
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'zshparam.1' command

$ man zshparam.1

ZSHPARAM(1) General Commands Manual ZSHPARAM(1)

NAME

 zshparam - zsh parameters

DESCRIPTION

 A parameter has a name, a value, and a number of attributes. A name

 may be any sequence of alphanumeric characters and underscores, or the

 single characters `*', `@', `#', `?', `-', `$', or `!'. A parameter

 whose name begins with an alphanumeric or underscore is also referred

 to as a variable.

 The attributes of a parameter determine the type of its value, often

 referred to as the parameter type or variable type, and also control

 other processing that may be applied to the value when it is refer?

 enced. The value type may be a scalar (a string, an integer, or a

 floating point number), an array (indexed numerically), or an associa?

 tive array (an unordered set of name-value pairs, indexed by name, also

 referred to as a hash).

 Named scalar parameters may have the exported, -x, attribute, to copy

 them into the process environment, which is then passed from the shell

 to any new processes that it starts. Exported parameters are called

 environment variables. The shell also imports environment variables at

 startup time and automatically marks the corresponding parameters as

 exported. Some environment variables are not imported for reasons of

 security or because they would interfere with the correct operation of Page 1/40

 other shell features.

 Parameters may also be special, that is, they have a predetermined

 meaning to the shell. Special parameters cannot have their type

 changed or their readonly attribute turned off, and if a special param?

 eter is unset, then later recreated, the special properties will be re?

 tained.

 To declare the type of a parameter, or to assign a string or numeric

 value to a scalar parameter, use the typeset builtin.

 The value of a scalar parameter may also be assigned by writing:

 name=value

 In scalar assignment, value is expanded as a single string, in which

 the elements of arrays are joined together; filename expansion is not

 performed unless the option GLOB_ASSIGN is set.

 When the integer attribute, -i, or a floating point attribute, -E or

 -F, is set for name, the value is subject to arithmetic evaluation.

 Furthermore, by replacing `=' with `+=', a parameter can be incremented

 or appended to. See the section `Array Parameters' and Arithmetic

 Evaluation (in zshmisc(1)) for additional forms of assignment.

 Note that assignment may implicitly change the attributes of a parame?

 ter. For example, assigning a number to a variable in arithmetic eval?

 uation may change its type to integer or float, and with GLOB_ASSIGN

 assigning a pattern to a variable may change its type to an array.

 To reference the value of a parameter, write `$name' or `${name}'. See

 Parameter Expansion in zshexpn(1) for complete details. That section

 also explains the effect of the difference between scalar and array as?

 signment on parameter expansion.

ARRAY PARAMETERS

 To assign an array value, write one of:

 set -A name value ...

 name=(value ...)

 name=([key]=value ...)

 If no parameter name exists, an ordinary array parameter is created.

 If the parameter name exists and is a scalar, it is replaced by a new Page 2/40

 array.

 In the third form, key is an expression that will be evaluated in

 arithmetic context (in its simplest form, an integer) that gives the

 index of the element to be assigned with value. In this form any ele?

 ments not explicitly mentioned that come before the largest index to

 which a value is assigned are assigned an empty string. The indices

 may be in any order. Note that this syntax is strict: [and]= must

 not be quoted, and key may not consist of the unquoted string]=, but

 is otherwise treated as a simple string. The enhanced forms of sub?

 script expression that may be used when directly subscripting a vari?

 able name, described in the section Array Subscripts below, are not

 available.

 The syntaxes with and without the explicit key may be mixed. An im?

 plicit key is deduced by incrementing the index from the previously as?

 signed element. Note that it is not treated as an error if latter as?

 signments in this form overwrite earlier assignments.

 For example, assuming the option KSH_ARRAYS is not set, the following:

 array=(one [3]=three four)

 causes the array variable array to contain four elements one, an empty

 string, three and four, in that order.

 In the forms where only value is specified, full command line expansion

 is performed.

 In the [key]=value form, both key and value undergo all forms of expan?

 sion allowed for single word shell expansions (this does not include

 filename generation); these are as performed by the parameter expansion

 flag (e) as described in zshexpn(1). Nested parentheses may surround

 value and are included as part of the value, which is joined into a

 plain string; this differs from ksh which allows the values themselves

 to be arrays. A future version of zsh may support that. To cause the

 brackets to be interpreted as a character class for filename genera?

 tion, and therefore to treat the resulting list of files as a set of

 values, quote the equal sign using any form of quoting. Example:

 name=([a-z]'='*) Page 3/40

 To append to an array without changing the existing values, use one of

 the following:

 name+=(value ...)

 name+=([key]=value ...)

 In the second form key may specify an existing index as well as an in?

 dex off the end of the old array; any existing value is overwritten by

 value. Also, it is possible to use [key]+=value to append to the ex?

 isting value at that index.

 Within the parentheses on the right hand side of either form of the as?

 signment, newlines and semicolons are treated the same as white space,

 separating individual values. Any consecutive sequence of such charac?

 ters has the same effect.

 Ordinary array parameters may also be explicitly declared with:

 typeset -a name

 Associative arrays must be declared before assignment, by using:

 typeset -A name

 When name refers to an associative array, the list in an assignment is

 interpreted as alternating keys and values:

 set -A name key value ...

 name=(key value ...)

 name=([key]=value ...)

 Note that only one of the two syntaxes above may be used in any given

 assignment; the forms may not be mixed. This is unlike the case of nu?

 merically indexed arrays.

 Every key must have a value in this case. Note that this assigns to

 the entire array, deleting any elements that do not appear in the list.

 The append syntax may also be used with an associative array:

 name+=(key value ...)

 name+=([key]=value ...)

 This adds a new key/value pair if the key is not already present, and

 replaces the value for the existing key if it is. In the second form

 it is also possible to use [key]+=value to append to the existing value

 at that key. Expansion is performed identically to the corresponding Page 4/40

 forms for normal arrays, as described above.

 To create an empty array (including associative arrays), use one of:

 set -A name

 name=()

 Array Subscripts

 Individual elements of an array may be selected using a subscript. A

 subscript of the form `[exp]' selects the single element exp, where exp

 is an arithmetic expression which will be subject to arithmetic expan?

 sion as if it were surrounded by `$((...))'. The elements are numbered

 beginning with 1, unless the KSH_ARRAYS option is set in which case

 they are numbered from zero.

 Subscripts may be used inside braces used to delimit a parameter name,

 thus `${foo[2]}' is equivalent to `$foo[2]'. If the KSH_ARRAYS option

 is set, the braced form is the only one that works, as bracketed ex?

 pressions otherwise are not treated as subscripts.

 If the KSH_ARRAYS option is not set, then by default accesses to an ar?

 ray element with a subscript that evaluates to zero return an empty

 string, while an attempt to write such an element is treated as an er?

 ror. For backward compatibility the KSH_ZERO_SUBSCRIPT option can be

 set to cause subscript values 0 and 1 to be equivalent; see the de?

 scription of the option in zshoptions(1).

 The same subscripting syntax is used for associative arrays, except

 that no arithmetic expansion is applied to exp. However, the parsing

 rules for arithmetic expressions still apply, which affects the way

 that certain special characters must be protected from interpretation.

 See Subscript Parsing below for details.

 A subscript of the form `[*]' or `[@]' evaluates to all elements of an

 array; there is no difference between the two except when they appear

 within double quotes. `"$foo[*]"' evaluates to `"$foo[1] $foo[2]

 ..."', whereas `"$foo[@]"' evaluates to `"$foo[1]" "$foo[2]" ...'. For

 associative arrays, `[*]' or `[@]' evaluate to all the values, in no

 particular order. Note that this does not substitute the keys; see the

 documentation for the `k' flag under Parameter Expansion Flags in zsh? Page 5/40

 expn(1) for complete details. When an array parameter is referenced as

 `$name' (with no subscript) it evaluates to `$name[*]', unless the

 KSH_ARRAYS option is set in which case it evaluates to `${name[0]}'

 (for an associative array, this means the value of the key `0', which

 may not exist even if there are values for other keys).

 A subscript of the form `[exp1,exp2]' selects all elements in the range

 exp1 to exp2, inclusive. (Associative arrays are unordered, and so do

 not support ranges.) If one of the subscripts evaluates to a negative

 number, say -n, then the nth element from the end of the array is used.

 Thus `$foo[-3]' is the third element from the end of the array foo, and

 `$foo[1,-1]' is the same as `$foo[*]'.

 Subscripting may also be performed on non-array values, in which case

 the subscripts specify a substring to be extracted. For example, if

 FOO is set to `foobar', then `echo $FOO[2,5]' prints `ooba'. Note that

 some forms of subscripting described below perform pattern matching,

 and in that case the substring extends from the start of the match of

 the first subscript to the end of the match of the second subscript.

 For example,

 string="abcdefghijklm"

 print ${string[(r)d?,(r)h?]}

 prints `defghi'. This is an obvious generalisation of the rule for

 single-character matches. For a single subscript, only a single char?

 acter is referenced (not the range of characters covered by the match).

 Note that in substring operations the second subscript is handled dif?

 ferently by the r and R subscript flags: the former takes the shortest

 match as the length and the latter the longest match. Hence in the

 former case a * at the end is redundant while in the latter case it

 matches the whole remainder of the string. This does not affect the

 result of the single subscript case as here the length of the match is

 irrelevant.

 Array Element Assignment

 A subscript may be used on the left side of an assignment like so:

 name[exp]=value Page 6/40

 In this form of assignment the element or range specified by exp is re?

 placed by the expression on the right side. An array (but not an asso?

 ciative array) may be created by assignment to a range or element. Ar?

 rays do not nest, so assigning a parenthesized list of values to an el?

 ement or range changes the number of elements in the array, shifting

 the other elements to accommodate the new values. (This is not sup?

 ported for associative arrays.)

 This syntax also works as an argument to the typeset command:

 typeset "name[exp]"=value

 The value may not be a parenthesized list in this case; only single-el?

 ement assignments may be made with typeset. Note that quotes are nec?

 essary in this case to prevent the brackets from being interpreted as

 filename generation operators. The noglob precommand modifier could be

 used instead.

 To delete an element of an ordinary array, assign `()' to that element.

 To delete an element of an associative array, use the unset command:

 unset "name[exp]"

 Subscript Flags

 If the opening bracket, or the comma in a range, in any subscript ex?

 pression is directly followed by an opening parenthesis, the string up

 to the matching closing one is considered to be a list of flags, as in

 `name[(flags)exp]'.

 The flags s, n and b take an argument; the delimiter is shown below as

 `:', but any character, or the matching pairs `(...)', `{...}',

 `[...]', or `<...>', may be used, but note that `<...>' can only be

 used if the subscript is inside a double quoted expression or a parame?

 ter substitution enclosed in braces as otherwise the expression is in?

 terpreted as a redirection.

 The flags currently understood are:

 w If the parameter subscripted is a scalar then this flag makes

 subscripting work on words instead of characters. The default

 word separator is whitespace. When combined with the i or I

 flag, the effect is to produce the index of the first character Page 7/40

 of the first/last word which matches the given pattern; note

 that a failed match in this case always yields 0.

 s:string:

 This gives the string that separates words (for use with the w

 flag). The delimiter character : is arbitrary; see above.

 p Recognize the same escape sequences as the print builtin in the

 string argument of a subsequent `s' flag.

 f If the parameter subscripted is a scalar then this flag makes

 subscripting work on lines instead of characters, i.e. with ele?

 ments separated by newlines. This is a shorthand for `pws:\n:'.

 r Reverse subscripting: if this flag is given, the exp is taken as

 a pattern and the result is the first matching array element,

 substring or word (if the parameter is an array, if it is a

 scalar, or if it is a scalar and the `w' flag is given, respec?

 tively). The subscript used is the number of the matching ele?

 ment, so that pairs of subscripts such as `$foo[(r)??,3]' and

 `$foo[(r)??,(r)f*]' are possible if the parameter is not an as?

 sociative array. If the parameter is an associative array, only

 the value part of each pair is compared to the pattern, and the

 result is that value.

 If a search through an ordinary array failed, the search sets

 the subscript to one past the end of the array, and hence ${ar?

 ray[(r)pattern]} will substitute the empty string. Thus the

 success of a search can be tested by using the (i) flag, for ex?

 ample (assuming the option KSH_ARRAYS is not in effect):

 [[${array[(i)pattern]} -le ${#array}]]

 If KSH_ARRAYS is in effect, the -le should be replaced by -lt.

 R Like `r', but gives the last match. For associative arrays,

 gives all possible matches. May be used for assigning to ordi?

 nary array elements, but not for assigning to associative ar?

 rays. On failure, for normal arrays this has the effect of re?

 turning the element corresponding to subscript 0; this is empty

 unless one of the options KSH_ARRAYS or KSH_ZERO_SUBSCRIPT is in Page 8/40

 effect.

 Note that in subscripts with both `r' and `R' pattern characters

 are active even if they were substituted for a parameter (re?

 gardless of the setting of GLOB_SUBST which controls this fea?

 ture in normal pattern matching). The flag `e' can be added to

 inhibit pattern matching. As this flag does not inhibit other

 forms of substitution, care is still required; using a parameter

 to hold the key has the desired effect:

 key2='original key'

 print ${array[(Re)$key2]}

 i Like `r', but gives the index of the match instead; this may not

 be combined with a second argument. On the left side of an as?

 signment, behaves like `r'. For associative arrays, the key

 part of each pair is compared to the pattern, and the first

 matching key found is the result. On failure substitutes the

 length of the array plus one, as discussed under the description

 of `r', or the empty string for an associative array.

 I Like `i', but gives the index of the last match, or all possible

 matching keys in an associative array. On failure substitutes

 0, or the empty string for an associative array. This flag is

 best when testing for values or keys that do not exist.

 k If used in a subscript on an associative array, this flag causes

 the keys to be interpreted as patterns, and returns the value

 for the first key found where exp is matched by the key. Note

 this could be any such key as no ordering of associative arrays

 is defined. This flag does not work on the left side of an as?

 signment to an associative array element. If used on another

 type of parameter, this behaves like `r'.

 K On an associative array this is like `k' but returns all values

 where exp is matched by the keys. On other types of parameters

 this has the same effect as `R'.

 n:expr:

 If combined with `r', `R', `i' or `I', makes them give the nth Page 9/40

 or nth last match (if expr evaluates to n). This flag is ig?

 nored when the array is associative. The delimiter character :

 is arbitrary; see above.

 b:expr:

 If combined with `r', `R', `i' or `I', makes them begin at the

 nth or nth last element, word, or character (if expr evaluates

 to n). This flag is ignored when the array is associative. The

 delimiter character : is arbitrary; see above.

 e This flag causes any pattern matching that would be performed on

 the subscript to use plain string matching instead. Hence

 `${array[(re)*]}' matches only the array element whose value is

 *. Note that other forms of substitution such as parameter sub?

 stitution are not inhibited.

 This flag can also be used to force * or @ to be interpreted as

 a single key rather than as a reference to all values. It may

 be used for either purpose on the left side of an assignment.

 See Parameter Expansion Flags (zshexpn(1)) for additional ways to ma?

 nipulate the results of array subscripting.

 Subscript Parsing

 This discussion applies mainly to associative array key strings and to

 patterns used for reverse subscripting (the `r', `R', `i', etc. flags),

 but it may also affect parameter substitutions that appear as part of

 an arithmetic expression in an ordinary subscript.

 To avoid subscript parsing limitations in assignments to associative

 array elements, use the append syntax:

 aa+=('key with "*strange*" characters' 'value string')

 The basic rule to remember when writing a subscript expression is that

 all text between the opening `[' and the closing `]' is interpreted as

 if it were in double quotes (see zshmisc(1)). However, unlike double

 quotes which normally cannot nest, subscript expressions may appear in?

 side double-quoted strings or inside other subscript expressions (or

 both!), so the rules have two important differences.

 The first difference is that brackets (`[' and `]') must appear as bal? Page 10/40

 anced pairs in a subscript expression unless they are preceded by a

 backslash (`\'). Therefore, within a subscript expression (and unlike

 true double-quoting) the sequence `\[' becomes `[', and similarly `\]'

 becomes `]'. This applies even in cases where a backslash is not nor?

 mally required; for example, the pattern `[^[]' (to match any character

 other than an open bracket) should be written `[^\[]' in a reverse-sub?

 script pattern. However, note that `\[^\[\]' and even `\[^[]' mean the

 same thing, because backslashes are always stripped when they appear

 before brackets!

 The same rule applies to parentheses (`(' and `)') and braces (`{' and

 `}'): they must appear either in balanced pairs or preceded by a back?

 slash, and backslashes that protect parentheses or braces are removed

 during parsing. This is because parameter expansions may be surrounded

 by balanced braces, and subscript flags are introduced by balanced

 parentheses.

 The second difference is that a double-quote (`"') may appear as part

 of a subscript expression without being preceded by a backslash, and

 therefore that the two characters `\"' remain as two characters in the

 subscript (in true double-quoting, `\"' becomes `"'). However, because

 of the standard shell quoting rules, any double-quotes that appear must

 occur in balanced pairs unless preceded by a backslash. This makes it

 more difficult to write a subscript expression that contains an odd

 number of double-quote characters, but the reason for this difference

 is so that when a subscript expression appears inside true dou?

 ble-quotes, one can still write `\"' (rather than `\\\"') for `"'.

 To use an odd number of double quotes as a key in an assignment, use

 the typeset builtin and an enclosing pair of double quotes; to refer to

 the value of that key, again use double quotes:

 typeset -A aa

 typeset "aa[one\"two\"three\"quotes]"=QQQ

 print "$aa[one\"two\"three\"quotes]"

 It is important to note that the quoting rules do not change when a pa?

 rameter expansion with a subscript is nested inside another subscript Page 11/40

 expression. That is, it is not necessary to use additional backslashes

 within the inner subscript expression; they are removed only once, from

 the innermost subscript outwards. Parameters are also expanded from

 the innermost subscript first, as each expansion is encountered left to

 right in the outer expression.

 A further complication arises from a way in which subscript parsing is

 not different from double quote parsing. As in true double-quoting,

 the sequences `*', and `\@' remain as two characters when they appear

 in a subscript expression. To use a literal `*' or `@' as an associa?

 tive array key, the `e' flag must be used:

 typeset -A aa

 aa[(e)*]=star

 print $aa[(e)*]

 A last detail must be considered when reverse subscripting is per?

 formed. Parameters appearing in the subscript expression are first ex?

 panded and then the complete expression is interpreted as a pattern.

 This has two effects: first, parameters behave as if GLOB_SUBST were on

 (and it cannot be turned off); second, backslashes are interpreted

 twice, once when parsing the array subscript and again when parsing the

 pattern. In a reverse subscript, it's necessary to use four back?

 slashes to cause a single backslash to match literally in the pattern.

 For complex patterns, it is often easiest to assign the desired pattern

 to a parameter and then refer to that parameter in the subscript, be?

 cause then the backslashes, brackets, parentheses, etc., are seen only

 when the complete expression is converted to a pattern. To match the

 value of a parameter literally in a reverse subscript, rather than as a

 pattern, use `${(q)name}' (see zshexpn(1)) to quote the expanded value.

 Note that the `k' and `K' flags are reverse subscripting for an ordi?

 nary array, but are not reverse subscripting for an associative array!

 (For an associative array, the keys in the array itself are interpreted

 as patterns by those flags; the subscript is a plain string in that

 case.)

 One final note, not directly related to subscripting: the numeric names Page 12/40

 of positional parameters (described below) are parsed specially, so for

 example `$2foo' is equivalent to `${2}foo'. Therefore, to use sub?

 script syntax to extract a substring from a positional parameter, the

 expansion must be surrounded by braces; for example, `${2[3,5]}' evalu?

 ates to the third through fifth characters of the second positional pa?

 rameter, but `$2[3,5]' is the entire second parameter concatenated with

 the filename generation pattern `[3,5]'.

POSITIONAL PARAMETERS

 The positional parameters provide access to the command-line arguments

 of a shell function, shell script, or the shell itself; see the section

 `Invocation', and also the section `Functions'. The parameter n, where

 n is a number, is the nth positional parameter. The parameter `$0' is

 a special case, see the section `Parameters Set By The Shell'.

 The parameters *, @ and argv are arrays containing all the positional

 parameters; thus `$argv[n]', etc., is equivalent to simply `$n'. Note

 that the options KSH_ARRAYS or KSH_ZERO_SUBSCRIPT apply to these arrays

 as well, so with either of those options set, `${argv[0]}' is equiva?

 lent to `$1' and so on.

 Positional parameters may be changed after the shell or function starts

 by using the set builtin, by assigning to the argv array, or by direct

 assignment of the form `n=value' where n is the number of the posi?

 tional parameter to be changed. This also creates (with empty values)

 any of the positions from 1 to n that do not already have values. Note

 that, because the positional parameters form an array, an array assign?

 ment of the form `n=(value ...)' is allowed, and has the effect of

 shifting all the values at positions greater than n by as many posi?

 tions as necessary to accommodate the new values.

LOCAL PARAMETERS

 Shell function executions delimit scopes for shell parameters. (Param?

 eters are dynamically scoped.) The typeset builtin, and its alterna?

 tive forms declare, integer, local and readonly (but not export), can

 be used to declare a parameter as being local to the innermost scope.

 When a parameter is read or assigned to, the innermost existing parame? Page 13/40

 ter of that name is used. (That is, the local parameter hides any

 less-local parameter.) However, assigning to a non-existent parameter,

 or declaring a new parameter with export, causes it to be created in

 the outermost scope.

 Local parameters disappear when their scope ends. unset can be used to

 delete a parameter while it is still in scope; any outer parameter of

 the same name remains hidden.

 Special parameters may also be made local; they retain their special

 attributes unless either the existing or the newly-created parameter

 has the -h (hide) attribute. This may have unexpected effects: there

 is no default value, so if there is no assignment at the point the

 variable is made local, it will be set to an empty value (or zero in

 the case of integers). The following:

 typeset PATH=/new/directory:$PATH

 is valid for temporarily allowing the shell or programmes called from

 it to find the programs in /new/directory inside a function.

 Note that the restriction in older versions of zsh that local parame?

 ters were never exported has been removed.

PARAMETERS SET BY THE SHELL

 In the parameter lists that follow, the mark `<S>' indicates that the

 parameter is special. `<Z>' indicates that the parameter does not ex?

 ist when the shell initializes in sh or ksh emulation mode.

 The following parameters are automatically set by the shell:

 ! <S> The process ID of the last command started in the background

 with &, put into the background with the bg builtin, or spawned

 with coproc.

 # <S> The number of positional parameters in decimal. Note that some

 confusion may occur with the syntax $#param which substitutes

 the length of param. Use ${#} to resolve ambiguities. In par?

 ticular, the sequence `$#-...' in an arithmetic expression is

 interpreted as the length of the parameter -, q.v.

 ARGC <S> <Z>

 Same as #. Page 14/40

 $ <S> The process ID of this shell. Note that this indicates the

 original shell started by invoking zsh; all processes forked

 from the shells without executing a new program, such as sub?

 shells started by (...), substitute the same value.

 - <S> Flags supplied to the shell on invocation or by the set or se?

 topt commands.

 * <S> An array containing the positional parameters.

 argv <S> <Z>

 Same as *. Assigning to argv changes the local positional pa?

 rameters, but argv is not itself a local parameter. Deleting

 argv with unset in any function deletes it everywhere, although

 only the innermost positional parameter array is deleted (so *

 and @ in other scopes are not affected).

 @ <S> Same as argv[@], even when argv is not set.

 ? <S> The exit status returned by the last command.

 0 <S> The name used to invoke the current shell, or as set by the -c

 command line option upon invocation. If the FUNCTION_ARGZERO

 option is set, $0 is set upon entry to a shell function to the

 name of the function, and upon entry to a sourced script to the

 name of the script, and reset to its previous value when the

 function or script returns.

 status <S> <Z>

 Same as ?.

 pipestatus <S> <Z>

 An array containing the exit statuses returned by all commands

 in the last pipeline.

 _ <S> The last argument of the previous command. Also, this parameter

 is set in the environment of every command executed to the full

 pathname of the command.

 CPUTYPE

 The machine type (microprocessor class or machine model), as de?

 termined at run time.

 EGID <S> Page 15/40

 The effective group ID of the shell process. If you have suffi?

 cient privileges, you may change the effective group ID of the

 shell process by assigning to this parameter. Also (assuming

 sufficient privileges), you may start a single command with a

 different effective group ID by `(EGID=gid; command)'

 If this is made local, it is not implicitly set to 0, but may be

 explicitly set locally.

 EUID <S>

 The effective user ID of the shell process. If you have suffi?

 cient privileges, you may change the effective user ID of the

 shell process by assigning to this parameter. Also (assuming

 sufficient privileges), you may start a single command with a

 different effective user ID by `(EUID=uid; command)'

 If this is made local, it is not implicitly set to 0, but may be

 explicitly set locally.

 ERRNO <S>

 The value of errno (see errno(3)) as set by the most recently

 failed system call. This value is system dependent and is in?

 tended for debugging purposes. It is also useful with the

 zsh/system module which allows the number to be turned into a

 name or message.

 FUNCNEST <S>

 Integer. If greater than or equal to zero, the maximum nesting

 depth of shell functions. When it is exceeded, an error is

 raised at the point where a function is called. The default

 value is determined when the shell is configured, but is typi?

 cally 500. Increasing the value increases the danger of a run?

 away function recursion causing the shell to crash. Setting a

 negative value turns off the check.

 GID <S>

 The real group ID of the shell process. If you have sufficient

 privileges, you may change the group ID of the shell process by

 assigning to this parameter. Also (assuming sufficient privi? Page 16/40

 leges), you may start a single command under a different group

 ID by `(GID=gid; command)'

 If this is made local, it is not implicitly set to 0, but may be

 explicitly set locally.

 HISTCMD

 The current history event number in an interactive shell, in

 other words the event number for the command that caused

 $HISTCMD to be read. If the current history event modifies the

 history, HISTCMD changes to the new maximum history event num?

 ber.

 HOST The current hostname.

 LINENO <S>

 The line number of the current line within the current script,

 sourced file, or shell function being executed, whichever was

 started most recently. Note that in the case of shell functions

 the line number refers to the function as it appeared in the

 original definition, not necessarily as displayed by the func?

 tions builtin.

 LOGNAME

 If the corresponding variable is not set in the environment of

 the shell, it is initialized to the login name corresponding to

 the current login session. This parameter is exported by default

 but this can be disabled using the typeset builtin. The value

 is set to the string returned by the getlogin(3) system call if

 that is available.

 MACHTYPE

 The machine type (microprocessor class or machine model), as de?

 termined at compile time.

 OLDPWD The previous working directory. This is set when the shell ini?

 tializes and whenever the directory changes.

 OPTARG <S>

 The value of the last option argument processed by the getopts

 command. Page 17/40

 OPTIND <S>

 The index of the last option argument processed by the getopts

 command.

 OSTYPE The operating system, as determined at compile time.

 PPID <S>

 The process ID of the parent of the shell. As for $$, the value

 indicates the parent of the original shell and does not change

 in subshells.

 PWD The present working directory. This is set when the shell ini?

 tializes and whenever the directory changes.

 RANDOM <S>

 A pseudo-random integer from 0 to 32767, newly generated each

 time this parameter is referenced. The random number generator

 can be seeded by assigning a numeric value to RANDOM.

 The values of RANDOM form an intentionally-repeatable

 pseudo-random sequence; subshells that reference RANDOM will re?

 sult in identical pseudo-random values unless the value of RAN?

 DOM is referenced or seeded in the parent shell in between sub?

 shell invocations.

 SECONDS <S>

 The number of seconds since shell invocation. If this parameter

 is assigned a value, then the value returned upon reference will

 be the value that was assigned plus the number of seconds since

 the assignment.

 Unlike other special parameters, the type of the SECONDS parame?

 ter can be changed using the typeset command. Only integer and

 one of the floating point types are allowed. For example,

 `typeset -F SECONDS' causes the value to be reported as a float?

 ing point number. The value is available to microsecond accu?

 racy, although the shell may show more or fewer digits depending

 on the use of typeset. See the documentation for the builtin

 typeset in zshbuiltins(1) for more details.

 SHLVL <S> Page 18/40

 Incremented by one each time a new shell is started.

 signals

 An array containing the names of the signals. Note that with

 the standard zsh numbering of array indices, where the first el?

 ement has index 1, the signals are offset by 1 from the signal

 number used by the operating system. For example, on typical

 Unix-like systems HUP is signal number 1, but is referred to as

 $signals[2]. This is because of EXIT at position 1 in the ar?

 ray, which is used internally by zsh but is not known to the op?

 erating system.

 TRY_BLOCK_ERROR <S>

 In an always block, indicates whether the preceding list of code

 caused an error. The value is 1 to indicate an error, 0 other?

 wise. It may be reset, clearing the error condition. See Com?

 plex Commands in zshmisc(1)

 TRY_BLOCK_INTERRUPT <S>

 This variable works in a similar way to TRY_BLOCK_ERROR, but

 represents the status of an interrupt from the signal SIGINT,

 which typically comes from the keyboard when the user types ^C.

 If set to 0, any such interrupt will be reset; otherwise, the

 interrupt is propagated after the always block.

 Note that it is possible that an interrupt arrives during the

 execution of the always block; this interrupt is also propa?

 gated.

 TTY The name of the tty associated with the shell, if any.

 TTYIDLE <S>

 The idle time of the tty associated with the shell in seconds or

 -1 if there is no such tty.

 UID <S>

 The real user ID of the shell process. If you have sufficient

 privileges, you may change the user ID of the shell by assigning

 to this parameter. Also (assuming sufficient privileges), you

 may start a single command under a different user ID by Page 19/40

 `(UID=uid; command)'

 If this is made local, it is not implicitly set to 0, but may be

 explicitly set locally.

 USERNAME <S>

 The username corresponding to the real user ID of the shell

 process. If you have sufficient privileges, you may change the

 username (and also the user ID and group ID) of the shell by as?

 signing to this parameter. Also (assuming sufficient privi?

 leges), you may start a single command under a different user?

 name (and user ID and group ID) by `(USERNAME=username; com?

 mand)'

 VENDOR The vendor, as determined at compile time.

 zsh_eval_context <S> <Z> (ZSH_EVAL_CONTEXT <S>)

 An array (colon-separated list) indicating the context of shell

 code that is being run. Each time a piece of shell code that is

 stored within the shell is executed a string is temporarily ap?

 pended to the array to indicate the type of operation that is

 being performed. Read in order the array gives an indication of

 the stack of operations being performed with the most immediate

 context last.

 Note that the variable does not give information on syntactic

 context such as pipelines or subshells. Use $ZSH_SUBSHELL to

 detect subshells.

 The context is one of the following:

 cmdarg Code specified by the -c option to the command line that

 invoked the shell.

 cmdsubst

 Command substitution using the `...` or $(...) construct.

 equalsubst

 File substitution using the =(...) construct.

 eval Code executed by the eval builtin.

 evalautofunc

 Code executed with the KSH_AUTOLOAD mechanism in order to Page 20/40

 define an autoloaded function.

 fc Code from the shell history executed by the -e option to

 the fc builtin.

 file Lines of code being read directly from a file, for exam?

 ple by the source builtin.

 filecode

 Lines of code being read from a .zwc file instead of di?

 rectly from the source file.

 globqual

 Code executed by the e or + glob qualifier.

 globsort

 Code executed to order files by the o glob qualifier.

 insubst

 File substitution using the <(...) construct.

 loadautofunc

 Code read directly from a file to define an autoloaded

 function.

 outsubst

 File substitution using the >(...) construct.

 sched Code executed by the sched builtin.

 shfunc A shell function.

 stty Code passed to stty by the STTY environment variable.

 Normally this is passed directly to the system's stty

 command, so this value is unlikely to be seen in prac?

 tice.

 style Code executed as part of a style retrieved by the zstyle

 builtin from the zsh/zutil module.

 toplevel

 The highest execution level of a script or interactive

 shell.

 trap Code executed as a trap defined by the trap builtin.

 Traps defined as functions have the context shfunc. As

 traps are asynchronous they may have a different hierar? Page 21/40

 chy from other code.

 zpty Code executed by the zpty builtin from the zsh/zpty mod?

 ule.

 zregexparse-guard

 Code executed as a guard by the zregexparse command from

 the zsh/zutil module.

 zregexparse-action

 Code executed as an action by the zregexparse command

 from the zsh/zutil module.

 ZSH_ARGZERO

 If zsh was invoked to run a script, this is the name of the

 script. Otherwise, it is the name used to invoke the current

 shell. This is the same as the value of $0 when the

 POSIX_ARGZERO option is set, but is always available.

 ZSH_EXECUTION_STRING

 If the shell was started with the option -c, this contains the

 argument passed to the option. Otherwise it is not set.

 ZSH_NAME

 Expands to the basename of the command used to invoke this in?

 stance of zsh.

 ZSH_PATCHLEVEL

 The output of `git describe --tags --long' for the zsh reposi?

 tory used to build the shell. This is most useful in order to

 keep track of versions of the shell during development between

 releases; hence most users should not use it and should instead

 rely on $ZSH_VERSION.

 zsh_scheduled_events

 See the section `The zsh/sched Module' in zshmodules(1).

 ZSH_SCRIPT

 If zsh was invoked to run a script, this is the name of the

 script, otherwise it is unset.

 ZSH_SUBSHELL

 Readonly integer. Initially zero, incremented each time the Page 22/40

 shell forks to create a subshell for executing code. Hence

 `(print $ZSH_SUBSHELL)' and `print $(print $ZSH_SUBSHELL)' out?

 put 1, while `((print $ZSH_SUBSHELL))' outputs 2.

 ZSH_VERSION

 The version number of the release of zsh.

PARAMETERS USED BY THE SHELL

 The following parameters are used by the shell. Again, `<S>' indicates

 that the parameter is special and `<Z>' indicates that the parameter

 does not exist when the shell initializes in sh or ksh emulation mode.

 In cases where there are two parameters with an upper- and lowercase

 form of the same name, such as path and PATH, the lowercase form is an

 array and the uppercase form is a scalar with the elements of the array

 joined together by colons. These are similar to tied parameters cre?

 ated via `typeset -T'. The normal use for the colon-separated form is

 for exporting to the environment, while the array form is easier to ma?

 nipulate within the shell. Note that unsetting either of the pair will

 unset the other; they retain their special properties when recreated,

 and recreating one of the pair will recreate the other.

 ARGV0 If exported, its value is used as the argv[0] of external com?

 mands. Usually used in constructs like `ARGV0=emacs nethack'.

 BAUD The rate in bits per second at which data reaches the terminal.

 The line editor will use this value in order to compensate for a

 slow terminal by delaying updates to the display until neces?

 sary. If the parameter is unset or the value is zero the com?

 pensation mechanism is turned off. The parameter is not set by

 default.

 This parameter may be profitably set in some circumstances, e.g.

 for slow modems dialing into a communications server, or on a

 slow wide area network. It should be set to the baud rate of

 the slowest part of the link for best performance.

 cdpath <S> <Z> (CDPATH <S>)

 An array (colon-separated list) of directories specifying the

 search path for the cd command. Page 23/40

 COLUMNS <S>

 The number of columns for this terminal session. Used for

 printing select lists and for the line editor.

 CORRECT_IGNORE

 If set, is treated as a pattern during spelling correction. Any

 potential correction that matches the pattern is ignored. For

 example, if the value is `_*' then completion functions (which,

 by convention, have names beginning with `_') will never be of?

 fered as spelling corrections. The pattern does not apply to

 the correction of file names, as applied by the CORRECT_ALL op?

 tion (so with the example just given files beginning with `_' in

 the current directory would still be completed).

 CORRECT_IGNORE_FILE

 If set, is treated as a pattern during spelling correction of

 file names. Any file name that matches the pattern is never of?

 fered as a correction. For example, if the value is `.*' then

 dot file names will never be offered as spelling corrections.

 This is useful with the CORRECT_ALL option.

 DIRSTACKSIZE

 The maximum size of the directory stack, by default there is no

 limit. If the stack gets larger than this, it will be truncated

 automatically. This is useful with the AUTO_PUSHD option.

 ENV If the ENV environment variable is set when zsh is invoked as sh

 or ksh, $ENV is sourced after the profile scripts. The value of

 ENV is subjected to parameter expansion, command substitution,

 and arithmetic expansion before being interpreted as a pathname.

 Note that ENV is not used unless the shell is interactive and

 zsh is emulating sh or ksh.

 FCEDIT The default editor for the fc builtin. If FCEDIT is not set,

 the parameter EDITOR is used; if that is not set either, a

 builtin default, usually vi, is used.

 fignore <S> <Z> (FIGNORE <S>)

 An array (colon separated list) containing the suffixes of files Page 24/40

 to be ignored during filename completion. However, if comple?

 tion only generates files with suffixes in this list, then these

 files are completed anyway.

 fpath <S> <Z> (FPATH <S>)

 An array (colon separated list) of directories specifying the

 search path for function definitions. This path is searched

 when a function with the -u attribute is referenced. If an exe?

 cutable file is found, then it is read and executed in the cur?

 rent environment.

 histchars <S>

 Three characters used by the shell's history and lexical analy?

 sis mechanism. The first character signals the start of a his?

 tory expansion (default `!'). The second character signals the

 start of a quick history substitution (default `^'). The third

 character is the comment character (default `#').

 The characters must be in the ASCII character set; any attempt

 to set histchars to characters with a locale-dependent meaning

 will be rejected with an error message.

 HISTCHARS <S> <Z>

 Same as histchars. (Deprecated.)

 HISTFILE

 The file to save the history in when an interactive shell exits.

 If unset, the history is not saved.

 HISTORY_IGNORE

 If set, is treated as a pattern at the time history files are

 written. Any potential history entry that matches the pattern

 is skipped. For example, if the value is `fc *' then commands

 that invoke the interactive history editor are never written to

 the history file.

 Note that HISTORY_IGNORE defines a single pattern: to specify

 alternatives use the `(first|second|...)' syntax.

 Compare the HIST_NO_STORE option or the zshaddhistory hook, ei?

 ther of which would prevent such commands from being added to Page 25/40

 the interactive history at all. If you wish to use HISTORY_IG?

 NORE to stop history being added in the first place, you can de?

 fine the following hook:

 zshaddhistory() {

 emulate -L zsh

 ## uncomment if HISTORY_IGNORE

 ## should use EXTENDED_GLOB syntax

 # setopt extendedglob

 [[$1 != ${~HISTORY_IGNORE}]]

 }

 HISTSIZE <S>

 The maximum number of events stored in the internal history

 list. If you use the HIST_EXPIRE_DUPS_FIRST option, setting

 this value larger than the SAVEHIST size will give you the dif?

 ference as a cushion for saving duplicated history events.

 If this is made local, it is not implicitly set to 0, but may be

 explicitly set locally.

 HOME <S>

 The default argument for the cd command. This is not set auto?

 matically by the shell in sh, ksh or csh emulation, but it is

 typically present in the environment anyway, and if it becomes

 set it has its usual special behaviour.

 IFS <S>

 Internal field separators (by default space, tab, newline and

 NUL), that are used to separate words which result from command

 or parameter expansion and words read by the read builtin. Any

 characters from the set space, tab and newline that appear in

 the IFS are called IFS white space. One or more IFS white space

 characters or one non-IFS white space character together with

 any adjacent IFS white space character delimit a field. If an

 IFS white space character appears twice consecutively in the

 IFS, this character is treated as if it were not an IFS white

 space character. Page 26/40

 If the parameter is unset, the default is used. Note this has a

 different effect from setting the parameter to an empty string.

 KEYBOARD_HACK

 This variable defines a character to be removed from the end of

 the command line before interpreting it (interactive shells

 only). It is intended to fix the problem with keys placed annoy?

 ingly close to return and replaces the SUNKEYBOARDHACK option

 which did this for backquotes only. Should the chosen character

 be one of singlequote, doublequote or backquote, there must also

 be an odd number of them on the command line for the last one to

 be removed.

 For backward compatibility, if the SUNKEYBOARDHACK option is ex?

 plicitly set, the value of KEYBOARD_HACK reverts to backquote.

 If the option is explicitly unset, this variable is set to

 empty.

 KEYTIMEOUT

 The time the shell waits, in hundredths of seconds, for another

 key to be pressed when reading bound multi-character sequences.

 LANG <S>

 This variable determines the locale category for any category

 not specifically selected via a variable starting with `LC_'.

 LC_ALL <S>

 This variable overrides the value of the `LANG' variable and the

 value of any of the other variables starting with `LC_'.

 LC_COLLATE <S>

 This variable determines the locale category for character col?

 lation information within ranges in glob brackets and for sort?

 ing.

 LC_CTYPE <S>

 This variable determines the locale category for character han?

 dling functions. If the MULTIBYTE option is in effect this

 variable or LANG should contain a value that reflects the char?

 acter set in use, even if it is a single-byte character set, un? Page 27/40

 less only the 7-bit subset (ASCII) is used. For example, if the

 character set is ISO-8859-1, a suitable value might be

 en_US.iso88591 (certain Linux distributions) or en_US.ISO8859-1

 (MacOS).

 LC_MESSAGES <S>

 This variable determines the language in which messages should

 be written. Note that zsh does not use message catalogs.

 LC_NUMERIC <S>

 This variable affects the decimal point character and thousands

 separator character for the formatted input/output functions and

 string conversion functions. Note that zsh ignores this setting

 when parsing floating point mathematical expressions.

 LC_TIME <S>

 This variable determines the locale category for date and time

 formatting in prompt escape sequences.

 LINES <S>

 The number of lines for this terminal session. Used for print?

 ing select lists and for the line editor.

 LISTMAX

 In the line editor, the number of matches to list without asking

 first. If the value is negative, the list will be shown if it

 spans at most as many lines as given by the absolute value. If

 set to zero, the shell asks only if the top of the listing would

 scroll off the screen.

 LOGCHECK

 The interval in seconds between checks for login/logout activity

 using the watch parameter.

 MAIL If this parameter is set and mailpath is not set, the shell

 looks for mail in the specified file.

 MAILCHECK

 The interval in seconds between checks for new mail.

 mailpath <S> <Z> (MAILPATH <S>)

 An array (colon-separated list) of filenames to check for new Page 28/40

 mail. Each filename can be followed by a `?' and a message that

 will be printed. The message will undergo parameter expansion,

 command substitution and arithmetic expansion with the variable

 $_ defined as the name of the file that has changed. The de?

 fault message is `You have new mail'. If an element is a direc?

 tory instead of a file the shell will recursively check every

 file in every subdirectory of the element.

 manpath <S> <Z> (MANPATH <S> <Z>)

 An array (colon-separated list) whose value is not used by the

 shell. The manpath array can be useful, however, since setting

 it also sets MANPATH, and vice versa.

 match

 mbegin

 mend Arrays set by the shell when the b globbing flag is used in pat?

 tern matches. See the subsection Globbing flags in the documen?

 tation for Filename Generation in zshexpn(1).

 MATCH

 MBEGIN

 MEND Set by the shell when the m globbing flag is used in pattern

 matches. See the subsection Globbing flags in the documentation

 for Filename Generation in zshexpn(1).

 module_path <S> <Z> (MODULE_PATH <S>)

 An array (colon-separated list) of directories that zmodload

 searches for dynamically loadable modules. This is initialized

 to a standard pathname, usually `/usr/local/lib/zsh/$ZSH_VER?

 SION'. (The `/usr/local/lib' part varies from installation to

 installation.) For security reasons, any value set in the envi?

 ronment when the shell is started will be ignored.

 These parameters only exist if the installation supports dynamic

 module loading.

 NULLCMD <S>

 The command name to assume if a redirection is specified with no

 command. Defaults to cat. For sh/ksh behavior, change this to Page 29/40

 :. For csh-like behavior, unset this parameter; the shell will

 print an error message if null commands are entered.

 path <S> <Z> (PATH <S>)

 An array (colon-separated list) of directories to search for

 commands. When this parameter is set, each directory is scanned

 and all files found are put in a hash table.

 POSTEDIT <S>

 This string is output whenever the line editor exits. It usu?

 ally contains termcap strings to reset the terminal.

 PROMPT <S> <Z>

 PROMPT2 <S> <Z>

 PROMPT3 <S> <Z>

 PROMPT4 <S> <Z>

 Same as PS1, PS2, PS3 and PS4, respectively.

 prompt <S> <Z>

 Same as PS1.

 PROMPT_EOL_MARK

 When the PROMPT_CR and PROMPT_SP options are set, the

 PROMPT_EOL_MARK parameter can be used to customize how the end

 of partial lines are shown. This parameter undergoes prompt ex?

 pansion, with the PROMPT_PERCENT option set. If not set, the

 default behavior is equivalent to the value `%B%S%#%s%b'.

 PS1 <S>

 The primary prompt string, printed before a command is read. It

 undergoes a special form of expansion before being displayed;

 see EXPANSION OF PROMPT SEQUENCES in zshmisc(1). The default is

 `%m%# '.

 PS2 <S>

 The secondary prompt, printed when the shell needs more informa?

 tion to complete a command. It is expanded in the same way as

 PS1. The default is `%_> ', which displays any shell constructs

 or quotation marks which are currently being processed.

 PS3 <S> Page 30/40

 Selection prompt used within a select loop. It is expanded in

 the same way as PS1. The default is `?# '.

 PS4 <S>

 The execution trace prompt. Default is `+%N:%i> ', which dis?

 plays the name of the current shell structure and the line num?

 ber within it. In sh or ksh emulation, the default is `+ '.

 psvar <S> <Z> (PSVAR <S>)

 An array (colon-separated list) whose elements can be used in

 PROMPT strings. Setting psvar also sets PSVAR, and vice versa.

 READNULLCMD <S>

 The command name to assume if a single input redirection is

 specified with no command. Defaults to more.

 REPORTMEMORY

 If nonnegative, commands whose maximum resident set size

 (roughly speaking, main memory usage) in kilobytes is greater

 than this value have timing statistics reported. The format

 used to output statistics is the value of the TIMEFMT parameter,

 which is the same as for the REPORTTIME variable and the time

 builtin; note that by default this does not output memory usage.

 Appending " max RSS %M" to the value of TIMEFMT causes it to

 output the value that triggered the report. If REPORTTIME is

 also in use, at most a single report is printed for both trig?

 gers. This feature requires the getrusage() system call, com?

 monly supported by modern Unix-like systems.

 REPORTTIME

 If nonnegative, commands whose combined user and system execu?

 tion times (measured in seconds) are greater than this value

 have timing statistics printed for them. Output is suppressed

 for commands executed within the line editor, including comple?

 tion; commands explicitly marked with the time keyword still

 cause the summary to be printed in this case.

 REPLY This parameter is reserved by convention to pass string values

 between shell scripts and shell builtins in situations where a Page 31/40

 function call or redirection are impossible or undesirable. The

 read builtin and the select complex command may set REPLY, and

 filename generation both sets and examines its value when evalu?

 ating certain expressions. Some modules also employ REPLY for

 similar purposes.

 reply As REPLY, but for array values rather than strings.

 RPROMPT <S>

 RPS1 <S>

 This prompt is displayed on the right-hand side of the screen

 when the primary prompt is being displayed on the left. This

 does not work if the SINGLE_LINE_ZLE option is set. It is ex?

 panded in the same way as PS1.

 RPROMPT2 <S>

 RPS2 <S>

 This prompt is displayed on the right-hand side of the screen

 when the secondary prompt is being displayed on the left. This

 does not work if the SINGLE_LINE_ZLE option is set. It is ex?

 panded in the same way as PS2.

 SAVEHIST

 The maximum number of history events to save in the history

 file.

 If this is made local, it is not implicitly set to 0, but may be

 explicitly set locally.

 SPROMPT <S>

 The prompt used for spelling correction. The sequence `%R' ex?

 pands to the string which presumably needs spelling correction,

 and `%r' expands to the proposed correction. All other prompt

 escapes are also allowed.

 The actions available at the prompt are [nyae]:

 n (`no') (default)

 Discard the correction and run the command.

 y (`yes')

 Make the correction and run the command. Page 32/40

 a (`abort')

 Discard the entire command line without running it.

 e (`edit')

 Resume editing the command line.

 STTY If this parameter is set in a command's environment, the shell

 runs the stty command with the value of this parameter as argu?

 ments in order to set up the terminal before executing the com?

 mand. The modes apply only to the command, and are reset when it

 finishes or is suspended. If the command is suspended and con?

 tinued later with the fg or wait builtins it will see the modes

 specified by STTY, as if it were not suspended. This (inten?

 tionally) does not apply if the command is continued via `kill

 -CONT'. STTY is ignored if the command is run in the back?

 ground, or if it is in the environment of the shell but not ex?

 plicitly assigned to in the input line. This avoids running stty

 at every external command by accidentally exporting it. Also

 note that STTY should not be used for window size specifica?

 tions; these will not be local to the command.

 TERM <S>

 The type of terminal in use. This is used when looking up term?

 cap sequences. An assignment to TERM causes zsh to re-initial?

 ize the terminal, even if the value does not change (e.g.,

 `TERM=$TERM'). It is necessary to make such an assignment upon

 any change to the terminal definition database or terminal type

 in order for the new settings to take effect.

 TERMINFO <S>

 A reference to your terminfo database, used by the `terminfo'

 library when the system has it; see terminfo(5). If set, this

 causes the shell to reinitialise the terminal, making the work?

 around `TERM=$TERM' unnecessary.

 TERMINFO_DIRS <S>

 A colon-seprarated list of terminfo databases, used by the `ter?

 minfo' library when the system has it; see terminfo(5). This Page 33/40

 variable is only used by certain terminal libraries, in particu?

 lar ncurses; see terminfo(5) to check support on your system.

 If set, this causes the shell to reinitialise the terminal, mak?

 ing the workaround `TERM=$TERM' unnecessary. Note that unlike

 other colon-separated arrays this is not tied to a zsh array.

 TIMEFMT

 The format of process time reports with the time keyword. The

 default is `%J %U user %S system %P cpu %*E total'. Recognizes

 the following escape sequences, although not all may be avail?

 able on all systems, and some that are available may not be use?

 ful:

 %% A `%'.

 %U CPU seconds spent in user mode.

 %S CPU seconds spent in kernel mode.

 %E Elapsed time in seconds.

 %P The CPU percentage, computed as 100*(%U+%S)/%E.

 %W Number of times the process was swapped.

 %X The average amount in (shared) text space used in kilo?

 bytes.

 %D The average amount in (unshared) data/stack space used in

 kilobytes.

 %K The total space used (%X+%D) in kilobytes.

 %M The maximum memory the process had in use at any time in

 kilobytes.

 %F The number of major page faults (page needed to be

 brought from disk).

 %R The number of minor page faults.

 %I The number of input operations.

 %O The number of output operations.

 %r The number of socket messages received.

 %s The number of socket messages sent.

 %k The number of signals received.

 %w Number of voluntary context switches (waits). Page 34/40

 %c Number of involuntary context switches.

 %J The name of this job.

 A star may be inserted between the percent sign and flags print?

 ing time (e.g., `%*E'); this causes the time to be printed in

 `hh:mm:ss.ttt' format (hours and minutes are only printed if

 they are not zero). Alternatively, `m' or `u' may be used

 (e.g., `%mE') to produce time output in milliseconds or mi?

 croseconds, respectively.

 TMOUT If this parameter is nonzero, the shell will receive an ALRM

 signal if a command is not entered within the specified number

 of seconds after issuing a prompt. If there is a trap on

 SIGALRM, it will be executed and a new alarm is scheduled using

 the value of the TMOUT parameter after executing the trap. If

 no trap is set, and the idle time of the terminal is not less

 than the value of the TMOUT parameter, zsh terminates. Other?

 wise a new alarm is scheduled to TMOUT seconds after the last

 keypress.

 TMPPREFIX

 A pathname prefix which the shell will use for all temporary

 files. Note that this should include an initial part for the

 file name as well as any directory names. The default is

 `/tmp/zsh'.

 TMPSUFFIX

 A filename suffix which the shell will use for temporary files

 created by process substitutions (e.g., `=(list)'). Note that

 the value should include a leading dot `.' if intended to be in?

 terpreted as a file extension. The default is not to append any

 suffix, thus this parameter should be assigned only when needed

 and then unset again.

 watch <S> <Z> (WATCH <S>)

 An array (colon-separated list) of login/logout events to re?

 port.

 If it contains the single word `all', then all login/logout Page 35/40

 events are reported. If it contains the single word `notme',

 then all events are reported as with `all' except $USERNAME.

 An entry in this list may consist of a username, an `@' followed

 by a remote hostname, and a `%' followed by a line (tty). Any

 of these may be a pattern (be sure to quote this during the as?

 signment to watch so that it does not immediately perform file

 generation); the setting of the EXTENDED_GLOB option is re?

 spected. Any or all of these components may be present in an

 entry; if a login/logout event matches all of them, it is re?

 ported.

 For example, with the EXTENDED_GLOB option set, the following:

 watch=('^(pws|barts)')

 causes reports for activity associated with any user other than

 pws or barts.

 WATCHFMT

 The format of login/logout reports if the watch parameter is

 set. Default is `%n has %a %l from %m'. Recognizes the follow?

 ing escape sequences:

 %n The name of the user that logged in/out.

 %a The observed action, i.e. "logged on" or "logged off".

 %l The line (tty) the user is logged in on.

 %M The full hostname of the remote host.

 %m The hostname up to the first `.'. If only the IP address

 is available or the utmp field contains the name of an

 X-windows display, the whole name is printed.

 NOTE: The `%m' and `%M' escapes will work only if there

 is a host name field in the utmp on your machine. Other?

 wise they are treated as ordinary strings.

 %S (%s)

 Start (stop) standout mode.

 %U (%u)

 Start (stop) underline mode.

 %B (%b) Page 36/40

 Start (stop) boldface mode.

 %t

 %@ The time, in 12-hour, am/pm format.

 %T The time, in 24-hour format.

 %w The date in `day-dd' format.

 %W The date in `mm/dd/yy' format.

 %D The date in `yy-mm-dd' format.

 %D{string}

 The date formatted as string using the strftime function,

 with zsh extensions as described by EXPANSION OF PROMPT

 SEQUENCES in zshmisc(1).

 %(x:true-text:false-text)

 Specifies a ternary expression. The character following

 the x is arbitrary; the same character is used to sepa?

 rate the text for the "true" result from that for the

 "false" result. Both the separator and the right paren?

 thesis may be escaped with a backslash. Ternary expres?

 sions may be nested.

 The test character x may be any one of `l', `n', `m' or

 `M', which indicate a `true' result if the corresponding

 escape sequence would return a non-empty value; or it may

 be `a', which indicates a `true' result if the watched

 user has logged in, or `false' if he has logged out.

 Other characters evaluate to neither true nor false; the

 entire expression is omitted in this case.

 If the result is `true', then the true-text is formatted

 according to the rules above and printed, and the

 false-text is skipped. If `false', the true-text is

 skipped and the false-text is formatted and printed. Ei?

 ther or both of the branches may be empty, but both sepa?

 rators must be present in any case.

 WORDCHARS <S>

 A list of non-alphanumeric characters considered part of a word Page 37/40

 by the line editor.

 ZBEEP If set, this gives a string of characters, which can use all the

 same codes as the bindkey command as described in the zsh/zle

 module entry in zshmodules(1), that will be output to the termi?

 nal instead of beeping. This may have a visible instead of an

 audible effect; for example, the string `\e[?5h\e[?5l' on a

 vt100 or xterm will have the effect of flashing reverse video on

 and off (if you usually use reverse video, you should use the

 string `\e[?5l\e[?5h' instead). This takes precedence over the

 NOBEEP option.

 ZDOTDIR

 The directory to search for shell startup files (.zshrc, etc),

 if not $HOME.

 zle_bracketed_paste

 Many terminal emulators have a feature that allows applications

 to identify when text is pasted into the terminal rather than

 being typed normally. For ZLE, this means that special charac?

 ters such as tabs and newlines can be inserted instead of invok?

 ing editor commands. Furthermore, pasted text forms a single

 undo event and if the region is active, pasted text will replace

 the region.

 This two-element array contains the terminal escape sequences

 for enabling and disabling the feature. These escape sequences

 are used to enable bracketed paste when ZLE is active and dis?

 able it at other times. Unsetting the parameter has the effect

 of ensuring that bracketed paste remains disabled.

 zle_highlight

 An array describing contexts in which ZLE should highlight the

 input text. See Character Highlighting in zshzle(1).

 ZLE_LINE_ABORTED

 This parameter is set by the line editor when an error occurs.

 It contains the line that was being edited at the point of the

 error. `print -zr -- $ZLE_LINE_ABORTED' can be used to recover Page 38/40

 the line. Only the most recent line of this kind is remembered.

 ZLE_REMOVE_SUFFIX_CHARS

 ZLE_SPACE_SUFFIX_CHARS

 These parameters are used by the line editor. In certain cir?

 cumstances suffixes (typically space or slash) added by the com?

 pletion system will be removed automatically, either because the

 next editing command was not an insertable character, or because

 the character was marked as requiring the suffix to be removed.

 These variables can contain the sets of characters that will

 cause the suffix to be removed. If ZLE_REMOVE_SUFFIX_CHARS is

 set, those characters will cause the suffix to be removed; if

 ZLE_SPACE_SUFFIX_CHARS is set, those characters will cause the

 suffix to be removed and replaced by a space.

 If ZLE_REMOVE_SUFFIX_CHARS is not set, the default behaviour is

 equivalent to:

 ZLE_REMOVE_SUFFIX_CHARS=$' \t\n;&|'

 If ZLE_REMOVE_SUFFIX_CHARS is set but is empty, no characters

 have this behaviour. ZLE_SPACE_SUFFIX_CHARS takes precedence,

 so that the following:

 ZLE_SPACE_SUFFIX_CHARS=$'&|'

 causes the characters `&' and `|' to remove the suffix but to

 replace it with a space.

 To illustrate the difference, suppose that the option AUTO_RE?

 MOVE_SLASH is in effect and the directory DIR has just been com?

 pleted, with an appended /, following which the user types `&'.

 The default result is `DIR&'. With ZLE_REMOVE_SUFFIX_CHARS set

 but without including `&' the result is `DIR/&'. With

 ZLE_SPACE_SUFFIX_CHARS set to include `&' the result is `DIR &'.

 Note that certain completions may provide their own suffix re?

 moval or replacement behaviour which overrides the values de?

 scribed here. See the completion system documentation in zsh?

 compsys(1).

 ZLE_RPROMPT_INDENT <S> Page 39/40

 If set, used to give the indentation between the right hand side

 of the right prompt in the line editor as given by RPS1 or

 RPROMPT and the right hand side of the screen. If not set, the

 value 1 is used.

 Typically this will be used to set the value to 0 so that the

 prompt appears flush with the right hand side of the screen.

 This is not the default as many terminals do not handle this

 correctly, in particular when the prompt appears at the extreme

 bottom right of the screen. Recent virtual terminals are more

 likely to handle this case correctly. Some experimentation is

 necessary.

zsh 5.8 February 14, 2020 ZSHPARAM(1)

Page 40/40

