
Rocky Enterprise Linux 9.2 Manual Pages on command 'LIST_INSERT_BEFORE.3'

$ man LIST_INSERT_BEFORE.3

LIST(3) Linux Programmer's Manual LIST(3)

NAME

 LIST_EMPTY, LIST_ENTRY, LIST_FIRST, LIST_FOREACH, LIST_HEAD,

 LIST_HEAD_INITIALIZER, LIST_INIT, LIST_INSERT_AFTER, LIST_INSERT_BE?

 FORE, LIST_INSERT_HEAD, LIST_NEXT, LIST_REMOVE - implementation of a

 doubly linked list

SYNOPSIS

 #include <sys/queue.h>

 int LIST_EMPTY(LIST_HEAD *head);

 LIST_ENTRY(TYPE);

 struct TYPE *LIST_FIRST(LIST_HEAD *head);

 LIST_FOREACH(struct TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

 LIST_HEAD(HEADNAME, TYPE);

 LIST_HEAD LIST_HEAD_INITIALIZER(LIST_HEAD head);

 void LIST_INIT(LIST_HEAD *head);

 void LIST_INSERT_AFTER(struct TYPE *listelm, struct TYPE *elm,

 LIST_ENTRY NAME);

 void LIST_INSERT_BEFORE(struct TYPE *listelm, struct TYPE *elm, Page 1/5

 LIST_ENTRY NAME);

 void LIST_INSERT_HEAD(LIST_HEAD *head, struct TYPE *elm,

 LIST_ENTRY NAME);

 struct TYPE *LIST_NEXT(struct TYPE *elm, LIST_ENTRY NAME);

 void LIST_REMOVE(struct TYPE *elm, LIST_ENTRY NAME);

DESCRIPTION

 These macros define and operate on doubly linked lists.

 In the macro definitions, TYPE is the name of a user-defined structure,

 that must contain a field of type LIST_ENTRY, named NAME. The argument

 HEADNAME is the name of a user-defined structure that must be declared

 using the macro LIST_HEAD().

 A list is headed by a structure defined by the LIST_HEAD() macro. This

 structure contains a single pointer to the first element on the list.

 The elements are doubly linked so that an arbitrary element can be re?

 moved without traversing the list. New elements can be added to the

 list after an existing element, before an existing element, or at the

 head of the list. A LIST_HEAD structure is declared as follows:

 LIST_HEAD(HEADNAME, TYPE) head;

 where struct HEADNAME is the structure to be defined, and struct TYPE

 is the type of the elements to be linked into the list. A pointer to

 the head of the list can later be declared as:

 struct HEADNAME *headp;

 (The names head and headp are user selectable.)

 The macro LIST_HEAD_INITIALIZER() evaluates to an initializer for the

 list head.

 The macro LIST_EMPTY() evaluates to true if there are no elements in

 the list.

 The macro LIST_ENTRY() declares a structure that connects the elements

 in the list.

 The macro LIST_FIRST() returns the first element in the list or NULL if

 the list is empty.

 The macro LIST_FOREACH() traverses the list referenced by head in the

 forward direction, assigning each element in turn to var. Page 2/5

 The macro LIST_INIT() initializes the list referenced by head.

 The macro LIST_INSERT_HEAD() inserts the new element elm at the head of

 the list.

 The macro LIST_INSERT_AFTER() inserts the new element elm after the el?

 ement listelm.

 The macro LIST_INSERT_BEFORE() inserts the new element elm before the

 element listelm.

 The macro LIST_NEXT() returns the next element in the list, or NULL if

 this is the last.

 The macro LIST_REMOVE() removes the element elm from the list.

RETURN VALUE

 LIST_EMPTY() returns nonzero if the list is empty, and zero if the list

 contains at least one entry.

 LIST_FIRST(), and LIST_NEXT() return a pointer to the first or next

 TYPE structure, respectively.

 LIST_HEAD_INITIALIZER() returns an initializer that can be assigned to

 the list head.

CONFORMING TO

 Not in POSIX.1, POSIX.1-2001 or POSIX.1-2008. Present on the BSDs

 (LIST macros first appeared in 4.4BSD).

BUGS

 The macro LIST_FOREACH() doesn't allow var to be removed or freed

 within the loop, as it would interfere with the traversal. The macro

 LIST_FOREACH_SAFE(), which is present on the BSDs but is not present in

 glibc, fixes this limitation by allowing var to safely be removed from

 the list and freed from within the loop without interfering with the

 traversal.

EXAMPLES

 #include <stddef.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/queue.h>

 struct entry { Page 3/5

 int data;

 LIST_ENTRY(entry) entries; /* List. */

 };

 LIST_HEAD(listhead, entry);

 int

 main(void)

 {

 struct entry *n1, *n2, *n3, *np;

 struct listhead head; /* List head. */

 int i;

 LIST_INIT(&head); /* Initialize the list. */

 n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

 LIST_INSERT_HEAD(&head, n1, entries);

 n2 = malloc(sizeof(struct entry)); /* Insert after. */

 LIST_INSERT_AFTER(n1, n2, entries);

 n3 = malloc(sizeof(struct entry)); /* Insert before. */

 LIST_INSERT_BEFORE(n2, n3, entries);

 i = 0; /* Forward traversal. */

 LIST_FOREACH(np, &head, entries)

 np->data = i++;

 LIST_REMOVE(n2, entries); /* Deletion. */

 free(n2);

 /* Forward traversal. */

 LIST_FOREACH(np, &head, entries)

 printf("%i\n", np->data);

 /* List Deletion. */

 n1 = LIST_FIRST(&head);

 while (n1 != NULL) {

 n2 = LIST_NEXT(n1, entries);

 free(n1);

 n1 = n2;

 }

 LIST_INIT(&head); Page 4/5

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 insque(3), queue(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 LIST(3)

Page 5/5

