-Unsafe

 to call, but the then-mandatory constness of objects they modify

 enables readers to be regarded as MT-Safe (as long as no other

 reasons for them to be unsafe remain), since the lack of syn?

 chronization is not a problem when the objects are effectively

 constant.

 The identifier that follows the const mark will appear by itself

 as a safety note in readers. Programs that wish to work around

 this safety issue, so as to call writers, may use a non-recur?

 sive read-write lock associated with the identifier, and guard

 all calls to functions marked with const followed by the identi?

 fier with a write lock, and all calls to functions marked with

 the identifier by itself with a read lock.

 sig Functions marked with sig as a MT-Safety issue may temporarily

 install a signal handler for internal purposes, which may inter?

 fere with other uses of the signal, identified after a colon.

 This safety problem can be worked around by ensuring that no

 other uses of the signal will take place for the duration of the

 call. Holding a non-recursive mutex while calling all functions

 that use the same temporary signal; blocking that signal before

 the call and resetting its handler afterwards is recommended.

 term Functions marked with term as an MT-Safety issue may change the

 terminal settings in the recommended way, namely: call tcge?

 tattr(3), modify some flags, and then call tcsetattr(3), this

 creates a window in which changes made by other threads are

 lost. Thus, functions marked with term are MT-Unsafe. Page 3/7

 It is thus advisable for applications using the terminal to

 avoid concurrent and reentrant interactions with it, by not us?

 ing it in signal handlers or blocking signals that might use it,

 and holding a lock while calling these functions and interacting

 with the terminal. This lock should also be used for mutual ex?

 clusion with functions marked with race:tcattr(fd), where fd is

 a file descriptor for the controlling terminal. The caller may

 use a single mutex for simplicity, or use one mutex per termi?

 nal, even if referenced by different file descriptors.

 Other safety remarks

 Additional keywords may be attached to functions, indicating features

 that do not make a function unsafe to call, but that may need to be

 taken into account in certain classes of programs:

 locale Functions annotated with locale as an MT-Safety issue read from

 the locale object without any form of synchronization. Func?

 tions annotated with locale called concurrently with locale

 changes may behave in ways that do not correspond to any of the

 locales active during their execution, but an unpredictable mix

 thereof.

 We do not mark these functions as MT-Unsafe, however, because

 functions that modify the locale object are marked with

 const:locale and regarded as unsafe. Being unsafe, the latter

 are not to be called when multiple threads are running or asyn?

 chronous signals are enabled, and so the locale can be consid?

 ered effectively constant in these contexts, which makes the

 former safe.

 env Functions marked with env as an MT-Safety issue access the envi?

 ronment with getenv(3) or similar, without any guards to ensure

 safety in the presence of concurrent modifications.

 We do not mark these functions as MT-Unsafe, however, because

 functions that modify the environment are all marked with

 const:env and regarded as unsafe. Being unsafe, the latter are

 not to be called when multiple threads are running or asynchro? Page 4/7

 nous signals are enabled, and so the environment can be consid?

 ered effectively constant in these contexts, which makes the

 former safe.

 hostid The function marked with hostid as an MT-Safety issue reads from

 the system-wide data structures that hold the "host ID" of the

 machine. These data structures cannot generally be modified

 atomically. Since it is expected that the "host ID" will not

 normally change, the function that reads from it (gethostid(3))

 is regarded as safe, whereas the function that modifies it

 (sethostid(3)) is marked with const:hostid, indicating it may

 require special care if it is to be called. In this specific

 case, the special care amounts to system-wide (not merely intra-

 process) coordination.

 sigintr

 Functions marked with sigintr as an MT-Safety issue access the

 GNU C Library _sigintr internal data structure without any

 guards to ensure safety in the presence of concurrent modifica?

 tions.

 We do not mark these functions as MT-Unsafe, however, because

 functions that modify this data structure are all marked with

 const:sigintr and regarded as unsafe. Being unsafe, the latter

 are not to be called when multiple threads are running or asyn?

 chronous signals are enabled, and so the data structure can be

 considered effectively constant in these contexts, which makes

 the former safe.

 cwd Functions marked with cwd as an MT-Safety issue may temporarily

 change the current working directory during their execution,

 which may cause relative pathnames to be resolved in unexpected

 ways in other threads or within asynchronous signal or cancella?

 tion handlers.

 This is not enough of a reason to mark so-marked functions as

 MT-Unsafe, but when this behavior is optional (e.g., nftw(3)

 with FTW_CHDIR), avoiding the option may be a good alternative Page 5/7

 to using full pathnames or file descriptor-relative (e.g., ope?

 nat(2)) system calls.

 :identifier

 Annotations may sometimes be followed by identifiers, intended

 to group several functions that, for example, access the data

 structures in an unsafe way, as in race and const, or to provide

 more specific information, such as naming a signal in a function

 marked with sig. It is envisioned that it may be applied to

 lock and corrupt as well in the future.

 In most cases, the identifier will name a set of functions, but

 it may name global objects or function arguments, or identifi?

 able properties or logical components associated with them, with

 a notation such as, for example, :buf(arg) to denote a buffer

 associated with the argument arg, or :tcattr(fd) to denote the

 terminal attributes of a file descriptor fd.

 The most common use for identifiers is to provide logical groups

 of functions and arguments that need to be protected by the same

 synchronization primitive in order to ensure safe operation in a

 given context.

 /condition

 Some safety annotations may be conditional, in that they only

 apply if a boolean expression involving arguments, global vari?

 ables or even the underlying kernel evaluates to true. For ex?

 ample, /!ps and /one_per_line indicate the preceding marker only

 applies when argument ps is NULL, or global variable

 one_per_line is nonzero.

 When all marks that render a function unsafe are adorned with

 such conditions, and none of the named conditions hold, then the

 function can be regarded as safe.

SEE ALSO

 pthreads(7), signal-safety(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 6/7

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 ATTRIBUTES(7)

Page 7/7

