
Rocky Enterprise Linux 9.2 Manual Pages on command 'alt-java-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1'

$ man alt-java-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

Hardened java binary recommended for launching untrusted code

java(1) Basic Tools java(1)

from the Web e.g. javaws

NAME

 java - Launches a Java application.

SYNOPSIS

 java [options] classname [args]

 java [options] -jar filename [args]

 options

 Command-line options separated by spaces. See Options.

 classname

 The name of the class to be launched.

 filename

 The name of the Java Archive (JAR) file to be called. Used only

 with the -jar option.

 args

 The arguments passed to the main() method separated by spaces.

DESCRIPTION Page 1/55

 The java command starts a Java application. It does this by starting

 the Java Runtime Environment (JRE), loading the specified class, and

 calling that class's main() method. The method must be declared public

 and static, it must not return any value, and it must accept a String

 array as a parameter. The method declaration has the following form:

 public static void main(String[] args)

 The java command can be used to launch a JavaFX application by loading

 a class that either has a main() method or that extends

 javafx.application.Application. In the latter case, the launcher

 constructs an instance of the Application class, calls its init()

 method, and then calls the start(javafx.stage.Stage) method.

 By default, the first argument that is not an option of the java

 command is the fully qualified name of the class to be called. If the

 -jar option is specified, its argument is the name of the JAR file

 containing class and resource files for the application. The startup

 class must be indicated by the Main-Class manifest header in its source

 code.

 The JRE searches for the startup class (and other classes used by the

 application) in three sets of locations: the bootstrap class path, the

 installed extensions, and the user?s class path.

 Arguments after the class file name or the JAR file name are passed to

 the main() method.

OPTIONS

 The java command supports a wide range of options that can be divided

 into the following categories:

 ? Standard Options

 ? Non-Standard Options

 ? Advanced Runtime Options

 ? Advanced JIT Compiler Options

 ? Advanced Serviceability Options

 ? Advanced Garbage Collection Options

 Standard options are guaranteed to be supported by all implementations

 of the Java Virtual Machine (JVM). They are used for common actions, Page 2/55

 such as checking the version of the JRE, setting the class path,

 enabling verbose output, and so on.

 Non-standard options are general purpose options that are specific to

 the Java HotSpot Virtual Machine, so they are not guaranteed to be

 supported by all JVM implementations, and are subject to change. These

 options start with -X.

 Advanced options are not recommended for casual use. These are

 developer options used for tuning specific areas of the Java HotSpot

 Virtual Machine operation that often have specific system requirements

 and may require privileged access to system configuration parameters.

 They are also not guaranteed to be supported by all JVM

 implementations, and are subject to change. Advanced options start with

 -XX.

 To keep track of the options that were deprecated or removed in the

 latest release, there is a section named Deprecated and Removed Options

 at the end of the document.

 Boolean options are used to either enable a feature that is disabled by

 default or disable a feature that is enabled by default. Such options

 do not require a parameter. Boolean -XX options are enabled using the

 plus sign (-XX:+OptionName) and disabled using the minus sign

 (-XX:-OptionName).

 For options that require an argument, the argument may be separated

 from the option name by a space, a colon (:), or an equal sign (=), or

 the argument may directly follow the option (the exact syntax differs

 for each option). If you are expected to specify the size in bytes, you

 can use no suffix, or use the suffix k or K for kilobytes (KB), m or M

 for megabytes (MB), g or G for gigabytes (GB). For example, to set the

 size to 8 GB, you can specify either 8g, 8192m, 8388608k, or 8589934592

 as the argument. If you are expected to specify the percentage, use a

 number from 0 to 1 (for example, specify 0.25 for 25%).

 Standard Options

 These are the most commonly used options that are supported by all

 implementations of the JVM. Page 3/55

 -agentlib:libname[=options]

 Loads the specified native agent library. After the library name, a

 comma-separated list of options specific to the library can be

 used.

 If the option -agentlib:foo is specified, then the JVM attempts to

 load the library named libfoo.so in the location specified by the

 LD_LIBRARY_PATH system variable (on OS X this variable is

 DYLD_LIBRARY_PATH).

 The following example shows how to load the heap profiling tool

 (HPROF) library and get sample CPU information every 20 ms, with a

 stack depth of 3:

 -agentlib:hprof=cpu=samples,interval=20,depth=3

 The following example shows how to load the Java Debug Wire

 Protocol (JDWP) library and listen for the socket connection on

 port 8000, suspending the JVM before the main class loads:

 -agentlib:jdwp=transport=dt_socket,server=y,address=8000

 For more information about the native agent libraries, refer to the

 following:

 ? The java.lang.instrument package description at

 http://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

 ? Agent Command Line Options in the JVM Tools Interface guide at

 http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#starting

 -agentpath:pathname[=options]

 Loads the native agent library specified by the absolute path name.

 This option is equivalent to -agentlib but uses the full path and

 file name of the library.

 -client

 Selects the Java HotSpot Client VM. The 64-bit version of the Java

 SE Development Kit (JDK) currently ignores this option and instead

 uses the Server JVM.

 For default JVM selection, see Server-Class Machine Detection at

 http://docs.oracle.com/javase/8/docs/technotes/guides/vm/server-class.html

 -Dproperty=value Page 4/55

 Sets a system property value. The property variable is a string

 with no spaces that represents the name of the property. The value

 variable is a string that represents the value of the property. If

 value is a string with spaces, then enclose it in quotation marks

 (for example -Dfoo="foo bar").

 -d32

 Runs the application in a 32-bit environment. If a 32-bit

 environment is not installed or is not supported, then an error

 will be reported. By default, the application is run in a 32-bit

 environment unless a 64-bit system is used.

 -d64

 Runs the application in a 64-bit environment. If a 64-bit

 environment is not installed or is not supported, then an error

 will be reported. By default, the application is run in a 32-bit

 environment unless a 64-bit system is used.

 Currently only the Java HotSpot Server VM supports 64-bit

 operation, and the -server option is implicit with the use of -d64.

 The -client option is ignored with the use of -d64. This is subject

 to change in a future release.

 -disableassertions[:[packagename]...|:classname]

 -da[:[packagename]...|:classname]

 Disables assertions. By default, assertions are disabled in all

 packages and classes.

 With no arguments, -disableassertions (-da) disables assertions in

 all packages and classes. With the packagename argument ending in

 ..., the switch disables assertions in the specified package and

 any subpackages. If the argument is simply ..., then the switch

 disables assertions in the unnamed package in the current working

 directory. With the classname argument, the switch disables

 assertions in the specified class.

 The -disableassertions (-da) option applies to all class loaders

 and to system classes (which do not have a class loader). There is

 one exception to this rule: if the option is provided with no Page 5/55

 arguments, then it does not apply to system classes. This makes it

 easy to disable assertions in all classes except for system

 classes. The -disablesystemassertions option enables you to disable

 assertions in all system classes.

 To explicitly enable assertions in specific packages or classes,

 use the -enableassertions (-ea) option. Both options can be used at

 the same time. For example, to run the MyClass application with

 assertions enabled in package com.wombat.fruitbat (and any

 subpackages) but disabled in class com.wombat.fruitbat.Brickbat,

 use the following command:

 java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat MyClass

 -disablesystemassertions

 -dsa

 Disables assertions in all system classes.

 -enableassertions[:[packagename]...|:classname]

 -ea[:[packagename]...|:classname]

 Enables assertions. By default, assertions are disabled in all

 packages and classes.

 With no arguments, -enableassertions (-ea) enables assertions in

 all packages and classes. With the packagename argument ending in

 ..., the switch enables assertions in the specified package and any

 subpackages. If the argument is simply ..., then the switch enables

 assertions in the unnamed package in the current working directory.

 With the classname argument, the switch enables assertions in the

 specified class.

 The -enableassertions (-ea) option applies to all class loaders and

 to system classes (which do not have a class loader). There is one

 exception to this rule: if the option is provided with no

 arguments, then it does not apply to system classes. This makes it

 easy to enable assertions in all classes except for system classes.

 The -enablesystemassertions option provides a separate switch to

 enable assertions in all system classes.

 To explicitly disable assertions in specific packages or classes, Page 6/55

 use the -disableassertions (-da) option. If a single command

 contains multiple instances of these switches, then they are

 processed in order before loading any classes. For example, to run

 the MyClass application with assertions enabled only in package

 com.wombat.fruitbat (and any subpackages) but disabled in class

 com.wombat.fruitbat.Brickbat, use the following command:

 java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat MyClass

 -enablesystemassertions

 -esa

 Enables assertions in all system classes.

 -help

 -?

 Displays usage information for the java command without actually

 running the JVM.

 -jar filename

 Executes a program encapsulated in a JAR file. The filename

 argument is the name of a JAR file with a manifest that contains a

 line in the form Main-Class:classname that defines the class with

 the public static void main(String[] args) method that serves as

 your application's starting point.

 When you use the -jar option, the specified JAR file is the source

 of all user classes, and other class path settings are ignored.

 For more information about JAR files, see the following resources:

 ? jar(1)

 ? The Java Archive (JAR) Files guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/jar/index.html

 ? Lesson: Packaging Programs in JAR Files at

 http://docs.oracle.com/javase/tutorial/deployment/jar/index.html

 -javaagent:jarpath[=options]

 Loads the specified Java programming language agent. For more

 information about instrumenting Java applications, see the

 java.lang.instrument package description in the Java API

 documentation at Page 7/55

 http://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

 -jre-restrict-search

 Includes user-private JREs in the version search.

 -no-jre-restrict-search

 Excludes user-private JREs from the version search.

 -server

 Selects the Java HotSpot Server VM. The 64-bit version of the JDK

 supports only the Server VM, so in that case the option is

 implicit.

 For default JVM selection, see Server-Class Machine Detection at

 http://docs.oracle.com/javase/8/docs/technotes/guides/vm/server-class.html

 -showversion

 Displays version information and continues execution of the

 application. This option is equivalent to the -version option

 except that the latter instructs the JVM to exit after displaying

 version information.

 -splash:imgname

 Shows the splash screen with the image specified by imgname. For

 example, to show the splash.gif file from the images directory when

 starting your application, use the following option:

 -splash:images/splash.gif

 -verbose:class

 Displays information about each loaded class.

 -verbose:gc

 Displays information about each garbage collection (GC) event.

 -verbose:jni

 Displays information about the use of native methods and other Java

 Native Interface (JNI) activity.

 -version

 Displays version information and then exits. This option is

 equivalent to the -showversion option except that the latter does

 not instruct the JVM to exit after displaying version information.

 -version:release Page 8/55

 Specifies the release version to be used for running the

 application. If the version of the java command called does not

 meet this specification and an appropriate implementation is found

 on the system, then the appropriate implementation will be used.

 The release argument specifies either the exact version string, or

 a list of version strings and ranges separated by spaces. A version

 string is the developer designation of the version number in the

 following form: 1.x.0_u (where x is the major version number, and u

 is the update version number). A version range is made up of a

 version string followed by a plus sign (+) to designate this

 version or later, or a part of a version string followed by an

 asterisk (*) to designate any version string with a matching

 prefix. Version strings and ranges can be combined using a space

 for a logical OR combination, or an ampersand (&) for a logical AND

 combination of two version strings/ranges. For example, if running

 the class or JAR file requires either JRE 6u13 (1.6.0_13), or any

 JRE 6 starting from 6u10 (1.6.0_10), specify the following:

 -version:"1.6.0_13 1.6* & 1.6.0_10+"

 Quotation marks are necessary only if there are spaces in the

 release parameter.

 For JAR files, the preference is to specify version requirements in

 the JAR file manifest rather than on the command line.

 Non-Standard Options

 These options are general purpose options that are specific to the Java

 HotSpot Virtual Machine.

 -X

 Displays help for all available -X options.

 -Xbatch

 Disables background compilation. By default, the JVM compiles the

 method as a background task, running the method in interpreter mode

 until the background compilation is finished. The -Xbatch flag

 disables background compilation so that compilation of all methods

 proceeds as a foreground task until completed. Page 9/55

 This option is equivalent to -XX:-BackgroundCompilation.

 -Xbootclasspath:path

 Specifies a list of directories, JAR files, and ZIP archives

 separated by colons (:) to search for boot class files. These are

 used in place of the boot class files included in the JDK.

 Do not deploy applications that use this option to override a class

 in rt.jar, because this violates the JRE binary code license.

 -Xbootclasspath/a:path

 Specifies a list of directories, JAR files, and ZIP archives

 separated by colons (:) to append to the end of the default

 bootstrap class path.

 Do not deploy applications that use this option to override a class

 in rt.jar, because this violates the JRE binary code license.

 -Xbootclasspath/p:path

 Specifies a list of directories, JAR files, and ZIP archives

 separated by colons (:) to prepend to the front of the default

 bootstrap class path.

 Do not deploy applications that use this option to override a class

 in rt.jar, because this violates the JRE binary code license.

 -Xcheck:jni

 Performs additional checks for Java Native Interface (JNI)

 functions. Specifically, it validates the parameters passed to the

 JNI function and the runtime environment data before processing the

 JNI request. Any invalid data encountered indicates a problem in

 the native code, and the JVM will terminate with an irrecoverable

 error in such cases. Expect a performance degradation when this

 option is used.

 -Xcomp

 Forces compilation of methods on first invocation. By default, the

 Client VM (-client) performs 1,000 interpreted method invocations

 and the Server VM (-server) performs 10,000 interpreted method

 invocations to gather information for efficient compilation.

 Specifying the -Xcomp option disables interpreted method Page 10/55

 invocations to increase compilation performance at the expense of

 efficiency.

 You can also change the number of interpreted method invocations

 before compilation using the -XX:CompileThreshold option.

 -Xdebug

 Does nothing. Provided for backward compatibility.

 -Xdiag

 Shows additional diagnostic messages.

 -Xfuture

 Enables strict class-file format checks that enforce close

 conformance to the class-file format specification. Developers are

 encouraged to use this flag when developing new code because the

 stricter checks will become the default in future releases.

 -Xint

 Runs the application in interpreted-only mode. Compilation to

 native code is disabled, and all bytecode is executed by the

 interpreter. The performance benefits offered by the just in time

 (JIT) compiler are not present in this mode.

 -Xinternalversion

 Displays more detailed JVM version information than the -version

 option, and then exits.

 -Xloggc:filename

 Sets the file to which verbose GC events information should be

 redirected for logging. The information written to this file is

 similar to the output of -verbose:gc with the time elapsed since

 the first GC event preceding each logged event. The -Xloggc option

 overrides -verbose:gc if both are given with the same java command.

 Example:

 -Xloggc:garbage-collection.log

 -Xmaxjitcodesize=size

 Specifies the maximum code cache size (in bytes) for JIT-compiled

 code. Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, g or G to indicate gigabytes. The default Page 11/55

 maximum code cache size is 240 MB; if you disable tiered

 compilation with the option -XX:-TieredCompilation, then the

 default size is 48 MB:

 -Xmaxjitcodesize=240m

 This option is equivalent to -XX:ReservedCodeCacheSize.

 -Xmixed

 Executes all bytecode by the interpreter except for hot methods,

 which are compiled to native code.

 -Xmnsize

 Sets the initial and maximum size (in bytes) of the heap for the

 young generation (nursery). Append the letter k or K to indicate

 kilobytes, m or M to indicate megabytes, g or G to indicate

 gigabytes.

 The young generation region of the heap is used for new objects. GC

 is performed in this region more often than in other regions. If

 the size for the young generation is too small, then a lot of minor

 garbage collections will be performed. If the size is too large,

 then only full garbage collections will be performed, which can

 take a long time to complete. Oracle recommends that you keep the

 size for the young generation between a half and a quarter of the

 overall heap size.

 The following examples show how to set the initial and maximum size

 of young generation to 256 MB using various units:

 -Xmn256m

 -Xmn262144k

 -Xmn268435456

 Instead of the -Xmn option to set both the initial and maximum size

 of the heap for the young generation, you can use -XX:NewSize to

 set the initial size and -XX:MaxNewSize to set the maximum size.

 -Xmssize

 Sets the initial size (in bytes) of the heap. This value must be a

 multiple of 1024 and greater than 1 MB. Append the letter k or K to

 indicate kilobytes, m or M to indicate megabytes, g or G to Page 12/55

 indicate gigabytes.

 The following examples show how to set the size of allocated memory

 to 6 MB using various units:

 -Xms6291456

 -Xms6144k

 -Xms6m

 If you do not set this option, then the initial size will be set as

 the sum of the sizes allocated for the old generation and the young

 generation. The initial size of the heap for the young generation

 can be set using the -Xmn option or the -XX:NewSize option.

 -Xmxsize

 Specifies the maximum size (in bytes) of the memory allocation pool

 in bytes. This value must be a multiple of 1024 and greater than 2

 MB. Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, g or G to indicate gigabytes. The default value

 is chosen at runtime based on system configuration. For server

 deployments, -Xms and -Xmx are often set to the same value. See the

 section "Ergonomics" in Java SE HotSpot Virtual Machine Garbage

 Collection Tuning Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/index.html.

 The following examples show how to set the maximum allowed size of

 allocated memory to 80 MB using various units:

 -Xmx83886080

 -Xmx81920k

 -Xmx80m

 The -Xmx option is equivalent to -XX:MaxHeapSize.

 -Xnoclassgc

 Disables garbage collection (GC) of classes. This can save some GC

 time, which shortens interruptions during the application run.

 When you specify -Xnoclassgc at startup, the class objects in the

 application will be left untouched during GC and will always be

 considered live. This can result in more memory being permanently

 occupied which, if not used carefully, will throw an out of memory Page 13/55

 exception.

 -Xrs

 Reduces the use of operating system signals by the JVM.

 Shutdown hooks enable orderly shutdown of a Java application by

 running user cleanup code (such as closing database connections) at

 shutdown, even if the JVM terminates abruptly.

 The JVM catches signals to implement shutdown hooks for unexpected

 termination. The JVM uses SIGHUP, SIGINT, and SIGTERM to initiate

 the running of shutdown hooks.

 The JVM uses a similar mechanism to implement the feature of

 dumping thread stacks for debugging purposes. The JVM uses SIGQUIT

 to perform thread dumps.

 Applications embedding the JVM frequently need to trap signals such

 as SIGINT or SIGTERM, which can lead to interference with the JVM

 signal handlers. The -Xrs option is available to address this

 issue. When -Xrs is used, the signal masks for SIGINT, SIGTERM,

 SIGHUP, and SIGQUIT are not changed by the JVM, and signal handlers

 for these signals are not installed.

 There are two consequences of specifying -Xrs:

 ? SIGQUIT thread dumps are not available.

 ? User code is responsible for causing shutdown hooks to run, for

 example, by calling System.exit() when the JVM is to be

 terminated.

 -Xshare:mode

 Sets the class data sharing (CDS) mode. Possible mode arguments for

 this option include the following:

 auto

 Use CDS if possible. This is the default value for Java HotSpot

 32-Bit Client VM.

 on

 Require the use of CDS. Print an error message and exit if

 class data sharing cannot be used.

 off Page 14/55

 Do not use CDS. This is the default value for Java HotSpot

 32-Bit Server VM, Java HotSpot 64-Bit Client VM, and Java

 HotSpot 64-Bit Server VM.

 dump

 Manually generate the CDS archive. Specify the application

 class path as described in "Setting the Class Path ".

 You should regenerate the CDS archive with each new JDK

 release.

 -XshowSettings:category

 Shows settings and continues. Possible category arguments for this

 option include the following:

 all

 Shows all categories of settings. This is the default value.

 locale

 Shows settings related to locale.

 properties

 Shows settings related to system properties.

 vm

 Shows the settings of the JVM.

 -Xsssize

 Sets the thread stack size (in bytes). Append the letter k or K to

 indicate KB, m or M to indicate MB, g or G to indicate GB. The

 default value depends on the platform:

 ? Linux/ARM (32-bit): 320 KB

 ? Linux/i386 (32-bit): 320 KB

 ? Linux/x64 (64-bit): 1024 KB

 ? OS X (64-bit): 1024 KB

 ? Oracle Solaris/i386 (32-bit): 320 KB

 ? Oracle Solaris/x64 (64-bit): 1024 KB

 The following examples set the thread stack size to 1024 KB in

 different units:

 -Xss1m

 -Xss1024k Page 15/55

 -Xss1048576

 This option is equivalent to -XX:ThreadStackSize.

 -Xusealtsigs

 Use alternative signals instead of SIGUSR1 and SIGUSR2 for JVM

 internal signals. This option is equivalent to -XX:+UseAltSigs.

 -Xverify:mode

 Sets the mode of the bytecode verifier. Bytecode verification helps

 to troubleshoot some problems, but it also adds overhead to the

 running application. Possible mode arguments for this option

 include the following:

 none

 Do not verify the bytecode. This reduces startup time and also

 reduces the protection provided by Java.

 remote

 Verify those classes that are not loaded by the bootstrap class

 loader. This is the default behavior if you do not specify the

 -Xverify option.

 all

 Verify all classes.

 Advanced Runtime Options

 These options control the runtime behavior of the Java HotSpot VM.

 -XX:+DisableAttachMechanism

 Enables the option that disables the mechanism that lets tools

 attach to the JVM. By default, this option is disabled, meaning

 that the attach mechanism is enabled and you can use tools such as

 jcmd, jstack, jmap, and jinfo.

 -XX:ErrorFile=filename

 Specifies the path and file name to which error data is written

 when an irrecoverable error occurs. By default, this file is

 created in the current working directory and named

 hs_err_pidpid.log where pid is the identifier of the process that

 caused the error. The following example shows how to set the

 default log file (note that the identifier of the process is Page 16/55

 specified as %p):

 -XX:ErrorFile=./hs_err_pid%p.log

 The following example shows how to set the error log to

 /var/log/java/java_error.log:

 -XX:ErrorFile=/var/log/java/java_error.log

 If the file cannot be created in the specified directory (due to

 insufficient space, permission problem, or another issue), then the

 file is created in the temporary directory for the operating

 system. The temporary directory is /tmp.

 -XX:+FailOverToOldVerifier

 Enables automatic failover to the old verifier when the new type

 checker fails. By default, this option is disabled and it is

 ignored (that is, treated as disabled) for classes with a recent

 bytecode version. You can enable it for classes with older versions

 of the bytecode.

 -XX:LargePageSizeInBytes=size

 On Solaris, sets the maximum size (in bytes) for large pages used

 for Java heap. The size argument must be a power of 2 (2, 4, 8, 16,

 ...). Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, g or G to indicate gigabytes. By default, the

 size is set to 0, meaning that the JVM chooses the size for large

 pages automatically.

 The following example illustrates how to set the large page size to

 4 megabytes (MB):

 -XX:LargePageSizeInBytes=4m

 -XX:MaxDirectMemorySize=size

 Sets the maximum total size (in bytes) of the New I/O (the java.nio

 package) direct-buffer allocations. Append the letter k or K to

 indicate kilobytes, m or M to indicate megabytes, g or G to

 indicate gigabytes. By default, the size is set to 0, meaning that

 the JVM chooses the size for NIO direct-buffer allocations

 automatically.

 The following examples illustrate how to set the NIO size to 1024 Page 17/55

 KB in different units:

 -XX:MaxDirectMemorySize=1m

 -XX:MaxDirectMemorySize=1024k

 -XX:MaxDirectMemorySize=1048576

 -XX:NativeMemoryTracking=mode

 Specifies the mode for tracking JVM native memory usage. Possible

 mode arguments for this option include the following:

 off

 Do not track JVM native memory usage. This is the default

 behavior if you do not specify the -XX:NativeMemoryTracking

 option.

 summary

 Only track memory usage by JVM subsystems, such as Java heap,

 class, code, and thread.

 detail

 In addition to tracking memory usage by JVM subsystems, track

 memory usage by individual CallSite, individual virtual memory

 region and its committed regions.

 -XX:ObjectAlignmentInBytes=alignment

 Sets the memory alignment of Java objects (in bytes). By default,

 the value is set to 8 bytes. The specified value should be a power

 of two, and must be within the range of 8 and 256 (inclusive). This

 option makes it possible to use compressed pointers with large Java

 heap sizes.

 The heap size limit in bytes is calculated as:

 4GB * ObjectAlignmentInBytes

 Note: As the alignment value increases, the unused space between

 objects will also increase. As a result, you may not realize any

 benefits from using compressed pointers with large Java heap sizes.

 -XX:OnError=string

 Sets a custom command or a series of semicolon-separated commands

 to run when an irrecoverable error occurs. If the string contains

 spaces, then it must be enclosed in quotation marks. Page 18/55

 The following example shows how the -XX:OnError option can be used

 to run the gcore command to create the core image, and the debugger

 is started to attach to the process in case of an irrecoverable

 error (the %p designates the current process):

 -XX:OnError="gcore %p;dbx - %p"

 -XX:OnOutOfMemoryError=string

 Sets a custom command or a series of semicolon-separated commands

 to run when an OutOfMemoryError exception is first thrown. If the

 string contains spaces, then it must be enclosed in quotation

 marks. For an example of a command string, see the description of

 the -XX:OnError option.

 -XX:+PerfDataSaveToFile

 If enabled, saves jstat(1) binary data when the Java application

 exits. This binary data is saved in a file named hsperfdata_<pid>,

 where <pid> is the process identifier of the Java application you

 ran. Use jstat to display the performance data contained in this

 file as follows:

 jstat -class file:///<path>/hsperfdata_<pid>

 jstat -gc file:///<path>/hsperfdata_<pid>

 -XX:+PrintCommandLineFlags

 Enables printing of ergonomically selected JVM flags that appeared

 on the command line. It can be useful to know the ergonomic values

 set by the JVM, such as the heap space size and the selected

 garbage collector. By default, this option is disabled and flags

 are not printed.

 -XX:+PrintNMTStatistics

 Enables printing of collected native memory tracking data at JVM

 exit when native memory tracking is enabled (see

 -XX:NativeMemoryTracking). By default, this option is disabled and

 native memory tracking data is not printed.

 -XX:+RelaxAccessControlCheck

 Decreases the amount of access control checks in the verifier. By

 default, this option is disabled, and it is ignored (that is, Page 19/55

 treated as disabled) for classes with a recent bytecode version.

 You can enable it for classes with older versions of the bytecode.

 -XX:+ShowMessageBoxOnError

 Enables displaying of a dialog box when the JVM experiences an

 irrecoverable error. This prevents the JVM from exiting and keeps

 the process active so that you can attach a debugger to it to

 investigate the cause of the error. By default, this option is

 disabled.

 -XX:ThreadStackSize=size

 Sets the thread stack size (in bytes). Append the letter k or K to

 indicate kilobytes, m or M to indicate megabytes, g or G to

 indicate gigabytes. The default value depends on the platform:

 ? Linux/ARM (32-bit): 320 KB

 ? Linux/i386 (32-bit): 320 KB

 ? Linux/x64 (64-bit): 1024 KB

 ? OS X (64-bit): 1024 KB

 ? Oracle Solaris/i386 (32-bit): 320 KB

 ? Oracle Solaris/x64 (64-bit): 1024 KB

 The following examples show how to set the thread stack size to

 1024 KB in different units:

 -XX:ThreadStackSize=1m

 -XX:ThreadStackSize=1024k

 -XX:ThreadStackSize=1048576

 This option is equivalent to -Xss.

 -XX:+TraceClassLoading

 Enables tracing of classes as they are loaded. By default, this

 option is disabled and classes are not traced.

 -XX:+TraceClassLoadingPreorder

 Enables tracing of all loaded classes in the order in which they

 are referenced. By default, this option is disabled and classes are

 not traced.

 -XX:+TraceClassResolution

 Enables tracing of constant pool resolutions. By default, this Page 20/55

 option is disabled and constant pool resolutions are not traced.

 -XX:+TraceClassUnloading

 Enables tracing of classes as they are unloaded. By default, this

 option is disabled and classes are not traced.

 -XX:+TraceLoaderConstraints

 Enables tracing of the loader constraints recording. By default,

 this option is disabled and loader constraints recording is not

 traced.

 -XX:+UseAltSigs

 Enables the use of alternative signals instead of SIGUSR1 and

 SIGUSR2 for JVM internal signals. By default, this option is

 disabled and alternative signals are not used. This option is

 equivalent to -Xusealtsigs.

 -XX:-UseBiasedLocking

 Disables the use of biased locking. Some applications with

 significant amounts of uncontended synchronization may attain

 significant speedups with this flag enabled, whereas applications

 with certain patterns of locking may see slowdowns. For more

 information about the biased locking technique, see the example in

 Java Tuning White Paper at

 http://www.oracle.com/technetwork/java/tuning-139912.html#section4.2.5

 By default, this option is enabled.

 -XX:-UseCompressedOops

 Disables the use of compressed pointers. By default, this option is

 enabled, and compressed pointers are used when Java heap sizes are

 less than 32 GB. When this option is enabled, object references are

 represented as 32-bit offsets instead of 64-bit pointers, which

 typically increases performance when running the application with

 Java heap sizes less than 32 GB. This option works only for 64-bit

 JVMs.

 It is also possible to use compressed pointers when Java heap sizes

 are greater than 32GB. See the -XX:ObjectAlignmentInBytes option.

 -XX:+UseHugeTLBFS Page 21/55

 This option for Linux is the equivalent of specifying

 -XX:+UseLargePages. This option is disabled by default. This option

 pre-allocates all large pages up-front, when memory is reserved;

 consequently the JVM cannot dynamically grow or shrink large pages

 memory areas; see -XX:UseTransparentHugePages if you want this

 behavior.

 For more information, see "Large Pages".

 -XX:+UseLargePages

 Enables the use of large page memory. By default, this option is

 disabled and large page memory is not used.

 For more information, see "Large Pages".

 -XX:+UseMembar

 Enables issuing of membars on thread state transitions. This option

 is disabled by default on all platforms except ARM servers, where

 it is enabled. (It is recommended that you do not disable this

 option on ARM servers.)

 -XX:+UsePerfData

 Enables the perfdata feature. This option is enabled by default to

 allow JVM monitoring and performance testing. Disabling it

 suppresses the creation of the hsperfdata_userid directories. To

 disable the perfdata feature, specify -XX:-UsePerfData.

 -XX:+UseTransparentHugePages

 On Linux, enables the use of large pages that can dynamically grow

 or shrink. This option is disabled by default. You may encounter

 performance problems with transparent huge pages as the OS moves

 other pages around to create huge pages; this option is made

 available for experimentation.

 For more information, see "Large Pages".

 -XX:+AllowUserSignalHandlers

 Enables installation of signal handlers by the application. By

 default, this option is disabled and the application is not allowed

 to install signal handlers.

 Advanced JIT Compiler Options Page 22/55

 These options control the dynamic just-in-time (JIT) compilation

 performed by the Java HotSpot VM.

 -XX:+AggressiveOpts

 Enables the use of aggressive performance optimization features,

 which are expected to become default in upcoming releases. By

 default, this option is disabled and experimental performance

 features are not used.

 -XX:AllocateInstancePrefetchLines=lines

 Sets the number of lines to prefetch ahead of the instance

 allocation pointer. By default, the number of lines to prefetch is

 set to 1:

 -XX:AllocateInstancePrefetchLines=1

 Only the Java HotSpot Server VM supports this option.

 -XX:AllocatePrefetchDistance=size

 Sets the size (in bytes) of the prefetch distance for object

 allocation. Memory about to be written with the value of new

 objects is prefetched up to this distance starting from the address

 of the last allocated object. Each Java thread has its own

 allocation point.

 Negative values denote that prefetch distance is chosen based on

 the platform. Positive values are bytes to prefetch. Append the

 letter k or K to indicate kilobytes, m or M to indicate megabytes,

 g or G to indicate gigabytes. The default value is set to -1.

 The following example shows how to set the prefetch distance to

 1024 bytes:

 -XX:AllocatePrefetchDistance=1024

 Only the Java HotSpot Server VM supports this option.

 -XX:AllocatePrefetchInstr=instruction

 Sets the prefetch instruction to prefetch ahead of the allocation

 pointer. Only the Java HotSpot Server VM supports this option.

 Possible values are from 0 to 3. The actual instructions behind the

 values depend on the platform. By default, the prefetch instruction

 is set to 0: Page 23/55

 -XX:AllocatePrefetchInstr=0

 Only the Java HotSpot Server VM supports this option.

 -XX:AllocatePrefetchLines=lines

 Sets the number of cache lines to load after the last object

 allocation by using the prefetch instructions generated in compiled

 code. The default value is 1 if the last allocated object was an

 instance, and 3 if it was an array.

 The following example shows how to set the number of loaded cache

 lines to 5:

 -XX:AllocatePrefetchLines=5

 Only the Java HotSpot Server VM supports this option.

 -XX:AllocatePrefetchStepSize=size

 Sets the step size (in bytes) for sequential prefetch instructions.

 Append the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, g or G to indicate gigabytes. By default, the step size

 is set to 16 bytes:

 -XX:AllocatePrefetchStepSize=16

 Only the Java HotSpot Server VM supports this option.

 -XX:AllocatePrefetchStyle=style

 Sets the generated code style for prefetch instructions. The style

 argument is an integer from 0 to 3:

 0

 Do not generate prefetch instructions.

 1

 Execute prefetch instructions after each allocation. This is

 the default parameter.

 2

 Use the thread-local allocation block (TLAB) watermark pointer

 to determine when prefetch instructions are executed.

 3

 Use BIS instruction on SPARC for allocation prefetch.

 Only the Java HotSpot Server VM supports this option.

 -XX:+BackgroundCompilation Page 24/55

 Enables background compilation. This option is enabled by default.

 To disable background compilation, specify

 -XX:-BackgroundCompilation (this is equivalent to specifying

 -Xbatch).

 -XX:CICompilerCount=threads

 Sets the number of compiler threads to use for compilation. By

 default, the number of threads is set to 2 for the server JVM, to 1

 for the client JVM, and it scales to the number of cores if tiered

 compilation is used. The following example shows how to set the

 number of threads to 2:

 -XX:CICompilerCount=2

 -XX:CodeCacheMinimumFreeSpace=size

 Sets the minimum free space (in bytes) required for compilation.

 Append the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, g or G to indicate gigabytes. When less than the minimum

 free space remains, compiling stops. By default, this option is set

 to 500 KB. The following example shows how to set the minimum free

 space to 1024 MB:

 -XX:CodeCacheMinimumFreeSpace=1024m

 -XX:CompileCommand=command,method[,option]

 Specifies a command to perform on a method. For example, to exclude

 the indexOf() method of the String class from being compiled, use

 the following:

 -XX:CompileCommand=exclude,java/lang/String.indexOf

 Note that the full class name is specified, including all packages

 and subpackages separated by a slash (/). For easier cut and paste

 operations, it is also possible to use the method name format

 produced by the -XX:+PrintCompilation and -XX:+LogCompilation

 options:

 -XX:CompileCommand=exclude,java.lang.String::indexOf

 If the method is specified without the signature, the command will

 be applied to all methods with the specified name. However, you can

 also specify the signature of the method in the class file format. Page 25/55

 In this case, you should enclose the arguments in quotation marks,

 because otherwise the shell treats the semicolon as command end.

 For example, if you want to exclude only the indexOf(String) method

 of the String class from being compiled, use the following:

 -XX:CompileCommand="exclude,java/lang/String.indexOf,(Ljava/lang/String;)I"

 You can also use the asterisk (*) as a wildcard for class and

 method names. For example, to exclude all indexOf() methods in all

 classes from being compiled, use the following:

 -XX:CompileCommand=exclude,*.indexOf

 The commas and periods are aliases for spaces, making it easier to

 pass compiler commands through a shell. You can pass arguments to

 -XX:CompileCommand using spaces as separators by enclosing the

 argument in quotation marks:

 -XX:CompileCommand="exclude java/lang/String indexOf"

 Note that after parsing the commands passed on the command line

 using the -XX:CompileCommand options, the JIT compiler then reads

 commands from the .hotspot_compiler file. You can add commands to

 this file or specify a different file using the

 -XX:CompileCommandFile option.

 To add several commands, either specify the -XX:CompileCommand

 option multiple times, or separate each argument with the newline

 separator (\n). The following commands are available:

 break

 Set a breakpoint when debugging the JVM to stop at the

 beginning of compilation of the specified method.

 compileonly

 Exclude all methods from compilation except for the specified

 method. As an alternative, you can use the -XX:CompileOnly

 option, which allows to specify several methods.

 dontinline

 Prevent inlining of the specified method.

 exclude

 Exclude the specified method from compilation. Page 26/55

 help

 Print a help message for the -XX:CompileCommand option.

 inline

 Attempt to inline the specified method.

 log

 Exclude compilation logging (with the -XX:+LogCompilation

 option) for all methods except for the specified method. By

 default, logging is performed for all compiled methods.

 option

 This command can be used to pass a JIT compilation option to

 the specified method in place of the last argument (option).

 The compilation option is set at the end, after the method

 name. For example, to enable the BlockLayoutByFrequency option

 for the append() method of the StringBuffer class, use the

 following:

 -XX:CompileCommand=option,java/lang/StringBuffer.append,BlockLayoutByFrequency

 You can specify multiple compilation options, separated by

 commas or spaces.

 print

 Print generated assembler code after compilation of the

 specified method.

 quiet

 Do not print the compile commands. By default, the commands

 that you specify with the -XX:CompileCommand option are

 printed; for example, if you exclude from compilation the

 indexOf() method of the String class, then the following will

 be printed to standard output:

 CompilerOracle: exclude java/lang/String.indexOf

 You can suppress this by specifying the

 -XX:CompileCommand=quiet option before other -XX:CompileCommand

 options.

 -XX:CompileCommandFile=filename

 Sets the file from which JIT compiler commands are read. By Page 27/55

 default, the .hotspot_compiler file is used to store commands

 performed by the JIT compiler.

 Each line in the command file represents a command, a class name,

 and a method name for which the command is used. For example, this

 line prints assembly code for the toString() method of the String

 class:

 print java/lang/String toString

 For more information about specifying the commands for the JIT

 compiler to perform on methods, see the -XX:CompileCommand option.

 -XX:CompileOnly=methods

 Sets the list of methods (separated by commas) to which compilation

 should be restricted. Only the specified methods will be compiled.

 Specify each method with the full class name (including the

 packages and subpackages). For example, to compile only the

 length() method of the String class and the size() method of the

 List class, use the following:

 -XX:CompileOnly=java/lang/String.length,java/util/List.size

 Note that the full class name is specified, including all packages

 and subpackages separated by a slash (/). For easier cut and paste

 operations, it is also possible to use the method name format

 produced by the -XX:+PrintCompilation and -XX:+LogCompilation

 options:

 -XX:CompileOnly=java.lang.String::length,java.util.List::size

 Although wildcards are not supported, you can specify only the

 class or package name to compile all methods in that class or

 package, as well as specify just the method to compile methods with

 this name in any class:

 -XX:CompileOnly=java/lang/String

 -XX:CompileOnly=java/lang

 -XX:CompileOnly=.length

 -XX:CompileThreshold=invocations

 Sets the number of interpreted method invocations before

 compilation. By default, in the server JVM, the JIT compiler Page 28/55

 performs 10,000 interpreted method invocations to gather

 information for efficient compilation. For the client JVM, the

 default setting is 1,500 invocations. This option is ignored when

 tiered compilation is enabled; see the option

 -XX:+TieredCompilation. The following example shows how to set the

 number of interpreted method invocations to 5,000:

 -XX:CompileThreshold=5000

 You can completely disable interpretation of Java methods before

 compilation by specifying the -Xcomp option.

 -XX:+DoEscapeAnalysis

 Enables the use of escape analysis. This option is enabled by

 default. To disable the use of escape analysis, specify

 -XX:-DoEscapeAnalysis. Only the Java HotSpot Server VM supports

 this option.

 -XX:InitialCodeCacheSize=size

 Sets the initial code cache size (in bytes). Append the letter k or

 K to indicate kilobytes, m or M to indicate megabytes, g or G to

 indicate gigabytes. The default value is set to 500 KB. The initial

 code cache size should be not less than the system's minimal memory

 page size. The following example shows how to set the initial code

 cache size to 32 KB:

 -XX:InitialCodeCacheSize=32k

 -XX:+Inline

 Enables method inlining. This option is enabled by default to

 increase performance. To disable method inlining, specify

 -XX:-Inline.

 -XX:InlineSmallCode=size

 Sets the maximum code size (in bytes) for compiled methods that

 should be inlined. Append the letter k or K to indicate kilobytes,

 m or M to indicate megabytes, g or G to indicate gigabytes. Only

 compiled methods with the size smaller than the specified size will

 be inlined. By default, the maximum code size is set to 1000 bytes:

 -XX:InlineSmallCode=1000 Page 29/55

 -XX:+LogCompilation

 Enables logging of compilation activity to a file named hotspot.log

 in the current working directory. You can specify a different log

 file path and name using the -XX:LogFile option.

 By default, this option is disabled and compilation activity is not

 logged. The -XX:+LogCompilation option has to be used together with

 the -XX:UnlockDiagnosticVMOptions option that unlocks diagnostic

 JVM options.

 You can enable verbose diagnostic output with a message printed to

 the console every time a method is compiled by using the

 -XX:+PrintCompilation option.

 -XX:MaxInlineSize=size

 Sets the maximum bytecode size (in bytes) of a method to be

 inlined. Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, g or G to indicate gigabytes. By default, the

 maximum bytecode size is set to 35 bytes:

 -XX:MaxInlineSize=35

 -XX:MaxNodeLimit=nodes

 Sets the maximum number of nodes to be used during single method

 compilation. By default, the maximum number of nodes is set to

 65,000:

 -XX:MaxNodeLimit=65000

 -XX:MaxTrivialSize=size

 Sets the maximum bytecode size (in bytes) of a trivial method to be

 inlined. Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, g or G to indicate gigabytes. By default, the

 maximum bytecode size of a trivial method is set to 6 bytes:

 -XX:MaxTrivialSize=6

 -XX:+OptimizeStringConcat

 Enables the optimization of String concatenation operations. This

 option is enabled by default. To disable the optimization of String

 concatenation operations, specify -XX:-OptimizeStringConcat. Only

 the Java HotSpot Server VM supports this option. Page 30/55

 -XX:+PrintAssembly

 Enables printing of assembly code for bytecoded and native methods

 by using the external disassembler.so library. This enables you to

 see the generated code, which may help you to diagnose performance

 issues.

 By default, this option is disabled and assembly code is not

 printed. The -XX:+PrintAssembly option has to be used together with

 the -XX:UnlockDiagnosticVMOptions option that unlocks diagnostic

 JVM options.

 -XX:+PrintCompilation

 Enables verbose diagnostic output from the JVM by printing a

 message to the console every time a method is compiled. This

 enables you to see which methods actually get compiled. By default,

 this option is disabled and diagnostic output is not printed.

 You can also log compilation activity to a file by using the

 -XX:+LogCompilation option.

 -XX:+PrintInlining

 Enables printing of inlining decisions. This enables you to see

 which methods are getting inlined.

 By default, this option is disabled and inlining information is not

 printed. The -XX:+PrintInlining option has to be used together with

 the -XX:+UnlockDiagnosticVMOptions option that unlocks diagnostic

 JVM options.

 -XX:ReservedCodeCacheSize=size

 Sets the maximum code cache size (in bytes) for JIT-compiled code.

 Append the letter k or K to indicate kilobytes, m or M to indicate

 megabytes, g or G to indicate gigabytes. The default maximum code

 cache size is 240 MB; if you disable tiered compilation with the

 option -XX:-TieredCompilation, then the default size is 48 MB. This

 option has a limit of 2 GB; otherwise, an error is generated. The

 maximum code cache size should not be less than the initial code

 cache size; see the option -XX:InitialCodeCacheSize. This option is

 equivalent to -Xmaxjitcodesize. Page 31/55

 -XX:RTMAbortRatio=abort_ratio

 The RTM abort ratio is specified as a percentage (%) of all

 executed RTM transactions. If a number of aborted transactions

 becomes greater than this ratio, then the compiled code will be

 deoptimized. This ratio is used when the -XX:+UseRTMDeopt option is

 enabled. The default value of this option is 50. This means that

 the compiled code will be deoptimized if 50% of all transactions

 are aborted.

 -XX:RTMRetryCount=number_of_retries

 RTM locking code will be retried, when it is aborted or busy, the

 number of times specified by this option before falling back to the

 normal locking mechanism. The default value for this option is 5.

 The -XX:UseRTMLocking option must be enabled.

 -XX:-TieredCompilation

 Disables the use of tiered compilation. By default, this option is

 enabled. Only the Java HotSpot Server VM supports this option.

 -XX:+UseAES

 Enables hardware-based AES intrinsics for Intel, AMD, and SPARC

 hardware. Intel Westmere (2010 and newer), AMD Bulldozer (2011 and

 newer), and SPARC (T4 and newer) are the supported hardware. UseAES

 is used in conjunction with UseAESIntrinsics.

 -XX:+UseAESIntrinsics

 UseAES and UseAESIntrinsics flags are enabled by default and are

 supported only for Java HotSpot Server VM 32-bit and 64-bit. To

 disable hardware-based AES intrinsics, specify -XX:-UseAES

 -XX:-UseAESIntrinsics. For example, to enable hardware AES, use the

 following flags:

 -XX:+UseAES -XX:+UseAESIntrinsics

 To support UseAES and UseAESIntrinsics flags for 32-bit and 64-bit

 use -server option to choose Java HotSpot Server VM. These flags

 are not supported on Client VM.

 -XX:+UseCodeCacheFlushing

 Enables flushing of the code cache before shutting down the Page 32/55

 compiler. This option is enabled by default. To disable flushing of

 the code cache before shutting down the compiler, specify

 -XX:-UseCodeCacheFlushing.

 -XX:+UseCondCardMark

 Enables checking of whether the card is already marked before

 updating the card table. This option is disabled by default and

 should only be used on machines with multiple sockets, where it

 will increase performance of Java applications that rely heavily on

 concurrent operations. Only the Java HotSpot Server VM supports

 this option.

 -XX:+UseRTMDeopt

 Auto-tunes RTM locking depending on the abort ratio. This ratio is

 specified by -XX:RTMAbortRatio option. If the number of aborted

 transactions exceeds the abort ratio, then the method containing

 the lock will be deoptimized and recompiled with all locks as

 normal locks. This option is disabled by default. The

 -XX:+UseRTMLocking option must be enabled.

 -XX:+UseRTMLocking

 Generate Restricted Transactional Memory (RTM) locking code for all

 inflated locks, with the normal locking mechanism as the fallback

 handler. This option is disabled by default. Options related to RTM

 are only available for the Java HotSpot Server VM on x86 CPUs that

 support Transactional Synchronization Extensions (TSX).

 RTM is part of Intel's TSX, which is an x86 instruction set

 extension and facilitates the creation of multithreaded

 applications. RTM introduces the new instructions XBEGIN, XABORT,

 XEND, and XTEST. The XBEGIN and XEND instructions enclose a set of

 instructions to run as a transaction. If no conflict is found when

 running the transaction, the memory and register modifications are

 committed together at the XEND instruction. The XABORT instruction

 can be used to explicitly abort a transaction and the XEND

 instruction to check if a set of instructions are being run in a

 transaction. Page 33/55

 A lock on a transaction is inflated when another thread tries to

 access the same transaction, thereby blocking the thread that did

 not originally request access to the transaction. RTM requires that

 a fallback set of operations be specified in case a transaction

 aborts or fails. An RTM lock is a lock that has been delegated to

 the TSX's system.

 RTM improves performance for highly contended locks with low

 conflict in a critical region (which is code that must not be

 accessed by more than one thread concurrently). RTM also improves

 the performance of coarse-grain locking, which typically does not

 perform well in multithreaded applications. (Coarse-grain locking

 is the strategy of holding locks for long periods to minimize the

 overhead of taking and releasing locks, while fine-grained locking

 is the strategy of trying to achieve maximum parallelism by locking

 only when necessary and unlocking as soon as possible.) Also, for

 lightly contended locks that are used by different threads, RTM can

 reduce false cache line sharing, also known as cache line

 ping-pong. This occurs when multiple threads from different

 processors are accessing different resources, but the resources

 share the same cache line. As a result, the processors repeatedly

 invalidate the cache lines of other processors, which forces them

 to read from main memory instead of their cache.

 -XX:+UseSHA

 Enables hardware-based intrinsics for SHA crypto hash functions for

 SPARC hardware. UseSHA is used in conjunction with the

 UseSHA1Intrinsics, UseSHA256Intrinsics, and UseSHA512Intrinsics

 options.

 The UseSHA and UseSHA*Intrinsics flags are enabled by default, and

 are supported only for Java HotSpot Server VM 64-bit on SPARC T4

 and newer.

 This feature is only applicable when using the

 sun.security.provider.Sun provider for SHA operations.

 To disable all hardware-based SHA intrinsics, specify -XX:-UseSHA. Page 34/55

 To disable only a particular SHA intrinsic, use the appropriate

 corresponding option. For example: -XX:-UseSHA256Intrinsics.

 -XX:+UseSHA1Intrinsics

 Enables intrinsics for SHA-1 crypto hash function.

 -XX:+UseSHA256Intrinsics

 Enables intrinsics for SHA-224 and SHA-256 crypto hash functions.

 -XX:+UseSHA512Intrinsics

 Enables intrinsics for SHA-384 and SHA-512 crypto hash functions.

 -XX:+UseSuperWord

 Enables the transformation of scalar operations into superword

 operations. This option is enabled by default. To disable the

 transformation of scalar operations into superword operations,

 specify -XX:-UseSuperWord. Only the Java HotSpot Server VM supports

 this option.

 Advanced Serviceability Options

 These options provide the ability to gather system information and

 perform extensive debugging.

 -XX:+ExtendedDTraceProbes

 Enables additional dtrace tool probes that impact the performance.

 By default, this option is disabled and dtrace performs only

 standard probes.

 -XX:+HeapDumpOnOutOfMemory

 Enables the dumping of the Java heap to a file in the current

 directory by using the heap profiler (HPROF) when a

 java.lang.OutOfMemoryError exception is thrown. You can explicitly

 set the heap dump file path and name using the -XX:HeapDumpPath

 option. By default, this option is disabled and the heap is not

 dumped when an OutOfMemoryError exception is thrown.

 -XX:HeapDumpPath=path

 Sets the path and file name for writing the heap dump provided by

 the heap profiler (HPROF) when the -XX:+HeapDumpOnOutOfMemoryError

 option is set. By default, the file is created in the current

 working directory, and it is named java_pidpid.hprof where pid is Page 35/55

 the identifier of the process that caused the error. The following

 example shows how to set the default file explicitly (%p represents

 the current process identificator):

 -XX:HeapDumpPath=./java_pid%p.hprof

 The following example shows how to set the heap dump file to

 /var/log/java/java_heapdump.hprof:

 -XX:HeapDumpPath=/var/log/java/java_heapdump.hprof

 -XX:LogFile=path

 Sets the path and file name where log data is written. By default,

 the file is created in the current working directory, and it is

 named hotspot.log.

 The following example shows how to set the log file to

 /var/log/java/hotspot.log:

 -XX:LogFile=/var/log/java/hotspot.log

 -XX:+PrintClassHistogram

 Enables printing of a class instance histogram after a Control+C

 event (SIGTERM). By default, this option is disabled.

 Setting this option is equivalent to running the jmap -histo

 command, or the jcmd pid GC.class_histogram command, where pid is

 the current Java process identifier.

 -XX:+PrintConcurrentLocks

 Enables printing of locks after a event. By default, this option is

 disabled.

 Enables printing of java.util.concurrent locks after a Control+C

 event (SIGTERM). By default, this option is disabled.

 Setting this option is equivalent to running the jstack -l command

 or the jcmd pid Thread.print -l command, where pid is the current

 Java process identifier.

 -XX:+UnlockDiagnosticVMOptions

 Unlocks the options intended for diagnosing the JVM. By default,

 this option is disabled and diagnostic options are not available.

 Advanced Garbage Collection Options

 These options control how garbage collection (GC) is performed by the Page 36/55

 Java HotSpot VM.

 -XX:+AggressiveHeap

 Enables Java heap optimization. This sets various parameters to be

 optimal for long-running jobs with intensive memory allocation,

 based on the configuration of the computer (RAM and CPU). By

 default, the option is disabled and the heap is not optimized.

 -XX:+AlwaysPreTouch

 Enables touching of every page on the Java heap during JVM

 initialization. This gets all pages into the memory before entering

 the main() method. The option can be used in testing to simulate a

 long-running system with all virtual memory mapped to physical

 memory. By default, this option is disabled and all pages are

 committed as JVM heap space fills.

 -XX:+CMSClassUnloadingEnabled

 Enables class unloading when using the concurrent mark-sweep (CMS)

 garbage collector. This option is enabled by default. To disable

 class unloading for the CMS garbage collector, specify

 -XX:-CMSClassUnloadingEnabled.

 -XX:CMSExpAvgFactor=percent

 Sets the percentage of time (0 to 100) used to weight the current

 sample when computing exponential averages for the concurrent

 collection statistics. By default, the exponential averages factor

 is set to 25%. The following example shows how to set the factor to

 15%:

 -XX:CMSExpAvgFactor=15

 -XX:CMSInitiatingOccupancyFraction=percent

 Sets the percentage of the old generation occupancy (0 to 100) at

 which to start a CMS collection cycle. The default value is set to

 -1. Any negative value (including the default) implies that

 -XX:CMSTriggerRatio is used to define the value of the initiating

 occupancy fraction.

 The following example shows how to set the occupancy fraction to

 20%: Page 37/55

 -XX:CMSInitiatingOccupancyFraction=20

 -XX:+CMSScavengeBeforeRemark

 Enables scavenging attempts before the CMS remark step. By default,

 this option is disabled.

 -XX:CMSTriggerRatio=percent

 Sets the percentage (0 to 100) of the value specified by

 -XX:MinHeapFreeRatio that is allocated before a CMS collection

 cycle commences. The default value is set to 80%.

 The following example shows how to set the occupancy fraction to

 75%:

 -XX:CMSTriggerRatio=75

 -XX:ConcGCThreads=threads

 Sets the number of threads used for concurrent GC. The default

 value depends on the number of CPUs available to the JVM.

 For example, to set the number of threads for concurrent GC to 2,

 specify the following option:

 -XX:ConcGCThreads=2

 -XX:+DisableExplicitGC

 Enables the option that disables processing of calls to

 System.gc(). This option is disabled by default, meaning that calls

 to System.gc() are processed. If processing of calls to System.gc()

 is disabled, the JVM still performs GC when necessary.

 -XX:+ExplicitGCInvokesConcurrent

 Enables invoking of concurrent GC by using the System.gc() request.

 This option is disabled by default and can be enabled only together

 with the -XX:+UseConcMarkSweepGC option.

 -XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses

 Enables invoking of concurrent GC by using the System.gc() request

 and unloading of classes during the concurrent GC cycle. This

 option is disabled by default and can be enabled only together with

 the -XX:+UseConcMarkSweepGC option.

 -XX:G1HeapRegionSize=size

 Sets the size of the regions into which the Java heap is subdivided Page 38/55

 when using the garbage-first (G1) collector. The value can be

 between 1 MB and 32 MB. The default region size is determined

 ergonomically based on the heap size.

 The following example shows how to set the size of the subdivisions

 to 16 MB:

 -XX:G1HeapRegionSize=16m

 -XX:+G1PrintHeapRegions

 Enables the printing of information about which regions are

 allocated and which are reclaimed by the G1 collector. By default,

 this option is disabled.

 -XX:G1ReservePercent=percent

 Sets the percentage of the heap (0 to 50) that is reserved as a

 false ceiling to reduce the possibility of promotion failure for

 the G1 collector. By default, this option is set to 10%.

 The following example shows how to set the reserved heap to 20%:

 -XX:G1ReservePercent=20

 -XX:InitialHeapSize=size

 Sets the initial size (in bytes) of the memory allocation pool.

 This value must be either 0, or a multiple of 1024 and greater than

 1 MB. Append the letter k or K to indicate kilobytes, m or M to

 indicate megabytes, g or G to indicate gigabytes. The default value

 is chosen at runtime based on system configuration. See the section

 "Ergonomics" in Java SE HotSpot Virtual Machine Garbage Collection

 Tuning Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/index.html.

 The following examples show how to set the size of allocated memory

 to 6 MB using various units:

 -XX:InitialHeapSize=6291456

 -XX:InitialHeapSize=6144k

 -XX:InitialHeapSize=6m

 If you set this option to 0, then the initial size will be set as

 the sum of the sizes allocated for the old generation and the young

 generation. The size of the heap for the young generation can be Page 39/55

 set using the -XX:NewSize option.

 -XX:InitialSurvivorRatio=ratio

 Sets the initial survivor space ratio used by the throughput

 garbage collector (which is enabled by the -XX:+UseParallelGC

 and/or -XX:+UseParallelOldGC options). Adaptive sizing is enabled

 by default with the throughput garbage collector by using the

 -XX:+UseParallelGC and -XX:+UseParallelOldGC options, and survivor

 space is resized according to the application behavior, starting

 with the initial value. If adaptive sizing is disabled (using the

 -XX:-UseAdaptiveSizePolicy option), then the -XX:SurvivorRatio

 option should be used to set the size of the survivor space for the

 entire execution of the application.

 The following formula can be used to calculate the initial size of

 survivor space (S) based on the size of the young generation (Y),

 and the initial survivor space ratio (R):

 S=Y/(R+2)

 The 2 in the equation denotes two survivor spaces. The larger the

 value specified as the initial survivor space ratio, the smaller

 the initial survivor space size.

 By default, the initial survivor space ratio is set to 8. If the

 default value for the young generation space size is used (2 MB),

 the initial size of the survivor space will be 0.2 MB.

 The following example shows how to set the initial survivor space

 ratio to 4:

 -XX:InitialSurvivorRatio=4

 -XX:InitiatingHeapOccupancyPercent=percent

 Sets the percentage of the heap occupancy (0 to 100) at which to

 start a concurrent GC cycle. It is used by garbage collectors that

 trigger a concurrent GC cycle based on the occupancy of the entire

 heap, not just one of the generations (for example, the G1 garbage

 collector).

 By default, the initiating value is set to 45%. A value of 0

 implies nonstop GC cycles. The following example shows how to set Page 40/55

 the initiating heap occupancy to 75%:

 -XX:InitiatingHeapOccupancyPercent=75

 -XX:MaxGCPauseMillis=time

 Sets a target for the maximum GC pause time (in milliseconds). This

 is a soft goal, and the JVM will make its best effort to achieve

 it. By default, there is no maximum pause time value.

 The following example shows how to set the maximum target pause

 time to 500 ms:

 -XX:MaxGCPauseMillis=500

 -XX:MaxHeapSize=size

 Sets the maximum size (in byes) of the memory allocation pool. This

 value must be a multiple of 1024 and greater than 2 MB. Append the

 letter k or K to indicate kilobytes, m or M to indicate megabytes,

 g or G to indicate gigabytes. The default value is chosen at

 runtime based on system configuration. For server deployments,

 -XX:InitialHeapSize and -XX:MaxHeapSize are often set to the same

 value. See the section "Ergonomics" in Java SE HotSpot Virtual

 Machine Garbage Collection Tuning Guide at

 http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/index.html.

 The following examples show how to set the maximum allowed size of

 allocated memory to 80 MB using various units:

 -XX:MaxHeapSize=83886080

 -XX:MaxHeapSize=81920k

 -XX:MaxHeapSize=80m

 On Oracle Solaris 7 and Oracle Solaris 8 SPARC platforms, the upper

 limit for this value is approximately 4,000 MB minus overhead

 amounts. On Oracle Solaris 2.6 and x86 platforms, the upper limit

 is approximately 2,000 MB minus overhead amounts. On Linux

 platforms, the upper limit is approximately 2,000 MB minus overhead

 amounts.

 The -XX:MaxHeapSize option is equivalent to -Xmx.

 -XX:MaxHeapFreeRatio=percent

 Sets the maximum allowed percentage of free heap space (0 to 100) Page 41/55

 after a GC event. If free heap space expands above this value, then

 the heap will be shrunk. By default, this value is set to 70%.

 The following example shows how to set the maximum free heap ratio

 to 75%:

 -XX:MaxHeapFreeRatio=75

 -XX:MaxMetaspaceSize=size

 Sets the maximum amount of native memory that can be allocated for

 class metadata. By default, the size is not limited. The amount of

 metadata for an application depends on the application itself,

 other running applications, and the amount of memory available on

 the system.

 The following example shows how to set the maximum class metadata

 size to 256 MB:

 -XX:MaxMetaspaceSize=256m

 -XX:MaxNewSize=size

 Sets the maximum size (in bytes) of the heap for the young

 generation (nursery). The default value is set ergonomically.

 -XX:MaxTenuringThreshold=threshold

 Sets the maximum tenuring threshold for use in adaptive GC sizing.

 The largest value is 15. The default value is 15 for the parallel

 (throughput) collector, and 6 for the CMS collector.

 The following example shows how to set the maximum tenuring

 threshold to 10:

 -XX:MaxTenuringThreshold=10

 -XX:MetaspaceSize=size

 Sets the size of the allocated class metadata space that will

 trigger a garbage collection the first time it is exceeded. This

 threshold for a garbage collection is increased or decreased

 depending on the amount of metadata used. The default size depends

 on the platform.

 -XX:MinHeapFreeRatio=percent

 Sets the minimum allowed percentage of free heap space (0 to 100)

 after a GC event. If free heap space falls below this value, then Page 42/55

 the heap will be expanded. By default, this value is set to 40%.

 The following example shows how to set the minimum free heap ratio

 to 25%:

 -XX:MinHeapFreeRatio=25

 -XX:NewRatio=ratio

 Sets the ratio between young and old generation sizes. By default,

 this option is set to 2. The following example shows how to set the

 young/old ratio to 1:

 -XX:NewRatio=1

 -XX:NewSize=size

 Sets the initial size (in bytes) of the heap for the young

 generation (nursery). Append the letter k or K to indicate

 kilobytes, m or M to indicate megabytes, g or G to indicate

 gigabytes.

 The young generation region of the heap is used for new objects. GC

 is performed in this region more often than in other regions. If

 the size for the young generation is too low, then a large number

 of minor GCs will be performed. If the size is too high, then only

 full GCs will be performed, which can take a long time to complete.

 Oracle recommends that you keep the size for the young generation

 between a half and a quarter of the overall heap size.

 The following examples show how to set the initial size of young

 generation to 256 MB using various units:

 -XX:NewSize=256m

 -XX:NewSize=262144k

 -XX:NewSize=268435456

 The -XX:NewSize option is equivalent to -Xmn.

 -XX:ParallelGCThreads=threads

 Sets the number of threads used for parallel garbage collection in

 the young and old generations. The default value depends on the

 number of CPUs available to the JVM.

 For example, to set the number of threads for parallel GC to 2,

 specify the following option: Page 43/55

 -XX:ParallelGCThreads=2

 -XX:+ParallelRefProcEnabled

 Enables parallel reference processing. By default, this option is

 disabled.

 -XX:+PrintAdaptiveSizePolicy

 Enables printing of information about adaptive generation sizing.

 By default, this option is disabled.

 -XX:+PrintGC

 Enables printing of messages at every GC. By default, this option

 is disabled.

 -XX:+PrintGCApplicationConcurrentTime

 Enables printing of how much time elapsed since the last pause (for

 example, a GC pause). By default, this option is disabled.

 -XX:+PrintGCApplicationStoppedTime

 Enables printing of how much time the pause (for example, a GC

 pause) lasted. By default, this option is disabled.

 -XX:+PrintGCDateStamps

 Enables printing of a date stamp at every GC. By default, this

 option is disabled.

 -XX:+PrintGCDetails

 Enables printing of detailed messages at every GC. By default, this

 option is disabled.

 -XX:+PrintGCTaskTimeStamps

 Enables printing of time stamps for every individual GC worker

 thread task. By default, this option is disabled.

 -XX:+PrintGCTimeStamps

 Enables printing of time stamps at every GC. By default, this

 option is disabled.

 -XX:+PrintStringDeduplicationStatistics

 Prints detailed deduplication statistics. By default, this option

 is disabled. See the -XX:+UseStringDeduplication option.

 -XX:+PrintTenuringDistribution

 Enables printing of tenuring age information. The following is an Page 44/55

 example of the output:

 Desired survivor size 48286924 bytes, new threshold 10 (max 10)

 - age 1: 28992024 bytes, 28992024 total

 - age 2: 1366864 bytes, 30358888 total

 - age 3: 1425912 bytes, 31784800 total

 ...

 Age 1 objects are the youngest survivors (they were created after

 the previous scavenge, survived the latest scavenge, and moved from

 eden to survivor space). Age 2 objects have survived two scavenges

 (during the second scavenge they were copied from one survivor

 space to the next). And so on.

 In the preceding example, 28 992 024 bytes survived one scavenge

 and were copied from eden to survivor space, 1 366 864 bytes are

 occupied by age 2 objects, etc. The third value in each row is the

 cumulative size of objects of age n or less.

 By default, this option is disabled.

 -XX:+ScavengeBeforeFullGC

 Enables GC of the young generation before each full GC. This option

 is enabled by default. Oracle recommends that you do not disable

 it, because scavenging the young generation before a full GC can

 reduce the number of objects reachable from the old generation

 space into the young generation space. To disable GC of the young

 generation before each full GC, specify -XX:-ScavengeBeforeFullGC.

 -XX:SoftRefLRUPolicyMSPerMB=time

 Sets the amount of time (in milliseconds) a softly reachable object

 is kept active on the heap after the last time it was referenced.

 The default value is one second of lifetime per free megabyte in

 the heap. The -XX:SoftRefLRUPolicyMSPerMB option accepts integer

 values representing milliseconds per one megabyte of the current

 heap size (for Java HotSpot Client VM) or the maximum possible heap

 size (for Java HotSpot Server VM). This difference means that the

 Client VM tends to flush soft references rather than grow the heap,

 whereas the Server VM tends to grow the heap rather than flush soft Page 45/55

 references. In the latter case, the value of the -Xmx option has a

 significant effect on how quickly soft references are garbage

 collected.

 The following example shows how to set the value to 2.5 seconds:

 -XX:SoftRefLRUPolicyMSPerMB=2500

 -XX:StringDeduplicationAgeThreshold=threshold

 String objects reaching the specified age are considered candidates

 for deduplication. An object's age is a measure of how many times

 it has survived garbage collection. This is sometimes referred to

 as tenuring; see the -XX:+PrintTenuringDistribution option. Note

 that String objects that are promoted to an old heap region before

 this age has been reached are always considered candidates for

 deduplication. The default value for this option is 3. See the

 -XX:+UseStringDeduplication option.

 -XX:SurvivorRatio=ratio

 Sets the ratio between eden space size and survivor space size. By

 default, this option is set to 8. The following example shows how

 to set the eden/survivor space ratio to 4:

 -XX:SurvivorRatio=4

 -XX:TargetSurvivorRatio=percent

 Sets the desired percentage of survivor space (0 to 100) used after

 young garbage collection. By default, this option is set to 50%.

 The following example shows how to set the target survivor space

 ratio to 30%:

 -XX:TargetSurvivorRatio=30

 -XX:TLABSize=size

 Sets the initial size (in bytes) of a thread-local allocation

 buffer (TLAB). Append the letter k or K to indicate kilobytes, m or

 M to indicate megabytes, g or G to indicate gigabytes. If this

 option is set to 0, then the JVM chooses the initial size

 automatically.

 The following example shows how to set the initial TLAB size to 512

 KB: Page 46/55

 -XX:TLABSize=512k

 -XX:+UseAdaptiveSizePolicy

 Enables the use of adaptive generation sizing. This option is

 enabled by default. To disable adaptive generation sizing, specify

 -XX:-UseAdaptiveSizePolicy and set the size of the memory

 allocation pool explicitly (see the -XX:SurvivorRatio option).

 -XX:+UseCMSInitiatingOccupancyOnly

 Enables the use of the occupancy value as the only criterion for

 initiating the CMS collector. By default, this option is disabled

 and other criteria may be used.

 -XX:+UseConcMarkSweepGC

 Enables the use of the CMS garbage collector for the old

 generation. Oracle recommends that you use the CMS garbage

 collector when application latency requirements cannot be met by

 the throughput (-XX:+UseParallelGC) garbage collector. The G1

 garbage collector (-XX:+UseG1GC) is another alternative.

 By default, this option is disabled and the collector is chosen

 automatically based on the configuration of the machine and type of

 the JVM. When this option is enabled, the -XX:+UseParNewGC option

 is automatically set and you should not disable it, because the

 following combination of options has been deprecated in JDK 8:

 -XX:+UseConcMarkSweepGC -XX:-UseParNewGC.

 -XX:+UseG1GC

 Enables the use of the garbage-first (G1) garbage collector. It is

 a server-style garbage collector, targeted for multiprocessor

 machines with a large amount of RAM. It meets GC pause time goals

 with high probability, while maintaining good throughput. The G1

 collector is recommended for applications requiring large heaps

 (sizes of around 6 GB or larger) with limited GC latency

 requirements (stable and predictable pause time below 0.5 seconds).

 By default, this option is disabled and the collector is chosen

 automatically based on the configuration of the machine and type of

 the JVM. Page 47/55

 -XX:+UseGCOverheadLimit

 Enables the use of a policy that limits the proportion of time

 spent by the JVM on GC before an OutOfMemoryError exception is

 thrown. This option is enabled, by default and the parallel GC will

 throw an OutOfMemoryError if more than 98% of the total time is

 spent on garbage collection and less than 2% of the heap is

 recovered. When the heap is small, this feature can be used to

 prevent applications from running for long periods of time with

 little or no progress. To disable this option, specify

 -XX:-UseGCOverheadLimit.

 -XX:+UseNUMA

 Enables performance optimization of an application on a machine

 with nonuniform memory architecture (NUMA) by increasing the

 application's use of lower latency memory. By default, this option

 is disabled and no optimization for NUMA is made. The option is

 only available when the parallel garbage collector is used

 (-XX:+UseParallelGC).

 -XX:+UseParallelGC

 Enables the use of the parallel scavenge garbage collector (also

 known as the throughput collector) to improve the performance of

 your application by leveraging multiple processors.

 By default, this option is disabled and the collector is chosen

 automatically based on the configuration of the machine and type of

 the JVM. If it is enabled, then the -XX:+UseParallelOldGC option is

 automatically enabled, unless you explicitly disable it.

 -XX:+UseParallelOldGC

 Enables the use of the parallel garbage collector for full GCs. By

 default, this option is disabled. Enabling it automatically enables

 the -XX:+UseParallelGC option.

 -XX:+UseParNewGC

 Enables the use of parallel threads for collection in the young

 generation. By default, this option is disabled. It is

 automatically enabled when you set the -XX:+UseConcMarkSweepGC Page 48/55

 option. Using the -XX:+UseParNewGC option without the

 -XX:+UseConcMarkSweepGC option was deprecated in JDK 8.

 -XX:+UseSerialGC

 Enables the use of the serial garbage collector. This is generally

 the best choice for small and simple applications that do not

 require any special functionality from garbage collection. By

 default, this option is disabled and the collector is chosen

 automatically based on the configuration of the machine and type of

 the JVM.

 -XX:+UseSHM

 On Linux, enables the JVM to use shared memory to setup large

 pages.

 For more information, see "Large Pages".

 -XX:+UseStringDeduplication

 Enables string deduplication. By default, this option is disabled.

 To use this option, you must enable the garbage-first (G1) garbage

 collector. See the -XX:+UseG1GC option.

 String deduplication reduces the memory footprint of String objects

 on the Java heap by taking advantage of the fact that many String

 objects are identical. Instead of each String object pointing to

 its own character array, identical String objects can point to and

 share the same character array.

 -XX:+UseTLAB

 Enables the use of thread-local allocation blocks (TLABs) in the

 young generation space. This option is enabled by default. To

 disable the use of TLABs, specify -XX:-UseTLAB.

 Deprecated and Removed Options

 These options were included in the previous release, but have since

 been considered unnecessary.

 -Xincgc

 Enables incremental garbage collection. This option was deprecated

 in JDK 8 with no replacement.

 -Xrunlibname Page 49/55

 Loads the specified debugging/profiling library. This option was

 superseded by the -agentlib option.

 -XX:CMSIncrementalDutyCycle=percent

 Sets the percentage of time (0 to 100) between minor collections

 that the concurrent collector is allowed to run. This option was

 deprecated in JDK 8 with no replacement, following the deprecation

 of the -XX:+CMSIncrementalMode option.

 -XX:CMSIncrementalDutyCycleMin=percent

 Sets the percentage of time (0 to 100) between minor collections

 that is the lower bound for the duty cycle when

 -XX:+CMSIncrementalPacing is enabled. This option was deprecated in

 JDK 8 with no replacement, following the deprecation of the

 -XX:+CMSIncrementalMode option.

 -XX:+CMSIncrementalMode

 Enables the incremental mode for the CMS collector. This option was

 deprecated in JDK 8 with no replacement, along with other options

 that start with CMSIncremental.

 -XX:CMSIncrementalOffset=percent

 Sets the percentage of time (0 to 100) by which the incremental

 mode duty cycle is shifted to the right within the period between

 minor collections. This option was deprecated in JDK 8 with no

 replacement, following the deprecation of the

 -XX:+CMSIncrementalMode option.

 -XX:+CMSIncrementalPacing

 Enables automatic adjustment of the incremental mode duty cycle

 based on statistics collected while the JVM is running. This option

 was deprecated in JDK 8 with no replacement, following the

 deprecation of the -XX:+CMSIncrementalMode option.

 -XX:CMSIncrementalSafetyFactor=percent

 Sets the percentage of time (0 to 100) used to add conservatism

 when computing the duty cycle. This option was deprecated in JDK 8

 with no replacement, following the deprecation of the

 -XX:+CMSIncrementalMode option. Page 50/55

 -XX:CMSInitiatingPermOccupancyFraction=percent

 Sets the percentage of the permanent generation occupancy (0 to

 100) at which to start a GC. This option was deprecated in JDK 8

 with no replacement.

 -XX:MaxPermSize=size

 Sets the maximum permanent generation space size (in bytes). This

 option was deprecated in JDK 8, and superseded by the

 -XX:MaxMetaspaceSize option.

 -XX:PermSize=size

 Sets the space (in bytes) allocated to the permanent generation

 that triggers a garbage collection if it is exceeded. This option

 was deprecated un JDK 8, and superseded by the -XX:MetaspaceSize

 option.

 -XX:+UseSplitVerifier

 Enables splitting of the verification process. By default, this

 option was enabled in the previous releases, and verification was

 split into two phases: type referencing (performed by the compiler)

 and type checking (performed by the JVM runtime). This option was

 deprecated in JDK 8, and verification is now split by default

 without a way to disable it.

 -XX:+UseStringCache

 Enables caching of commonly allocated strings. This option was

 removed from JDK 8 with no replacement.

PERFORMANCE TUNING EXAMPLES

 The following examples show how to use experimental tuning flags to

 either optimize throughput or to provide lower response time.

 Example 1 Tuning for Higher Throughput

 java -d64 -server -XX:+AggressiveOpts -XX:+UseLargePages -Xmn10g -Xms26g -Xmx26g

 Example 2 Tuning for Lower Response Time

 java -d64 -XX:+UseG1GC -Xms26g Xmx26g -XX:MaxGCPauseMillis=500 -XX:+PrintGCTimeStamp

LARGE PAGES

 Also known as huge pages, large pages are memory pages that are

 significantly larger than the standard memory page size (which varies Page 51/55

 depending on the processor and operating system). Large pages optimize

 processor Translation-Lookaside Buffers.

 A Translation-Lookaside Buffer (TLB) is a page translation cache that

 holds the most-recently used virtual-to-physical address translations.

 TLB is a scarce system resource. A TLB miss can be costly as the

 processor must then read from the hierarchical page table, which may

 require multiple memory accesses. By using a larger memory page size, a

 single TLB entry can represent a larger memory range. There will be

 less pressure on TLB, and memory-intensive applications may have better

 performance.

 However, large pages page memory can negatively affect system

 performance. For example, when a large mount of memory is pinned by an

 application, it may create a shortage of regular memory and cause

 excessive paging in other applications and slow down the entire system.

 Also, a system that has been up for a long time could produce excessive

 fragmentation, which could make it impossible to reserve enough large

 page memory. When this happens, either the OS or JVM reverts to using

 regular pages.

 Large Pages Support

 Solaris and Linux support large pages.

 Solaris

 Solaris 9 and later include Multiple Page Size Support (MPSS); no

 additional configuration is necessary. See

 http://www.oracle.com/technetwork/server-storage/solaris10/overview/solaris9-features-scalability-135663.html.

 Linux

 The 2.6 kernel supports large pages. Some vendors have backported

 the code to their 2.4-based releases. To check if your system can

 support large page memory, try the following:

 # cat /proc/meminfo | grep Huge

 HugePages_Total: 0

 HugePages_Free: 0

 Hugepagesize: 2048 kB

 If the output shows the three "Huge" variables, then your system Page 52/55

 can support large page memory but it needs to be configured. If the

 command prints nothing, then your system does not support large

 pages. To configure the system to use large page memory, login as

 root, and then follow these steps:

 1. If you are using the option -XX:+UseSHM (instead of

 -XX:+UseHugeTLBFS), then increase the SHMMAX value. It must be

 larger than the Java heap size. On a system with 4 GB of

 physical RAM (or less), the following will make all the memory

 sharable:

 # echo 4294967295 > /proc/sys/kernel/shmmax

 2. If you are using the option -XX:+UseSHM or -XX:+UseHugeTLBFS,

 then specify the number of large pages. In the following

 example, 3 GB of a 4 GB system are reserved for large pages

 (assuming a large page size of 2048kB, then 3 GB = 3 * 1024 MB

 = 3072 MB = 3072 * 1024 kB = 3145728 kB and 3145728 kB / 2048

 kB = 1536):

 # echo 1536 > /proc/sys/vm/nr_hugepages

 Note

 ??

 ? ?

 ? ? Note that the values ?

 ? contained in /proc ?

 ? will reset after you ?

 ? reboot your system, ?

 ? so may want to set ?

 ? them in an ?

 ? initialization ?

 ? script (for example, ?

 ? rc.local or ?

 ? sysctl.conf). ?

 ? ?

 ? ? If you configure (or ?

 ? resize) the OS ? Page 53/55

 ? kernel parameters ?

 ? /proc/sys/kernel/shmmax ?

 ? or ?

 ? /proc/sys/vm/nr_hugepages, ?

 ? Java processes may ?

 ? allocate large pages ?

 ? for areas in ?

 ? addition to the Java ?

 ? heap. These steps ?

 ? can allocate large ?

 ? pages for the ?

 ? following areas: ?

 ? ?

 ? ? Java heap ?

 ? ?

 ? ? Code cache ?

 ? ?

 ? ? The marking ?

 ? bitmap data ?

 ? structure for ?

 ? the parallel GC ?

 ? ?

 ? Consequently, if you ?

 ? configure the ?

 ? nr_hugepages ?

 ? parameter to the ?

 ? size of the Java ?

 ? heap, then the JVM ?

 ? can fail in ?

 ? allocating the code ?

 ? cache areas on large ?

 ? pages because these ?

 ? areas are quite ? Page 54/55

 ? large in size. ?

 ??

EXIT STATUS

 The following exit values are typically returned by the launcher when

 the launcher is called with the wrong arguments, serious errors, or

 exceptions thrown by the JVM. However, a Java application may choose to

 return any value by using the API call System.exit(exitValue). The

 values are:

 ? 0: Successful completion

 ? >0: An error occurred

SEE ALSO

 ? javac(1)

 ? jdb(1)

 ? jar(1)

 ? jstat(1)

JDK 8 03 March 2015 java(1)

Page 55/55

