
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'zshcompsys.1' command

$ man zshcompsys.1

ZSHCOMPSYS(1) General Commands Manual ZSHCOMPSYS(1)

NAME

 zshcompsys - zsh completion system

DESCRIPTION

 This describes the shell code for the `new' completion system, referred

 to as compsys. It is written in shell functions based on the features

 described in zshcompwid(1).

 The features are contextual, sensitive to the point at which completion

 is started. Many completions are already provided. For this reason, a

 user can perform a great many tasks without knowing any details beyond

 how to initialize the system, which is described below in INITIALIZA?

 TION.

 The context that decides what completion is to be performed may be

 ? an argument or option position: these describe the position on

 the command line at which completion is requested. For example

 `first argument to rmdir, the word being completed names a di?

 rectory';

 ? a special context, denoting an element in the shell's syntax.

 For example `a word in command position' or `an array sub?

 script'.

 A full context specification contains other elements, as we shall de?

 scribe.

 Besides commands names and contexts, the system employs two more con? Page 1/122

 cepts, styles and tags. These provide ways for the user to configure

 the system's behaviour.

 Tags play a dual role. They serve as a classification system for the

 matches, typically indicating a class of object that the user may need

 to distinguish. For example, when completing arguments of the ls com?

 mand the user may prefer to try files before directories, so both of

 these are tags. They also appear as the rightmost element in a context

 specification.

 Styles modify various operations of the completion system, such as out?

 put formatting, but also what kinds of completers are used (and in what

 order), or which tags are examined. Styles may accept arguments and

 are manipulated using the zstyle command described in see zshmod?

 ules(1).

 In summary, tags describe what the completion objects are, and style

 how they are to be completed. At various points of execution, the com?

 pletion system checks what styles and/or tags are defined for the cur?

 rent context, and uses that to modify its behavior. The full descrip?

 tion of context handling, which determines how tags and other elements

 of the context influence the behaviour of styles, is described below in

 COMPLETION SYSTEM CONFIGURATION.

 When a completion is requested, a dispatcher function is called; see

 the description of _main_complete in the list of control functions be?

 low. This dispatcher decides which function should be called to produce

 the completions, and calls it. The result is passed to one or more com?

 pleters, functions that implement individual completion strategies:

 simple completion, error correction, completion with error correction,

 menu selection, etc.

 More generally, the shell functions contained in the completion system

 are of two types:

 ? those beginning `comp' are to be called directly; there are only

 a few of these;

 ? those beginning `_' are called by the completion code. The

 shell functions of this set, which implement completion behav? Page 2/122

 iour and may be bound to keystrokes, are referred to as `wid?

 gets'. These proliferate as new completions are required.

INITIALIZATION

 If the system was installed completely, it should be enough to call the

 shell function compinit from your initialization file; see the next

 section. However, the function compinstall can be run by a user to

 configure various aspects of the completion system.

 Usually, compinstall will insert code into .zshrc, although if that is

 not writable it will save it in another file and tell you that file's

 location. Note that it is up to you to make sure that the lines added

 to .zshrc are actually run; you may, for example, need to move them to

 an earlier place in the file if .zshrc usually returns early. So long

 as you keep them all together (including the comment lines at the start

 and finish), you can rerun compinstall and it will correctly locate and

 modify these lines. Note, however, that any code you add to this sec?

 tion by hand is likely to be lost if you rerun compinstall, although

 lines using the command `zstyle' should be gracefully handled.

 The new code will take effect next time you start the shell, or run

 .zshrc by hand; there is also an option to make them take effect imme?

 diately. However, if compinstall has removed definitions, you will

 need to restart the shell to see the changes.

 To run compinstall you will need to make sure it is in a directory men?

 tioned in your fpath parameter, which should already be the case if zsh

 was properly configured as long as your startup files do not remove the

 appropriate directories from fpath. Then it must be autoloaded (`au?

 toload -U compinstall' is recommended). You can abort the installation

 any time you are being prompted for information, and your .zshrc will

 not be altered at all; changes only take place right at the end, where

 you are specifically asked for confirmation.

 Use of compinit

 This section describes the use of compinit to initialize completion for

 the current session when called directly; if you have run compinstall

 it will be called automatically from your .zshrc. Page 3/122

 To initialize the system, the function compinit should be in a direc?

 tory mentioned in the fpath parameter, and should be autoloaded (`au?

 toload -U compinit' is recommended), and then run simply as `compinit'.

 This will define a few utility functions, arrange for all the necessary

 shell functions to be autoloaded, and will then re-define all widgets

 that do completion to use the new system. If you use the menu-select

 widget, which is part of the zsh/complist module, you should make sure

 that that module is loaded before the call to compinit so that that

 widget is also re-defined. If completion styles (see below) are set up

 to perform expansion as well as completion by default, and the TAB key

 is bound to expand-or-complete, compinit will rebind it to com?

 plete-word; this is necessary to use the correct form of expansion.

 Should you need to use the original completion commands, you can still

 bind keys to the old widgets by putting a `.' in front of the widget

 name, e.g. `.expand-or-complete'.

 To speed up the running of compinit, it can be made to produce a dumped

 configuration that will be read in on future invocations; this is the

 default, but can be turned off by calling compinit with the option -D.

 The dumped file is .zcompdump in the same directory as the startup

 files (i.e. $ZDOTDIR or $HOME); alternatively, an explicit file name

 can be given by `compinit -d dumpfile'. The next invocation of

 compinit will read the dumped file instead of performing a full ini?

 tialization.

 If the number of completion files changes, compinit will recognise this

 and produce a new dump file. However, if the name of a function or the

 arguments in the first line of a #compdef function (as described below)

 change, it is easiest to delete the dump file by hand so that compinit

 will re-create it the next time it is run. The check performed to see

 if there are new functions can be omitted by giving the option -C. In

 this case the dump file will only be created if there isn't one al?

 ready.

 The dumping is actually done by another function, compdump, but you

 will only need to run this yourself if you change the configuration Page 4/122

 (e.g. using compdef) and then want to dump the new one. The name of

 the old dumped file will be remembered for this purpose.

 If the parameter _compdir is set, compinit uses it as a directory where

 completion functions can be found; this is only necessary if they are

 not already in the function search path.

 For security reasons compinit also checks if the completion system

 would use files not owned by root or by the current user, or files in

 directories that are world- or group-writable or that are not owned by

 root or by the current user. If such files or directories are found,

 compinit will ask if the completion system should really be used. To

 avoid these tests and make all files found be used without asking, use

 the option -u, and to make compinit silently ignore all insecure files

 and directories use the option -i. This security check is skipped en?

 tirely when the -C option is given.

 The security check can be retried at any time by running the function

 compaudit. This is the same check used by compinit, but when it is ex?

 ecuted directly any changes to fpath are made local to the function so

 they do not persist. The directories to be checked may be passed as

 arguments; if none are given, compaudit uses fpath and _compdir to find

 completion system directories, adding missing ones to fpath as neces?

 sary. To force a check of exactly the directories currently named in

 fpath, set _compdir to an empty string before calling compaudit or

 compinit.

 The function bashcompinit provides compatibility with bash's program?

 mable completion system. When run it will define the functions, comp?

 gen and complete which correspond to the bash builtins with the same

 names. It will then be possible to use completion specifications and

 functions written for bash.

 Autoloaded files

 The convention for autoloaded functions used in completion is that they

 start with an underscore; as already mentioned, the fpath/FPATH parame?

 ter must contain the directory in which they are stored. If zsh was

 properly installed on your system, then fpath/FPATH automatically con? Page 5/122

 tains the required directories for the standard functions.

 For incomplete installations, if compinit does not find enough files

 beginning with an underscore (fewer than twenty) in the search path, it

 will try to find more by adding the directory _compdir to the search

 path. If that directory has a subdirectory named Base, all subdirecto?

 ries will be added to the path. Furthermore, if the subdirectory Base

 has a subdirectory named Core, compinit will add all subdirectories of

 the subdirectories to the path: this allows the functions to be in the

 same format as in the zsh source distribution.

 When compinit is run, it searches all such files accessible via

 fpath/FPATH and reads the first line of each of them. This line should

 contain one of the tags described below. Files whose first line does

 not start with one of these tags are not considered to be part of the

 completion system and will not be treated specially.

 The tags are:

 #compdef name ... [-{p|P} pattern ... [-N name ...]]

 The file will be made autoloadable and the function defined in

 it will be called when completing names, each of which is either

 the name of a command whose arguments are to be completed or one

 of a number of special contexts in the form -context- described

 below.

 Each name may also be of the form `cmd=service'. When complet?

 ing the command cmd, the function typically behaves as if the

 command (or special context) service was being completed in?

 stead. This provides a way of altering the behaviour of func?

 tions that can perform many different completions. It is imple?

 mented by setting the parameter $service when calling the func?

 tion; the function may choose to interpret this how it wishes,

 and simpler functions will probably ignore it.

 If the #compdef line contains one of the options -p or -P, the

 words following are taken to be patterns. The function will be

 called when completion is attempted for a command or context

 that matches one of the patterns. The options -p and -P are Page 6/122

 used to specify patterns to be tried before or after other com?

 pletions respectively. Hence -P may be used to specify default

 actions.

 The option -N is used after a list following -p or -P; it speci?

 fies that remaining words no longer define patterns. It is pos?

 sible to toggle between the three options as many times as nec?

 essary.

 #compdef -k style key-sequence ...

 This option creates a widget behaving like the builtin widget

 style and binds it to the given key-sequences, if any. The

 style must be one of the builtin widgets that perform comple?

 tion, namely complete-word, delete-char-or-list, expand-or-com?

 plete, expand-or-complete-prefix, list-choices, menu-complete,

 menu-expand-or-complete, or reverse-menu-complete. If the

 zsh/complist module is loaded (see zshmodules(1)) the widget

 menu-select is also available.

 When one of the key-sequences is typed, the function in the file

 will be invoked to generate the matches. Note that a key will

 not be re-bound if it already was (that is, was bound to some?

 thing other than undefined-key). The widget created has the

 same name as the file and can be bound to any other keys using

 bindkey as usual.

 #compdef -K widget-name style key-sequence [name style seq ...]

 This is similar to -k except that only one key-sequence argument

 may be given for each widget-name style pair. However, the en?

 tire set of three arguments may be repeated with a different set

 of arguments. Note in particular that the widget-name must be

 distinct in each set. If it does not begin with `_' this will

 be added. The widget-name should not clash with the name of any

 existing widget: names based on the name of the function are

 most useful. For example,

 #compdef -K _foo_complete complete-word "^X^C" \

 _foo_list list-choices "^X^D" Page 7/122

 (all on one line) defines a widget _foo_complete for completion,

 bound to `^X^C', and a widget _foo_list for listing, bound to

 `^X^D'.

 #autoload [options]

 Functions with the #autoload tag are marked for autoloading but

 are not otherwise treated specially. Typically they are to be

 called from within one of the completion functions. Any options

 supplied will be passed to the autoload builtin; a typical use

 is +X to force the function to be loaded immediately. Note that

 the -U and -z flags are always added implicitly.

 The # is part of the tag name and no white space is allowed after it.

 The #compdef tags use the compdef function described below; the main

 difference is that the name of the function is supplied implicitly.

 The special contexts for which completion functions can be defined are:

 -array-value-

 The right hand side of an array-assignment (`name=(...)')

 -brace-parameter-

 The name of a parameter expansion within braces (`${...}')

 -assign-parameter-

 The name of a parameter in an assignment, i.e. on the left hand

 side of an `='

 -command-

 A word in command position

 -condition-

 A word inside a condition (`[[...]]')

 -default-

 Any word for which no other completion is defined

 -equal-

 A word beginning with an equals sign

 -first-

 This is tried before any other completion function. The func?

 tion called may set the _compskip parameter to one of various

 values: all: no further completion is attempted; a string con? Page 8/122

 taining the substring patterns: no pattern completion functions

 will be called; a string containing default: the function for

 the `-default-' context will not be called, but functions de?

 fined for commands will be.

 -math- Inside mathematical contexts, such as `((...))'

 -parameter-

 The name of a parameter expansion (`$...')

 -redirect-

 The word after a redirection operator.

 -subscript-

 The contents of a parameter subscript.

 -tilde-

 After an initial tilde (`~'), but before the first slash in the

 word.

 -value-

 On the right hand side of an assignment.

 Default implementations are supplied for each of these contexts. In

 most cases the context -context- is implemented by a corresponding

 function _context, for example the context `-tilde-' and the function

 `_tilde').

 The contexts -redirect- and -value- allow extra context-specific infor?

 mation. (Internally, this is handled by the functions for each context

 calling the function _dispatch.) The extra information is added sepa?

 rated by commas.

 For the -redirect- context, the extra information is in the form `-re?

 direct-,op,command', where op is the redirection operator and command

 is the name of the command on the line. If there is no command on the

 line yet, the command field will be empty.

 For the -value- context, the form is `-value-,name,command', where name

 is the name of the parameter on the left hand side of the assignment.

 In the case of elements of an associative array, for example `as?

 soc=(key <TAB>', name is expanded to `name-key'. In certain special

 contexts, such as completing after `make CFLAGS=', the command part Page 9/122

 gives the name of the command, here make; otherwise it is empty.

 It is not necessary to define fully specific completions as the func?

 tions provided will try to generate completions by progressively re?

 placing the elements with `-default-'. For example, when completing

 after `foo=<TAB>', _value will try the names `-value-,foo,' (note the

 empty command part), `-value-,foo,-default-' and`-value-,-default-,-de?

 fault-', in that order, until it finds a function to handle the con?

 text.

 As an example:

 compdef '_files -g "*.log"' '-redirect-,2>,-default-'

 completes files matching `*.log' after `2> <TAB>' for any command with

 no more specific handler defined.

 Also:

 compdef _foo -value-,-default-,-default-

 specifies that _foo provides completions for the values of parameters

 for which no special function has been defined. This is usually han?

 dled by the function _value itself.

 The same lookup rules are used when looking up styles (as described be?

 low); for example

 zstyle ':completion:*:*:-redirect-,2>,*:*' file-patterns '*.log'

 is another way to make completion after `2> <TAB>' complete files

 matching `*.log'.

 Functions

 The following function is defined by compinit and may be called di?

 rectly.

 compdef [-ane] function name ... [-{p|P} pattern ... [-N name ...]]

 compdef -d name ...

 compdef -k [-an] function style key-sequence [key-sequence ...]

 compdef -K [-an] function name style key-seq [name style seq ...]

 The first form defines the function to call for completion in

 the given contexts as described for the #compdef tag above.

 Alternatively, all the arguments may have the form `cmd=ser?

 vice'. Here service should already have been defined by Page 10/122

 `cmd1=service' lines in #compdef files, as described above. The

 argument for cmd will be completed in the same way as service.

 The function argument may alternatively be a string containing

 almost any shell code. If the string contains an equal sign,

 the above will take precedence. The option -e may be used to

 specify the first argument is to be evaluated as shell code even

 if it contains an equal sign. The string will be executed using

 the eval builtin command to generate completions. This provides

 a way of avoiding having to define a new completion function.

 For example, to complete files ending in `.h' as arguments to

 the command foo:

 compdef '_files -g "*.h"' foo

 The option -n prevents any completions already defined for the

 command or context from being overwritten.

 The option -d deletes any completion defined for the command or

 contexts listed.

 The names may also contain -p, -P and -N options as described

 for the #compdef tag. The effect on the argument list is iden?

 tical, switching between definitions of patterns tried ini?

 tially, patterns tried finally, and normal commands and con?

 texts.

 The parameter $_compskip may be set by any function defined for

 a pattern context. If it is set to a value containing the sub?

 string `patterns' none of the pattern-functions will be called;

 if it is set to a value containing the substring `all', no other

 function will be called. Setting $_compskip in this manner is

 of particular utility when using the -p option, as otherwise the

 dispatcher will move on to additional functions (likely the de?

 fault one) after calling the pattern-context one, which can man?

 gle the display of completion possibilities if not handled prop?

 erly.

 The form with -k defines a widget with the same name as the

 function that will be called for each of the key-sequences; this Page 11/122

 is like the #compdef -k tag. The function should generate the

 completions needed and will otherwise behave like the builtin

 widget whose name is given as the style argument. The widgets

 usable for this are: complete-word, delete-char-or-list, ex?

 pand-or-complete, expand-or-complete-prefix, list-choices,

 menu-complete, menu-expand-or-complete, and reverse-menu-com?

 plete, as well as menu-select if the zsh/complist module is

 loaded. The option -n prevents the key being bound if it is al?

 ready to bound to something other than undefined-key.

 The form with -K is similar and defines multiple widgets based

 on the same function, each of which requires the set of three

 arguments name, style and key-sequence, where the latter two are

 as for -k and the first must be a unique widget name beginning

 with an underscore.

 Wherever applicable, the -a option makes the function autoload?

 able, equivalent to autoload -U function.

 The function compdef can be used to associate existing completion func?

 tions with new commands. For example,

 compdef _pids foo

 uses the function _pids to complete process IDs for the command foo.

 Note also the _gnu_generic function described below, which can be used

 to complete options for commands that understand the `--help' option.

COMPLETION SYSTEM CONFIGURATION

 This section gives a short overview of how the completion system works,

 and then more detail on how users can configure how and when matches

 are generated.

 Overview

 When completion is attempted somewhere on the command line the comple?

 tion system begins building the context. The context represents every?

 thing that the shell knows about the meaning of the command line and

 the significance of the cursor position. This takes account of a num?

 ber of things including the command word (such as `grep' or `zsh') and

 options to which the current word may be an argument (such as the `-o' Page 12/122

 option to zsh which takes a shell option as an argument).

 The context starts out very generic ("we are beginning a completion")

 and becomes more specific as more is learned ("the current word is in a

 position that is usually a command name" or "the current word might be

 a variable name" and so on). Therefore the context will vary during

 the same call to the completion system.

 This context information is condensed into a string consisting of mul?

 tiple fields separated by colons, referred to simply as `the context'

 in the remainder of the documentation. Note that a user of the comple?

 tion system rarely needs to compose a context string, unless for exam?

 ple a new function is being written to perform completion for a new

 command. What a user may need to do is compose a style pattern, which

 is matched against a context when needed to look up context-sensitive

 options that configure the completion system.

 The next few paragraphs explain how a context is composed within the

 completion function suite. Following that is discussion of how styles

 are defined. Styles determine such things as how the matches are gen?

 erated, similarly to shell options but with much more control. They

 are defined with the zstyle builtin command (see zshmodules(1)).

 The context string always consists of a fixed set of fields, separated

 by colons and with a leading colon before the first. Fields which are

 not yet known are left empty, but the surrounding colons appear anyway.

 The fields are always in the order :completion:function:completer:com?

 mand:argument:tag. These have the following meaning:

 ? The literal string completion, saying that this style is used by

 the completion system. This distinguishes the context from

 those used by, for example, zle widgets and ZFTP functions.

 ? The function, if completion is called from a named widget rather

 than through the normal completion system. Typically this is

 blank, but it is set by special widgets such as predict-on and

 the various functions in the Widget directory of the distribu?

 tion to the name of that function, often in an abbreviated form.

 ? The completer currently active, the name of the function without Page 13/122

 the leading underscore and with other underscores converted to

 hyphens. A `completer' is in overall control of how completion

 is to be performed; `complete' is the simplest, but other com?

 pleters exist to perform related tasks such as correction, or to

 modify the behaviour of a later completer. See the section

 `Control Functions' below for more information.

 ? The command or a special -context-, just at it appears following

 the #compdef tag or the compdef function. Completion functions

 for commands that have sub-commands usually modify this field to

 contain the name of the command followed by a minus sign and the

 sub-command. For example, the completion function for the cvs

 command sets this field to cvs-add when completing arguments to

 the add subcommand.

 ? The argument; this indicates which command line or option argu?

 ment we are completing. For command arguments this generally

 takes the form argument-n, where n is the number of the argu?

 ment, and for arguments to options the form option-opt-n where n

 is the number of the argument to option opt. However, this is

 only the case if the command line is parsed with standard

 UNIX-style options and arguments, so many completions do not set

 this.

 ? The tag. As described previously, tags are used to discriminate

 between the types of matches a completion function can generate

 in a certain context. Any completion function may use any tag

 name it likes, but a list of the more common ones is given be?

 low.

 The context is gradually put together as the functions are executed,

 starting with the main entry point, which adds :completion: and the

 function element if necessary. The completer then adds the completer

 element. The contextual completion adds the command and argument op?

 tions. Finally, the tag is added when the types of completion are

 known. For example, the context name

 :completion::complete:dvips:option-o-1:files Page 14/122

 says that normal completion was attempted as the first argument to the

 option -o of the command dvips:

 dvips -o ...

 and the completion function will generate filenames.

 Usually completion will be tried for all possible tags in an order

 given by the completion function. However, this can be altered by us?

 ing the tag-order style. Completion is then restricted to the list of

 given tags in the given order.

 The _complete_help bindable command shows all the contexts and tags

 available for completion at a particular point. This provides an easy

 way of finding information for tag-order and other styles. It is de?

 scribed in the section `Bindable Commands' below.

 When looking up styles the completion system uses full context names,

 including the tag. Looking up the value of a style therefore consists

 of two things: the context, which is matched to the most specific (best

 fitting) style pattern, and the name of the style itself, which must be

 matched exactly. The following examples demonstrate that style pat?

 terns may be loosely defined for styles that apply broadly, or as

 tightly defined as desired for styles that apply in narrower circum?

 stances.

 For example, many completion functions can generate matches in a simple

 and a verbose form and use the verbose style to decide which form

 should be used. To make all such functions use the verbose form, put

 zstyle ':completion:*' verbose yes

 in a startup file (probably .zshrc). This gives the verbose style the

 value yes in every context inside the completion system, unless that

 context has a more specific definition. It is best to avoid giving the

 context as `*' in case the style has some meaning outside the comple?

 tion system.

 Many such general purpose styles can be configured simply by using the

 compinstall function.

 A more specific example of the use of the verbose style is by the com?

 pletion for the kill builtin. If the style is set, the builtin lists Page 15/122

 full job texts and process command lines; otherwise it shows the bare

 job numbers and PIDs. To turn the style off for this use only:

 zstyle ':completion:*:*:kill:*:*' verbose no

 For even more control, the style can use one of the tags `jobs' or

 `processes'. To turn off verbose display only for jobs:

 zstyle ':completion:*:*:kill:*:jobs' verbose no

 The -e option to zstyle even allows completion function code to appear

 as the argument to a style; this requires some understanding of the in?

 ternals of completion functions (see see zshcompwid(1))). For example,

 zstyle -e ':completion:*' hosts 'reply=($myhosts)'

 This forces the value of the hosts style to be read from the variable

 myhosts each time a host name is needed; this is useful if the value of

 myhosts can change dynamically. For another useful example, see the

 example in the description of the file-list style below. This form can

 be slow and should be avoided for commonly examined styles such as menu

 and list-rows-first.

 Note that the order in which styles are defined does not matter; the

 style mechanism uses the most specific possible match for a particular

 style to determine the set of values. More precisely, strings are pre?

 ferred over patterns (for example, `:completion::complete:::foo' is

 more specific than `:completion::complete:::*'), and longer patterns

 are preferred over shorter patterns.

 A good rule of thumb is that any completion style pattern that needs to

 include more than one wildcard (*) and that does not end in a tag name,

 should include all six colons (:), possibly surrounding additional

 wildcards.

 Style names like those of tags are arbitrary and depend on the comple?

 tion function. However, the following two sections list some of the

 most common tags and styles.

 Standard Tags

 Some of the following are only used when looking up particular styles

 and do not refer to a type of match.

 accounts Page 16/122

 used to look up the users-hosts style

 all-expansions

 used by the _expand completer when adding the single string con?

 taining all possible expansions

 all-files

 for the names of all files (as distinct from a particular sub?

 set, see the globbed-files tag).

 arguments

 for arguments to a command

 arrays for names of array parameters

 association-keys

 for keys of associative arrays; used when completing inside a

 subscript to a parameter of this type

 bookmarks

 when completing bookmarks (e.g. for URLs and the zftp function

 suite)

 builtins

 for names of builtin commands

 characters

 for single characters in arguments of commands such as stty.

 Also used when completing character classes after an opening

 bracket

 colormapids

 for X colormap ids

 colors for color names

 commands

 for names of external commands. Also used by complex commands

 such as cvs when completing names subcommands.

 contexts

 for contexts in arguments to the zstyle builtin command

 corrections

 used by the _approximate and _correct completers for possible

 corrections Page 17/122

 cursors

 for cursor names used by X programs

 default

 used in some contexts to provide a way of supplying a default

 when more specific tags are also valid. Note that this tag is

 used when only the function field of the context name is set

 descriptions

 used when looking up the value of the format style to generate

 descriptions for types of matches

 devices

 for names of device special files

 directories

 for names of directories -- local-directories is used instead

 when completing arguments of cd and related builtin commands

 when the cdpath array is set

 directory-stack

 for entries in the directory stack

 displays

 for X display names

 domains

 for network domains

 email-plugin

 for email addresses from the `_email-plugin' backend of

 _email_addresses

 expansions

 used by the _expand completer for individual words (as opposed

 to the complete set of expansions) resulting from the expansion

 of a word on the command line

 extensions

 for X server extensions

 file-descriptors

 for numbers of open file descriptors

 files the generic file-matching tag used by functions completing file? Page 18/122

 names

 fonts for X font names

 fstypes

 for file system types (e.g. for the mount command)

 functions

 names of functions -- normally shell functions, although certain

 commands may understand other kinds of function

 globbed-files

 for filenames when the name has been generated by pattern match?

 ing

 groups for names of user groups

 history-words

 for words from the history

 hosts for hostnames

 indexes

 for array indexes

 jobs for jobs (as listed by the `jobs' builtin)

 interfaces

 for network interfaces

 keymaps

 for names of zsh keymaps

 keysyms

 for names of X keysyms

 libraries

 for names of system libraries

 limits for system limits

 local-directories

 for names of directories that are subdirectories of the current

 working directory when completing arguments of cd and related

 builtin commands (compare path-directories) -- when the cdpath

 array is unset, directories is used instead

 manuals

 for names of manual pages Page 19/122

 mailboxes

 for e-mail folders

 maps for map names (e.g. NIS maps)

 messages

 used to look up the format style for messages

 modifiers

 for names of X modifiers

 modules

 for modules (e.g. zsh modules)

 my-accounts

 used to look up the users-hosts style

 named-directories

 for named directories (you wouldn't have guessed that, would

 you?)

 names for all kinds of names

 newsgroups

 for USENET groups

 nicknames

 for nicknames of NIS maps

 options

 for command options

 original

 used by the _approximate, _correct and _expand completers when

 offering the original string as a match

 other-accounts

 used to look up the users-hosts style

 other-files

 for the names of any non-directory files. This is used instead

 of all-files when the list-dirs-first style is in effect.

 packages

 for packages (e.g. rpm or installed Debian packages)

 parameters

 for names of parameters Page 20/122

 path-directories

 for names of directories found by searching the cdpath array

 when completing arguments of cd and related builtin commands

 (compare local-directories)

 paths used to look up the values of the expand, ambiguous and spe?

 cial-dirs styles

 pods for perl pods (documentation files)

 ports for communication ports

 prefixes

 for prefixes (like those of a URL)

 printers

 for print queue names

 processes

 for process identifiers

 processes-names

 used to look up the command style when generating the names of

 processes for killall

 sequences

 for sequences (e.g. mh sequences)

 sessions

 for sessions in the zftp function suite

 signals

 for signal names

 strings

 for strings (e.g. the replacement strings for the cd builtin

 command)

 styles for styles used by the zstyle builtin command

 suffixes

 for filename extensions

 tags for tags (e.g. rpm tags)

 targets

 for makefile targets

 time-zones Page 21/122

 for time zones (e.g. when setting the TZ parameter)

 types for types of whatever (e.g. address types for the xhost command)

 urls used to look up the urls and local styles when completing URLs

 users for usernames

 values for one of a set of values in certain lists

 variant

 used by _pick_variant to look up the command to run when deter?

 mining what program is installed for a particular command name.

 visuals

 for X visuals

 warnings

 used to look up the format style for warnings

 widgets

 for zsh widget names

 windows

 for IDs of X windows

 zsh-options

 for shell options

 Standard Styles

 Note that the values of several of these styles represent boolean val?

 ues. Any of the strings `true', `on', `yes', and `1' can be used for

 the value `true' and any of the strings `false', `off', `no', and `0'

 for the value `false'. The behavior for any other value is undefined

 except where explicitly mentioned. The default value may be either

 `true' or `false' if the style is not set.

 Some of these styles are tested first for every possible tag corre?

 sponding to a type of match, and if no style was found, for the default

 tag. The most notable styles of this type are menu, list-colors and

 styles controlling completion listing such as list-packed and

 last-prompt. When tested for the default tag, only the function field

 of the context will be set so that a style using the default tag will

 normally be defined along the lines of:

 zstyle ':completion:*:default' menu ... Page 22/122

 accept-exact

 This is tested for the default tag in addition to the tags valid

 for the current context. If it is set to `true' and any of the

 trial matches is the same as the string on the command line,

 this match will immediately be accepted (even if it would other?

 wise be considered ambiguous).

 When completing pathnames (where the tag used is `paths') this

 style accepts any number of patterns as the value in addition to

 the boolean values. Pathnames matching one of these patterns

 will be accepted immediately even if the command line contains

 some more partially typed pathname components and these match no

 file under the directory accepted.

 This style is also used by the _expand completer to decide if

 words beginning with a tilde or parameter expansion should be

 expanded. For example, if there are parameters foo and foobar,

 the string `$foo' will only be expanded if accept-exact is set

 to `true'; otherwise the completion system will be allowed to

 complete $foo to $foobar. If the style is set to `continue',

 _expand will add the expansion as a match and the completion

 system will also be allowed to continue.

 accept-exact-dirs

 This is used by filename completion. Unlike accept-exact it is

 a boolean. By default, filename completion examines all compo?

 nents of a path to see if there are completions of that compo?

 nent, even if the component matches an existing directory. For

 example, when completion after /usr/bin/, the function examines

 possible completions to /usr.

 When this style is `true', any prefix of a path that matches an

 existing directory is accepted without any attempt to complete

 it further. Hence, in the given example, the path /usr/bin/ is

 accepted immediately and completion tried in that directory.

 This style is also useful when completing after directories that

 magically appear when referenced, such as ZFS .zfs directories Page 23/122

 or NetApp .snapshot directories. When the style is set the

 shell does not check for the existence of the directory within

 the parent directory.

 If you wish to inhibit this behaviour entirely, set the

 path-completion style (see below) to `false'.

 add-space

 This style is used by the _expand completer. If it is `true'

 (the default), a space will be inserted after all words result?

 ing from the expansion, or a slash in the case of directory

 names. If the value is `file', the completer will only add a

 space to names of existing files. Either a boolean `true' or

 the value `file' may be combined with `subst', in which case the

 completer will not add a space to words generated from the ex?

 pansion of a substitution of the form `$(...)' or `${...}'.

 The _prefix completer uses this style as a simple boolean value

 to decide if a space should be inserted before the suffix.

 ambiguous

 This applies when completing non-final components of filename

 paths, in other words those with a trailing slash. If it is

 set, the cursor is left after the first ambiguous component,

 even if menu completion is in use. The style is always tested

 with the paths tag.

 assign-list

 When completing after an equals sign that is being treated as an

 assignment, the completion system normally completes only one

 filename. In some cases the value may be a list of filenames

 separated by colons, as with PATH and similar parameters. This

 style can be set to a list of patterns matching the names of

 such parameters.

 The default is to complete lists when the word on the line al?

 ready contains a colon.

 auto-description

 If set, this style's value will be used as the description for Page 24/122

 options that are not described by the completion functions, but

 that have exactly one argument. The sequence `%d' in the value

 will be replaced by the description for this argument. Depend?

 ing on personal preferences, it may be useful to set this style

 to something like `specify: %d'. Note that this may not work

 for some commands.

 avoid-completer

 This is used by the _all_matches completer to decide if the

 string consisting of all matches should be added to the list

 currently being generated. Its value is a list of names of com?

 pleters. If any of these is the name of the completer that gen?

 erated the matches in this completion, the string will not be

 added.

 The default value for this style is `_expand _old_list _correct

 _approximate', i.e. it contains the completers for which a

 string with all matches will almost never be wanted.

 cache-path

 This style defines the path where any cache files containing

 dumped completion data are stored. It defaults to `$ZDOT?

 DIR/.zcompcache', or `$HOME/.zcompcache' if $ZDOTDIR is not de?

 fined. The completion cache will not be used unless the

 use-cache style is set.

 cache-policy

 This style defines the function that will be used to determine

 whether a cache needs rebuilding. See the section on the

 _cache_invalid function below.

 call-command

 This style is used in the function for commands such as make and

 ant where calling the command directly to generate matches suf?

 fers problems such as being slow or, as in the case of make can

 potentially cause actions in the makefile to be executed. If it

 is set to `true' the command is called to generate matches. The

 default value of this style is `false'. Page 25/122

 command

 In many places, completion functions need to call external com?

 mands to generate the list of completions. This style can be

 used to override the command that is called in some such cases.

 The elements of the value are joined with spaces to form a com?

 mand line to execute. The value can also start with a hyphen,

 in which case the usual command will be added to the end; this

 is most useful for putting `builtin' or `command' in front to

 make sure the appropriate version of a command is called, for

 example to avoid calling a shell function with the same name as

 an external command.

 As an example, the completion function for process IDs uses this

 style with the processes tag to generate the IDs to complete and

 the list of processes to display (if the verbose style is

 `true'). The list produced by the command should look like the

 output of the ps command. The first line is not displayed, but

 is searched for the string `PID' (or `pid') to find the position

 of the process IDs in the following lines. If the line does not

 contain `PID', the first numbers in each of the other lines are

 taken as the process IDs to complete.

 Note that the completion function generally has to call the

 specified command for each attempt to generate the completion

 list. Hence care should be taken to specify only commands that

 take a short time to run, and in particular to avoid any that

 may never terminate.

 command-path

 This is a list of directories to search for commands to com?

 plete. The default for this style is the value of the special

 parameter path.

 commands

 This is used by the function completing sub-commands for the

 system initialisation scripts (residing in /etc/init.d or some?

 where not too far away from that). Its values give the default Page 26/122

 commands to complete for those commands for which the completion

 function isn't able to find them out automatically. The default

 for this style are the two strings `start' and `stop'.

 complete

 This is used by the _expand_alias function when invoked as a

 bindable command. If set to `true' and the word on the command

 line is not the name of an alias, matching alias names will be

 completed.

 complete-options

 This is used by the completer for cd, chdir and pushd. For

 these commands a - is used to introduce a directory stack entry

 and completion of these is far more common than completing op?

 tions. Hence unless the value of this style is `true' options

 will not be completed, even after an initial -. If it is

 `true', options will be completed after an initial - unless

 there is a preceding -- on the command line.

 completer

 The strings given as the value of this style provide the names

 of the completer functions to use. The available completer func?

 tions are described in the section `Control Functions' below.

 Each string may be either the name of a completer function or a

 string of the form `function:name'. In the first case the com?

 pleter field of the context will contain the name of the com?

 pleter without the leading underscore and with all other under?

 scores replaced by hyphens. In the second case the function is

 the name of the completer to call, but the context will contain

 the user-defined name in the completer field of the context. If

 the name starts with a hyphen, the string for the context will

 be build from the name of the completer function as in the first

 case with the name appended to it. For example:

 zstyle ':completion:*' completer _complete _complete:-foo

 Here, completion will call the _complete completer twice, once

 using `complete' and once using `complete-foo' in the completer Page 27/122

 field of the context. Normally, using the same completer more

 than once only makes sense when used with the `functions:name'

 form, because otherwise the context name will be the same in all

 calls to the completer; possible exceptions to this rule are the

 _ignored and _prefix completers.

 The default value for this style is `_complete _ignored': only

 completion will be done, first using the ignored-patterns style

 and the $fignore array and then without ignoring matches.

 condition

 This style is used by the _list completer function to decide if

 insertion of matches should be delayed unconditionally. The de?

 fault is `true'.

 delimiters

 This style is used when adding a delimiter for use with history

 modifiers or glob qualifiers that have delimited arguments. It

 is an array of preferred delimiters to add. Non-special charac?

 ters are preferred as the completion system may otherwise become

 confused. The default list is :, +, /, -, %. The list may be

 empty to force a delimiter to be typed.

 disabled

 If this is set to `true', the _expand_alias completer and bind?

 able command will try to expand disabled aliases, too. The de?

 fault is `false'.

 domains

 A list of names of network domains for completion. If this is

 not set, domain names will be taken from the file /etc/re?

 solv.conf.

 environ

 The environ style is used when completing for `sudo'. It is set

 to an array of `VAR=value' assignments to be exported into the

 local environment before the completion for the target command

 is invoked.

 zstyle ':completion:*:sudo::' environ \ Page 28/122

 PATH="/sbin:/usr/sbin:$PATH" HOME="/root"

 expand This style is used when completing strings consisting of multi?

 ple parts, such as path names.

 If one of its values is the string `prefix', the partially typed

 word from the line will be expanded as far as possible even if

 trailing parts cannot be completed.

 If one of its values is the string `suffix', matching names for

 components after the first ambiguous one will also be added.

 This means that the resulting string is the longest unambiguous

 string possible. However, menu completion can be used to cycle

 through all matches.

 fake This style may be set for any completion context. It specifies

 additional strings that will always be completed in that con?

 text. The form of each string is `value:description'; the colon

 and description may be omitted, but any literal colons in value

 must be quoted with a backslash. Any description provided is

 shown alongside the value in completion listings.

 It is important to use a sufficiently restrictive context when

 specifying fake strings. Note that the styles fake-files and

 fake-parameters provide additional features when completing

 files or parameters.

 fake-always

 This works identically to the fake style except that the ig?

 nored-patterns style is not applied to it. This makes it possi?

 ble to override a set of matches completely by setting the ig?

 nored patterns to `*'.

 The following shows a way of supplementing any tag with arbi?

 trary data, but having it behave for display purposes like a

 separate tag. In this example we use the features of the

 tag-order style to divide the named-directories tag into two

 when performing completion with the standard completer complete

 for arguments of cd. The tag named-directories-normal behaves

 as normal, but the tag named-directories-mine contains a fixed Page 29/122

 set of directories. This has the effect of adding the match

 group `extra directories' with the given completions.

 zstyle ':completion::complete:cd:*' tag-order \

 'named-directories:-mine:extra\ directories

 named-directories:-normal:named\ directories *'

 zstyle ':completion::complete:cd:*:named-directories-mine' \

 fake-always mydir1 mydir2

 zstyle ':completion::complete:cd:*:named-directories-mine' \

 ignored-patterns '*'

 fake-files

 This style is used when completing files and looked up without a

 tag. Its values are of the form `dir:names...'. This will add

 the names (strings separated by spaces) as possible matches when

 completing in the directory dir, even if no such files really

 exist. The dir may be a pattern; pattern characters or colons

 in dir should be quoted with a backslash to be treated liter?

 ally.

 This can be useful on systems that support special file systems

 whose top-level pathnames can not be listed or generated with

 glob patterns (but see accept-exact-dirs for a more general way

 of dealing with this problem). It can also be used for directo?

 ries for which one does not have read permission.

 The pattern form can be used to add a certain `magic' entry to

 all directories on a particular file system.

 fake-parameters

 This is used by the completion function for parameter names.

 Its values are names of parameters that might not yet be set but

 should be completed nonetheless. Each name may also be followed

 by a colon and a string specifying the type of the parameter

 (like `scalar', `array' or `integer'). If the type is given,

 the name will only be completed if parameters of that type are

 required in the particular context. Names for which no type is

 specified will always be completed. Page 30/122

 file-list

 This style controls whether files completed using the standard

 builtin mechanism are to be listed with a long list similar to

 ls -l. Note that this feature uses the shell module zsh/stat

 for file information; this loads the builtin stat which will re?

 place any external stat executable. To avoid this the following

 code can be included in an initialization file:

 zmodload -i zsh/stat

 disable stat

 The style may either be set to a `true' value (or `all'), or one

 of the values `insert' or `list', indicating that files are to

 be listed in long format in all circumstances, or when attempt?

 ing to insert a file name, or when listing file names without

 attempting to insert one.

 More generally, the value may be an array of any of the above

 values, optionally followed by =num. If num is present it gives

 the maximum number of matches for which long listing style will

 be used. For example,

 zstyle ':completion:*' file-list list=20 insert=10

 specifies that long format will be used when listing up to 20

 files or inserting a file with up to 10 matches (assuming a

 listing is to be shown at all, for example on an ambiguous com?

 pletion), else short format will be used.

 zstyle -e ':completion:*' file-list \

 '((${+NUMERIC})) && reply=(true)'

 specifies that long format will be used any time a numeric argu?

 ment is supplied, else short format.

 file-patterns

 This is used by the standard function for completing filenames,

 _files. If the style is unset up to three tags are offered,

 `globbed-files',`directories' and `all-files', depending on the

 types of files expected by the caller of _files. The first two

 (`globbed-files' and `directories') are normally offered to? Page 31/122

 gether to make it easier to complete files in sub-directories.

 The file-patterns style provides alternatives to the default

 tags, which are not used. Its value consists of elements of the

 form `pattern:tag'; each string may contain any number of such

 specifications separated by spaces.

 The pattern is a pattern that is to be used to generate file?

 names. Any occurrence of the sequence `%p' is replaced by any

 pattern(s) passed by the function calling _files. Colons in the

 pattern must be preceded by a backslash to make them distin?

 guishable from the colon before the tag. If more than one pat?

 tern is needed, the patterns can be given inside braces, sepa?

 rated by commas.

 The tags of all strings in the value will be offered by _files

 and used when looking up other styles. Any tags in the same

 word will be offered at the same time and before later words.

 If no `:tag' is given the `files' tag will be used.

 The tag may also be followed by an optional second colon and a

 description, which will be used for the `%d' in the value of the

 format style (if that is set) instead of the default description

 supplied by the completion function. If the description given

 here contains itself a `%d', that is replaced with the descrip?

 tion supplied by the completion function.

 For example, to make the rm command first complete only names of

 object files and then the names of all files if there is no

 matching object file:

 zstyle ':completion:*:*:rm:*:*' file-patterns \

 '*.o:object-files' '%p:all-files'

 To alter the default behaviour of file completion -- offer files

 matching a pattern and directories on the first attempt, then

 all files -- to offer only matching files on the first attempt,

 then directories, and finally all files:

 zstyle ':completion:*' file-patterns \

 '%p:globbed-files' '*(-/):directories' '*:all-files' Page 32/122

 This works even where there is no special pattern: _files

 matches all files using the pattern `*' at the first step and

 stops when it sees this pattern. Note also it will never try a

 pattern more than once for a single completion attempt.

 During the execution of completion functions, the EXTENDED_GLOB

 option is in effect, so the characters `#', `~' and `^' have

 special meanings in the patterns.

 file-sort

 The standard filename completion function uses this style with?

 out a tag to determine in which order the names should be

 listed; menu completion will cycle through them in the same or?

 der. The possible values are: `size' to sort by the size of the

 file; `links' to sort by the number of links to the file; `modi?

 fication' (or `time' or `date') to sort by the last modification

 time; `access' to sort by the last access time; and `inode' (or

 `change') to sort by the last inode change time. If the style

 is set to any other value, or is unset, files will be sorted al?

 phabetically by name. If the value contains the string `re?

 verse', sorting is done in the opposite order. If the value

 contains the string `follow', timestamps are associated with the

 targets of symbolic links; the default is to use the timestamps

 of the links themselves.

 file-split-chars

 A set of characters that will cause all file completions for the

 given context to be split at the point where any of the charac?

 ters occurs. A typical use is to set the style to :; then ev?

 erything up to and including the last : in the string so far is

 ignored when completing files. As this is quite heavy-handed,

 it is usually preferable to update completion functions for con?

 texts where this behaviour is useful.

 filter The ldap plugin of email address completion (see _email_ad?

 dresses) uses this style to specify the attributes to match

 against when filtering entries. So for example, if the style is Page 33/122

 set to `sn', matching is done against surnames. Standard LDAP

 filtering is used so normal completion matching is bypassed. If

 this style is not set, the LDAP plugin is skipped. You may also

 need to set the command style to specify how to connect to your

 LDAP server.

 force-list

 This forces a list of completions to be shown at any point where

 listing is done, even in cases where the list would usually be

 suppressed. For example, normally the list is only shown if

 there are at least two different matches. By setting this style

 to `always', the list will always be shown, even if there is

 only a single match that will immediately be accepted. The

 style may also be set to a number. In this case the list will

 be shown if there are at least that many matches, even if they

 would all insert the same string.

 This style is tested for the default tag as well as for each tag

 valid for the current completion. Hence the listing can be

 forced only for certain types of match.

 format If this is set for the descriptions tag, its value is used as a

 string to display above matches in completion lists. The se?

 quence `%d' in this string will be replaced with a short de?

 scription of what these matches are. This string may also con?

 tain the output attribute sequences understood by compadd -X

 (see zshcompwid(1)).

 The style is tested with each tag valid for the current comple?

 tion before it is tested for the descriptions tag. Hence dif?

 ferent format strings can be defined for different types of

 match.

 Note also that some completer functions define additional

 `%'-sequences. These are described for the completer functions

 that make use of them.

 Some completion functions display messages that may be cus?

 tomised by setting this style for the messages tag. Here, the Page 34/122

 `%d' is replaced with a message given by the completion func?

 tion.

 Finally, the format string is looked up with the warnings tag,

 for use when no matches could be generated at all. In this case

 the `%d' is replaced with the descriptions for the matches that

 were expected separated by spaces. The sequence `%D' is re?

 placed with the same descriptions separated by newlines.

 It is possible to use printf-style field width specifiers with

 `%d' and similar escape sequences. This is handled by the zfor?

 mat builtin command from the zsh/zutil module, see zshmod?

 ules(1).

 glob This is used by the _expand completer. If it is set to `true'

 (the default), globbing will be attempted on the words resulting

 from a previous substitution (see the substitute style) or else

 the original string from the line.

 global If this is set to `true' (the default), the _expand_alias com?

 pleter and bindable command will try to expand global aliases.

 group-name

 The completion system can group different types of matches,

 which appear in separate lists. This style can be used to give

 the names of groups for particular tags. For example, in com?

 mand position the completion system generates names of builtin

 and external commands, names of aliases, shell functions and pa?

 rameters and reserved words as possible completions. To have

 the external commands and shell functions listed separately:

 zstyle ':completion:*:*:-command-:*:commands' \

 group-name commands

 zstyle ':completion:*:*:-command-:*:functions' \

 group-name functions

 As a consequence, any match with the same tag will be displayed

 in the same group.

 If the name given is the empty string the name of the tag for

 the matches will be used as the name of the group. So, to have Page 35/122

 all different types of matches displayed separately, one can

 just set:

 zstyle ':completion:*' group-name ''

 All matches for which no group name is defined will be put in a

 group named -default-.

 group-order

 This style is additional to the group-name style to specify the

 order for display of the groups defined by that style (compare

 tag-order, which determines which completions appear at all).

 The groups named are shown in the given order; any other groups

 are shown in the order defined by the completion function.

 For example, to have names of builtin commands, shell functions

 and external commands appear in that order when completing in

 command position:

 zstyle ':completion:*:*:-command-:*:*' group-order \

 builtins functions commands

 groups A list of names of UNIX groups. If this is not set, group names

 are taken from the YP database or the file `/etc/group'.

 hidden If this is set to `true', matches for the given context will not

 be listed, although any description for the matches set with the

 format style will be shown. If it is set to `all', not even the

 description will be displayed.

 Note that the matches will still be completed; they are just not

 shown in the list. To avoid having matches considered as possi?

 ble completions at all, the tag-order style can be modified as

 described below.

 hosts A list of names of hosts that should be completed. If this is

 not set, hostnames are taken from the file `/etc/hosts'.

 hosts-ports

 This style is used by commands that need or accept hostnames and

 network ports. The strings in the value should be of the form

 `host:port'. Valid ports are determined by the presence of

 hostnames; multiple ports for the same host may appear. Page 36/122

 ignore-line

 This is tested for each tag valid for the current completion.

 If it is set to `true', none of the words that are already on

 the line will be considered as possible completions. If it is

 set to `current', the word the cursor is on will not be consid?

 ered as a possible completion. The value `current-shown' is

 similar but only applies if the list of completions is currently

 shown on the screen. Finally, if the style is set to `other',

 all words on the line except for the current one will be ex?

 cluded from the possible completions.

 The values `current' and `current-shown' are a bit like the op?

 posite of the accept-exact style: only strings with missing

 characters will be completed.

 Note that you almost certainly don't want to set this to `true'

 or `other' for a general context such as `:completion:*'. This

 is because it would disallow completion of, for example, options

 multiple times even if the command in question accepts the op?

 tion more than once.

 ignore-parents

 The style is tested without a tag by the function completing

 pathnames in order to determine whether to ignore the names of

 directories already mentioned in the current word, or the name

 of the current working directory. The value must include one or

 both of the following strings:

 parent The name of any directory whose path is already contained

 in the word on the line is ignored. For example, when

 completing after foo/../, the directory foo will not be

 considered a valid completion.

 pwd The name of the current working directory will not be

 completed; hence, for example, completion after ../ will

 not use the name of the current directory.

 In addition, the value may include one or both of:

 .. Ignore the specified directories only when the word on Page 37/122

 the line contains the substring `../'.

 directory

 Ignore the specified directories only when names of di?

 rectories are completed, not when completing names of

 files.

 Excluded values act in a similar fashion to values of the ig?

 nored-patterns style, so they can be restored to consideration

 by the _ignored completer.

 extra-verbose

 If set, the completion listing is more verbose at the cost of a

 probable decrease in completion speed. Completion performance

 will suffer if this style is set to `true'.

 ignored-patterns

 A list of patterns; any trial completion matching one of the

 patterns will be excluded from consideration. The _ignored com?

 pleter can appear in the list of completers to restore the ig?

 nored matches. This is a more configurable version of the shell

 parameter $fignore.

 Note that the EXTENDED_GLOB option is set during the execution

 of completion functions, so the characters `#', `~' and `^' have

 special meanings in the patterns.

 insert This style is used by the _all_matches completer to decide

 whether to insert the list of all matches unconditionally in?

 stead of adding the list as another match.

 insert-ids

 When completing process IDs, for example as arguments to the

 kill and wait builtins the name of a command may be converted to

 the appropriate process ID. A problem arises when the process

 name typed is not unique. By default (or if this style is set

 explicitly to `menu') the name will be converted immediately to

 a set of possible IDs, and menu completion will be started to

 cycle through them.

 If the value of the style is `single', the shell will wait until Page 38/122

 the user has typed enough to make the command unique before con?

 verting the name to an ID; attempts at completion will be unsuc?

 cessful until that point. If the value is any other string,

 menu completion will be started when the string typed by the

 user is longer than the common prefix to the corresponding IDs.

 insert-tab

 If this is set to `true', the completion system will insert a

 TAB character (assuming that was used to start completion) in?

 stead of performing completion when there is no non-blank char?

 acter to the left of the cursor. If it is set to `false', com?

 pletion will be done even there.

 The value may also contain the substrings `pending' or `pend?

 ing=val'. In this case, the typed character will be inserted

 instead of starting completion when there is unprocessed input

 pending. If a val is given, completion will not be done if

 there are at least that many characters of unprocessed input.

 This is often useful when pasting characters into a terminal.

 Note however, that it relies on the $PENDING special parameter

 from the zsh/zle module being set properly which is not guaran?

 teed on all platforms.

 The default value of this style is `true' except for completion

 within vared builtin command where it is `false'.

 insert-unambiguous

 This is used by the _match and _approximate completers. These

 completers are often used with menu completion since the word

 typed may bear little resemblance to the final completion. How?

 ever, if this style is `true', the completer will start menu

 completion only if it could find no unambiguous initial string

 at least as long as the original string typed by the user.

 In the case of the _approximate completer, the completer field

 in the context will already have been set to one of correct-num

 or approximate-num, where num is the number of errors that were

 accepted. Page 39/122

 In the case of the _match completer, the style may also be set

 to the string `pattern'. Then the pattern on the line is left

 unchanged if it does not match unambiguously.

 gain-privileges

 If set to true, this style enables the use of commands like sudo

 or doas to gain extra privileges when retrieving information for

 completion. This is only done when a command such as sudo ap?

 pears on the command-line. To force the use of, e.g. sudo or to

 override any prefix that might be added due to gain-privileges,

 the command style can be used with a value that begins with a

 hyphen.

 keep-prefix

 This style is used by the _expand completer. If it is `true',

 the completer will try to keep a prefix containing a tilde or

 parameter expansion. Hence, for example, the string `~/f*'

 would be expanded to `~/foo' instead of `/home/user/foo'. If

 the style is set to `changed' (the default), the prefix will

 only be left unchanged if there were other changes between the

 expanded words and the original word from the command line. Any

 other value forces the prefix to be expanded unconditionally.

 The behaviour of _expand when this style is `true' is to cause

 _expand to give up when a single expansion with the restored

 prefix is the same as the original; hence any remaining com?

 pleters may be called.

 last-prompt

 This is a more flexible form of the ALWAYS_LAST_PROMPT option.

 If it is `true', the completion system will try to return the

 cursor to the previous command line after displaying a comple?

 tion list. It is tested for all tags valid for the current com?

 pletion, then the default tag. The cursor will be moved back to

 the previous line if this style is `true' for all types of

 match. Note that unlike the ALWAYS_LAST_PROMPT option this is

 independent of the numeric argument. Page 40/122

 known-hosts-files

 This style should contain a list of files to search for host

 names and (if the use-ip style is set) IP addresses in a format

 compatible with ssh known_hosts files. If it is not set, the

 files /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts are used.

 list This style is used by the _history_complete_word bindable com?

 mand. If it is set to `true' it has no effect. If it is set to

 `false' matches will not be listed. This overrides the setting

 of the options controlling listing behaviour, in particular

 AUTO_LIST. The context always starts with `:completion:his?

 tory-words'.

 list-colors

 If the zsh/complist module is loaded, this style can be used to

 set color specifications. This mechanism replaces the use of

 the ZLS_COLORS and ZLS_COLOURS parameters described in the sec?

 tion `The zsh/complist Module' in zshmodules(1), but the syntax

 is the same.

 If this style is set for the default tag, the strings in the

 value are taken as specifications that are to be used every?

 where. If it is set for other tags, the specifications are used

 only for matches of the type described by the tag. For this to

 work best, the group-name style must be set to an empty string.

 In addition to setting styles for specific tags, it is also pos?

 sible to use group names specified explicitly by the group-name

 tag together with the `(group)' syntax allowed by the ZLS_COLORS

 and ZLS_COLOURS parameters and simply using the default tag.

 It is possible to use any color specifications already set up

 for the GNU version of the ls command:

 zstyle ':completion:*:default' list-colors \

 ${(s.:.)LS_COLORS}

 The default colors are the same as for the GNU ls command and

 can be obtained by setting the style to an empty string (i.e.

 ''). Page 41/122

 list-dirs-first

 This is used by file completion. If set, directories to be com?

 pleted are listed separately from and before completion for

 other files, regardless of tag ordering. In addition, the tag

 other-files is used in place of all-files for the remaining

 files, to indicate that no directories are presented with that

 tag.

 list-grouped

 If this style is `true' (the default), the completion system

 will try to make certain completion listings more compact by

 grouping matches. For example, options for commands that have

 the same description (shown when the verbose style is set to

 `true') will appear as a single entry. However, menu selection

 can be used to cycle through all the matches.

 list-packed

 This is tested for each tag valid in the current context as well

 as the default tag. If it is set to `true', the corresponding

 matches appear in listings as if the LIST_PACKED option were

 set. If it is set to `false', they are listed normally.

 list-prompt

 If this style is set for the default tag, completion lists that

 don't fit on the screen can be scrolled (see the description of

 the zsh/complist module in zshmodules(1)). The value, if not

 the empty string, will be displayed after every screenful and

 the shell will prompt for a key press; if the style is set to

 the empty string, a default prompt will be used.

 The value may contain the escape sequences: `%l' or `%L', which

 will be replaced by the number of the last line displayed and

 the total number of lines; `%m' or `%M', the number of the last

 match shown and the total number of matches; and `%p' and `%P',

 `Top' when at the beginning of the list, `Bottom' when at the

 end and the position shown as a percentage of the total length

 otherwise. In each case the form with the uppercase letter will Page 42/122

 be replaced by a string of fixed width, padded to the right

 with spaces, while the lowercase form will be replaced by a

 variable width string. As in other prompt strings, the escape

 sequences `%S', `%s', `%B', `%b', `%U', `%u' for entering and

 leaving the display modes standout, bold and underline, and

 `%F', `%f', `%K', `%k' for changing the foreground background

 colour, are also available, as is the form `%{...%}' for enclos?

 ing escape sequences which display with zero (or, with a numeric

 argument, some other) width.

 After deleting this prompt the variable LISTPROMPT should be un?

 set for the removal to take effect.

 list-rows-first

 This style is tested in the same way as the list-packed style

 and determines whether matches are to be listed in a rows-first

 fashion as if the LIST_ROWS_FIRST option were set.

 list-suffixes

 This style is used by the function that completes filenames. If

 it is `true', and completion is attempted on a string containing

 multiple partially typed pathname components, all ambiguous com?

 ponents will be shown. Otherwise, completion stops at the first

 ambiguous component.

 list-separator

 The value of this style is used in completion listing to sepa?

 rate the string to complete from a description when possible

 (e.g. when completing options). It defaults to `--' (two hy?

 phens).

 local This is for use with functions that complete URLs for which the

 corresponding files are available directly from the file system.

 Its value should consist of three strings: a hostname, the path

 to the default web pages for the server, and the directory name

 used by a user placing web pages within their home area.

 For example:

 zstyle ':completion:*' local toast \ Page 43/122

 /var/http/public/toast public_html

 Completion after `http://toast/stuff/' will look for files in

 the directory /var/http/public/toast/stuff, while completion

 after `http://toast/~yousir/' will look for files in the direc?

 tory ~yousir/public_html.

 mail-directory

 If set, zsh will assume that mailbox files can be found in the

 directory specified. It defaults to `~/Mail'.

 match-original

 This is used by the _match completer. If it is set to only,

 _match will try to generate matches without inserting a `*' at

 the cursor position. If set to any other non-empty value, it

 will first try to generate matches without inserting the `*' and

 if that yields no matches, it will try again with the `*' in?

 serted. If it is unset or set to the empty string, matching

 will only be performed with the `*' inserted.

 matcher

 This style is tested separately for each tag valid in the cur?

 rent context. Its value is placed before any match specifica?

 tions given by the matcher-list style so can override them via

 the use of an x: specification. The value should be in the form

 described in the section `Completion Matching Control' in zsh?

 compwid(1). For examples of this, see the description of the

 tag-order style.

 For notes comparing the use of this and the matcher-list style,

 see under the description of the tag-order style.

 matcher-list

 This style can be set to a list of match specifications that are

 to be applied everywhere. Match specifications are described in

 the section `Completion Matching Control' in zshcompwid(1). The

 completion system will try them one after another for each com?

 pleter selected. For example, to try first simple completion

 and, if that generates no matches, case-insensitive completion: Page 44/122

 zstyle ':completion:*' matcher-list '' 'm:{a-zA-Z}={A-Za-z}'

 By default each specification replaces the previous one; how?

 ever, if a specification is prefixed with +, it is added to the

 existing list. Hence it is possible to create increasingly gen?

 eral specifications without repetition:

 zstyle ':completion:*' matcher-list \

 '' '+m:{a-z}={A-Z}' '+m:{A-Z}={a-z}'

 It is possible to create match specifications valid for particu?

 lar completers by using the third field of the context. This

 applies only to completers that override the global

 matcher-list, which as of this writing includes only _prefix and

 _ignored. For example, to use the completers _complete and

 _prefix but allow case-insensitive completion only with _com?

 plete:

 zstyle ':completion:*' completer _complete _prefix

 zstyle ':completion:*:complete:*:*:*' matcher-list \

 '' 'm:{a-zA-Z}={A-Za-z}'

 User-defined names, as explained for the completer style, are

 available. This makes it possible to try the same completer

 more than once with different match specifications each time.

 For example, to try normal completion without a match specifica?

 tion, then normal completion with case-insensitive matching,

 then correction, and finally partial-word completion:

 zstyle ':completion:*' completer \

 _complete _correct _complete:foo

 zstyle ':completion:*:complete:*:*:*' matcher-list \

 '' 'm:{a-zA-Z}={A-Za-z}'

 zstyle ':completion:*:foo:*:*:*' matcher-list \

 'm:{a-zA-Z}={A-Za-z} r:|[-_./]=* r:|=*'

 If the style is unset in any context no match specification is

 applied. Note also that some completers such as _correct and

 _approximate do not use the match specifications at all, though

 these completers will only ever be called once even if the Page 45/122

 matcher-list contains more than one element.

 Where multiple specifications are useful, note that the entire

 completion is done for each element of matcher-list, which can

 quickly reduce the shell's performance. As a rough rule of

 thumb, one to three strings will give acceptable performance.

 On the other hand, putting multiple space-separated values into

 the same string does not have an appreciable impact on perfor?

 mance.

 If there is no current matcher or it is empty, and the option

 NO_CASE_GLOB is in effect, the matching for files is performed

 case-insensitively in any case. However, any matcher must ex?

 plicitly specify case-insensitive matching if that is required.

 For notes comparing the use of this and the matcher style, see

 under the description of the tag-order style.

 max-errors

 This is used by the _approximate and _correct completer func?

 tions to determine the maximum number of errors to allow. The

 completer will try to generate completions by first allowing one

 error, then two errors, and so on, until either a match or

 matches were found or the maximum number of errors given by this

 style has been reached.

 If the value for this style contains the string `numeric', the

 completer function will take any numeric argument as the maximum

 number of errors allowed. For example, with

 zstyle ':completion:*:approximate:::' max-errors 2 numeric

 two errors are allowed if no numeric argument is given, but with

 a numeric argument of six (as in `ESC-6 TAB'), up to six errors

 are accepted. Hence with a value of `0 numeric', no correcting

 completion will be attempted unless a numeric argument is given.

 If the value contains the string `not-numeric', the completer

 will not try to generate corrected completions when given a nu?

 meric argument, so in this case the number given should be

 greater than zero. For example, `2 not-numeric' specifies that Page 46/122

 correcting completion with two errors will usually be performed,

 but if a numeric argument is given, correcting completion will

 not be performed.

 The default value for this style is `2 numeric'.

 max-matches-width

 This style is used to determine the trade off between the width

 of the display used for matches and the width used for their de?

 scriptions when the verbose style is in effect. The value gives

 the number of display columns to reserve for the matches. The

 default is half the width of the screen.

 This has the most impact when several matches have the same de?

 scription and so will be grouped together. Increasing the style

 will allow more matches to be grouped together; decreasing it

 will allow more of the description to be visible.

 menu If this is `true' in the context of any of the tags defined for

 the current completion menu completion will be used. The value

 for a specific tag will take precedence over that for the `de?

 fault' tag.

 If none of the values found in this way is `true' but at least

 one is set to `auto', the shell behaves as if the AUTO_MENU op?

 tion is set.

 If one of the values is explicitly set to `false', menu comple?

 tion will be explicitly turned off, overriding the MENU_COMPLETE

 option and other settings.

 In the form `yes=num', where `yes' may be any of the `true' val?

 ues (`yes', `true', `on' and `1'), menu completion will be

 turned on if there are at least num matches. In the form

 `yes=long', menu completion will be turned on if the list does

 not fit on the screen. This does not activate menu completion

 if the widget normally only lists completions, but menu comple?

 tion can be activated in that case with the value

 `yes=long-list' (Typically, the value `select=long-list' de?

 scribed later is more useful as it provides control over Page 47/122

 scrolling.)

 Similarly, with any of the `false' values (as in `no=10'), menu

 completion will not be used if there are num or more matches.

 The value of this widget also controls menu selection, as imple?

 mented by the zsh/complist module. The following values may ap?

 pear either alongside or instead of the values above.

 If the value contains the string `select', menu selection will

 be started unconditionally.

 In the form `select=num', menu selection will only be started if

 there are at least num matches. If the values for more than one

 tag provide a number, the smallest number is taken.

 Menu selection can be turned off explicitly by defining a value

 containing the string`no-select'.

 It is also possible to start menu selection only if the list of

 matches does not fit on the screen by using the value `se?

 lect=long'. To start menu selection even if the current widget

 only performs listing, use the value `select=long-list'.

 To turn on menu completion or menu selection when there are a

 certain number of matches or the list of matches does not fit on

 the screen, both of `yes=' and `select=' may be given twice,

 once with a number and once with `long' or `long-list'.

 Finally, it is possible to activate two special modes of menu

 selection. The word `interactive' in the value causes interac?

 tive mode to be entered immediately when menu selection is

 started; see the description of the zsh/complist module in zsh?

 modules(1) for a description of interactive mode. Including the

 string `search' does the same for incremental search mode. To

 select backward incremental search, include the string

 `search-backward'.

 muttrc If set, gives the location of the mutt configuration file. It

 defaults to `~/.muttrc'.

 numbers

 This is used with the jobs tag. If it is `true', the shell will Page 48/122

 complete job numbers instead of the shortest unambiguous prefix

 of the job command text. If the value is a number, job numbers

 will only be used if that many words from the job descriptions

 are required to resolve ambiguities. For example, if the value

 is `1', strings will only be used if all jobs differ in the

 first word on their command lines.

 old-list

 This is used by the _oldlist completer. If it is set to `al?

 ways', then standard widgets which perform listing will retain

 the current list of matches, however they were generated; this

 can be turned off explicitly with the value `never', giving the

 behaviour without the _oldlist completer. If the style is un?

 set, or any other value, then the existing list of completions

 is displayed if it is not already; otherwise, the standard com?

 pletion list is generated; this is the default behaviour of

 _oldlist. However, if there is an old list and this style con?

 tains the name of the completer function that generated the

 list, then the old list will be used even if it was generated by

 a widget which does not do listing.

 For example, suppose you type ^Xc to use the _correct_word wid?

 get, which generates a list of corrections for the word under

 the cursor. Usually, typing ^D would generate a standard list

 of completions for the word on the command line, and show that.

 With _oldlist, it will instead show the list of corrections al?

 ready generated.

 As another example consider the _match completer: with the in?

 sert-unambiguous style set to `true' it inserts only a common

 prefix string, if there is any. However, this may remove parts

 of the original pattern, so that further completion could pro?

 duce more matches than on the first attempt. By using the

 _oldlist completer and setting this style to _match, the list of

 matches generated on the first attempt will be used again.

 old-matches Page 49/122

 This is used by the _all_matches completer to decide if an old

 list of matches should be used if one exists. This is selected

 by one of the `true' values or by the string `only'. If the

 value is `only', _all_matches will only use an old list and

 won't have any effect on the list of matches currently being

 generated.

 If this style is set it is generally unwise to call the

 _all_matches completer unconditionally. One possible use is for

 either this style or the completer style to be defined with the

 -e option to zstyle to make the style conditional.

 old-menu

 This is used by the _oldlist completer. It controls how menu

 completion behaves when a completion has already been inserted

 and the user types a standard completion key such as TAB. The

 default behaviour of _oldlist is that menu completion always

 continues with the existing list of completions. If this style

 is set to `false', however, a new completion is started if the

 old list was generated by a different completion command; this

 is the behaviour without the _oldlist completer.

 For example, suppose you type ^Xc to generate a list of correc?

 tions, and menu completion is started in one of the usual ways.

 Usually, or with this style set to `false', typing TAB at this

 point would start trying to complete the line as it now appears.

 With _oldlist, it instead continues to cycle through the list of

 corrections.

 original

 This is used by the _approximate and _correct completers to de?

 cide if the original string should be added as a possible com?

 pletion. Normally, this is done only if there are at least two

 possible corrections, but if this style is set to `true', it is

 always added. Note that the style will be examined with the

 completer field in the context name set to correct-num or ap?

 proximate-num, where num is the number of errors that were ac? Page 50/122

 cepted.

 packageset

 This style is used when completing arguments of the Debian

 `dpkg' program. It contains an override for the default package

 set for a given context. For example,

 zstyle ':completion:*:complete:dpkg:option--status-1:*' \

 packageset avail

 causes available packages, rather than only installed packages,

 to be completed for `dpkg --status'.

 path The function that completes color names uses this style with the

 colors tag. The value should be the pathname of a file contain?

 ing color names in the format of an X11 rgb.txt file. If the

 style is not set but this file is found in one of various stan?

 dard locations it will be used as the default.

 path-completion

 This is used by filename completion. By default, filename com?

 pletion examines all components of a path to see if there are

 completions of that component. For example, /u/b/z can be com?

 pleted to /usr/bin/zsh. Explicitly setting this style to

 `false' inhibits this behaviour for path components up to the /

 before the cursor; this overrides the setting of accept-ex?

 act-dirs.

 Even with the style set to `false', it is still possible to com?

 plete multiple paths by setting the option COMPLETE_IN_WORD and

 moving the cursor back to the first component in the path to be

 completed. For example, /u/b/z can be completed to /usr/bin/zsh

 if the cursor is after the /u.

 pine-directory

 If set, specifies the directory containing PINE mailbox files.

 There is no default, since recursively searching this directory

 is inconvenient for anyone who doesn't use PINE.

 ports A list of Internet service names (network ports) to complete.

 If this is not set, service names are taken from the file Page 51/122

 `/etc/services'.

 prefix-hidden

 This is used for certain completions which share a common pre?

 fix, for example command options beginning with dashes. If it

 is `true', the prefix will not be shown in the list of matches.

 The default value for this style is `false'.

 prefix-needed

 This style is also relevant for matches with a common prefix.

 If it is set to `true' this common prefix must be typed by the

 user to generate the matches.

 The style is applicable to the options, signals, jobs, func?

 tions, and parameters completion tags.

 For command options, this means that the initial `-', `+', or

 `--' must be typed explicitly before option names will be com?

 pleted.

 For signals, an initial `-' is required before signal names will

 be completed.

 For jobs, an initial `%' is required before job names will be

 completed.

 For function and parameter names, an initial `_' or `.' is re?

 quired before function or parameter names starting with those

 characters will be completed.

 The default value for this style is `false' for function and pa?

 rameter completions, and `true' otherwise.

 preserve-prefix

 This style is used when completing path names. Its value should

 be a pattern matching an initial prefix of the word to complete

 that should be left unchanged under all circumstances. For ex?

 ample, on some Unices an initial `//' (double slash) has a spe?

 cial meaning; setting this style to the string `//' will pre?

 serve it. As another example, setting this style to `?:/' under

 Cygwin would allow completion after `a:/...' and so on.

 range This is used by the _history completer and the _history_com? Page 52/122

 plete_word bindable command to decide which words should be com?

 pleted.

 If it is a single number, only the last N words from the history

 will be completed.

 If it is a range of the form `max:slice', the last slice words

 will be completed; then if that yields no matches, the slice

 words before those will be tried and so on. This process stops

 either when at least one match has been found, or max words have

 been tried.

 The default is to complete all words from the history at once.

 recursive-files

 If this style is set, its value is an array of patterns to be

 tested against `$PWD/': note the trailing slash, which allows

 directories in the pattern to be delimited unambiguously by in?

 cluding slashes on both sides. If an ordinary file completion

 fails and the word on the command line does not yet have a di?

 rectory part to its name, the style is retrieved using the same

 tag as for the completion just attempted, then the elements

 tested against $PWD/ in turn. If one matches, then the shell

 reattempts completion by prepending the word on the command line

 with each directory in the expansion of **/*(/) in turn. Typi?

 cally the elements of the style will be set to restrict the num?

 ber of directories beneath the current one to a manageable num?

 ber, for example `*/.git/*'.

 For example,

 zstyle ':completion:*' recursive-files '*/zsh/*'

 If the current directory is /home/pws/zsh/Src, then zle_trTAB

 can be completed to Zle/zle_tricky.c.

 regular

 This style is used by the _expand_alias completer and bindable

 command. If set to `true' (the default), regular aliases will

 be expanded but only in command position. If it is set to

 `false', regular aliases will never be expanded. If it is set Page 53/122

 to `always', regular aliases will be expanded even if not in

 command position.

 rehash If this is set when completing external commands, the internal

 list (hash) of commands will be updated for each search by issu?

 ing the rehash command. There is a speed penalty for this which

 is only likely to be noticeable when directories in the path

 have slow file access.

 remote-access

 If set to `false', certain commands will be prevented from mak?

 ing Internet connections to retrieve remote information. This

 includes the completion for the CVS command.

 It is not always possible to know if connections are in fact to

 a remote site, so some may be prevented unnecessarily.

 remove-all-dups

 The _history_complete_word bindable command and the _history

 completer use this to decide if all duplicate matches should be

 removed, rather than just consecutive duplicates.

 select-prompt

 If this is set for the default tag, its value will be displayed

 during menu selection (see the menu style above) when the com?

 pletion list does not fit on the screen as a whole. The same

 escapes as for the list-prompt style are understood, except that

 the numbers refer to the match or line the mark is on. A de?

 fault prompt is used when the value is the empty string.

 select-scroll

 This style is tested for the default tag and determines how a

 completion list is scrolled during a menu selection (see the

 menu style above) when the completion list does not fit on the

 screen as a whole. If the value is `0' (zero), the list is

 scrolled by half-screenfuls; if it is a positive integer, the

 list is scrolled by the given number of lines; if it is a nega?

 tive number, the list is scrolled by a screenful minus the abso?

 lute value of the given number of lines. The default is to Page 54/122

 scroll by single lines.

 separate-sections

 This style is used with the manuals tag when completing names of

 manual pages. If it is `true', entries for different sections

 are added separately using tag names of the form `manual.X',

 where X is the section number. When the group-name style is

 also in effect, pages from different sections will appear sepa?

 rately. This style is also used similarly with the words style

 when completing words for the dict command. It allows words from

 different dictionary databases to be added separately. The de?

 fault for this style is `false'.

 show-ambiguity

 If the zsh/complist module is loaded, this style can be used to

 highlight the first ambiguous character in completion lists. The

 value is either a color indication such as those supported by

 the list-colors style or, with a value of `true', a default of

 underlining is selected. The highlighting is only applied if the

 completion display strings correspond to the actual matches.

 show-completer

 Tested whenever a new completer is tried. If it is `true', the

 completion system outputs a progress message in the listing area

 showing what completer is being tried. The message will be

 overwritten by any output when completions are found and is re?

 moved after completion is finished.

 single-ignored

 This is used by the _ignored completer when there is only one

 match. If its value is `show', the single match will be dis?

 played but not inserted. If the value is `menu', then the sin?

 gle match and the original string are both added as matches and

 menu completion is started, making it easy to select either of

 them.

 sort This allows the standard ordering of matches to be overridden.

 If its value is `true' or `false', sorting is enabled or dis? Page 55/122

 abled. Additionally the values associated with the `-o' option

 to compadd can also be listed: match, nosort, numeric, reverse.

 If it is not set for the context, the standard behaviour of the

 calling widget is used.

 The style is tested first against the full context including the

 tag, and if that fails to produce a value against the context

 without the tag.

 In many cases where a calling widget explicitly selects a par?

 ticular ordering in lieu of the default, a value of `true' is

 not honoured. An example of where this is not the case is for

 command history where the default of sorting matches chronologi?

 cally may be overridden by setting the style to `true'.

 In the _expand completer, if it is set to `true', the expansions

 generated will always be sorted. If it is set to `menu', then

 the expansions are only sorted when they are offered as single

 strings but not in the string containing all possible expan?

 sions.

 special-dirs

 Normally, the completion code will not produce the directory

 names `.' and `..' as possible completions. If this style is

 set to `true', it will add both `.' and `..' as possible comple?

 tions; if it is set to `..', only `..' will be added.

 The following example sets special-dirs to `..' when the current

 prefix is empty, is a single `.', or consists only of a path be?

 ginning with `../'. Otherwise the value is `false'.

 zstyle -e ':completion:*' special-dirs \

 '[[$PREFIX = (../)#(|.|..)]] && reply=(..)'

 squeeze-slashes

 If set to `true', sequences of slashes in filename paths (for

 example in `foo//bar') will be treated as a single slash. This

 is the usual behaviour of UNIX paths. However, by default the

 file completion function behaves as if there were a `*' between

 the slashes. Page 56/122

 stop If set to `true', the _history_complete_word bindable command

 will stop once when reaching the beginning or end of the his?

 tory. Invoking _history_complete_word will then wrap around to

 the opposite end of the history. If this style is set to

 `false' (the default), _history_complete_word will loop immedi?

 ately as in a menu completion.

 strip-comments

 If set to `true', this style causes non-essential comment text

 to be removed from completion matches. Currently it is only

 used when completing e-mail addresses where it removes any dis?

 play name from the addresses, cutting them down to plain

 user@host form.

 subst-globs-only

 This is used by the _expand completer. If it is set to `true',

 the expansion will only be used if it resulted from globbing;

 hence, if expansions resulted from the use of the substitute

 style described below, but these were not further changed by

 globbing, the expansions will be rejected.

 The default for this style is `false'.

 substitute

 This boolean style controls whether the _expand completer will

 first try to expand all substitutions in the string (such as

 `$(...)' and `${...}').

 The default is `true'.

 suffix This is used by the _expand completer if the word starts with a

 tilde or contains a parameter expansion. If it is set to

 `true', the word will only be expanded if it doesn't have a suf?

 fix, i.e. if it is something like `~foo' or `$foo' rather than

 `~foo/' or `$foo/bar', unless that suffix itself contains char?

 acters eligible for expansion. The default for this style is

 `true'.

 tag-order

 This provides a mechanism for sorting how the tags available in Page 57/122

 a particular context will be used.

 The values for the style are sets of space-separated lists of

 tags. The tags in each value will be tried at the same time; if

 no match is found, the next value is used. (See the file-pat?

 terns style for an exception to this behavior.)

 For example:

 zstyle ':completion:*:complete:-command-:*:*' tag-order \

 'commands functions'

 specifies that completion in command position first offers ex?

 ternal commands and shell functions. Remaining tags will be

 tried if no completions are found.

 In addition to tag names, each string in the value may take one

 of the following forms:

 - If any value consists of only a hyphen, then only the

 tags specified in the other values are generated. Nor?

 mally all tags not explicitly selected are tried last if

 the specified tags fail to generate any matches. This

 means that a single value consisting only of a single hy?

 phen turns off completion.

 ! tags...

 A string starting with an exclamation mark specifies

 names of tags that are not to be used. The effect is the

 same as if all other possible tags for the context had

 been listed.

 tag:label ...

 Here, tag is one of the standard tags and label is an ar?

 bitrary name. Matches are generated as normal but the

 name label is used in contexts instead of tag. This is

 not useful in words starting with !.

 If the label starts with a hyphen, the tag is prepended

 to the label to form the name used for lookup. This can

 be used to make the completion system try a certain tag

 more than once, supplying different style settings for Page 58/122

 each attempt; see below for an example.

 tag:label:description

 As before, but description will replace the `%d' in the

 value of the format style instead of the default descrip?

 tion supplied by the completion function. Spaces in the

 description must be quoted with a backslash. A `%d' ap?

 pearing in description is replaced with the description

 given by the completion function.

 In any of the forms above the tag may be a pattern or several

 patterns in the form `{pat1,pat2...}'. In this case all match?

 ing tags will be used except for any given explicitly in the

 same string.

 One use of these features is to try one tag more than once, set?

 ting other styles differently on each attempt, but still to use

 all the other tags without having to repeat them all. For exam?

 ple, to make completion of function names in command position

 ignore all the completion functions starting with an underscore

 the first time completion is tried:

 zstyle ':completion:*:*:-command-:*:*' tag-order \

 'functions:-non-comp *' functions

 zstyle ':completion:*:functions-non-comp' \

 ignored-patterns '_*'

 On the first attempt, all tags will be offered but the functions

 tag will be replaced by functions-non-comp. The ignored-pat?

 terns style is set for this tag to exclude functions starting

 with an underscore. If there are no matches, the second value

 of the tag-order style is used which completes functions using

 the default tag, this time presumably including all function

 names.

 The matches for one tag can be split into different groups. For

 example:

 zstyle ':completion:*' tag-order \

 'options:-long:long\ options Page 59/122

 options:-short:short\ options

 options:-single-letter:single\ letter\ options'

 zstyle ':completion:*:options-long' \

 ignored-patterns '[-+](|-|[^-]*)'

 zstyle ':completion:*:options-short' \

 ignored-patterns '--*' '[-+]?'

 zstyle ':completion:*:options-single-letter' \

 ignored-patterns '???*'

 With the group-names style set, options beginning with `--', op?

 tions beginning with a single `-' or `+' but containing multiple

 characters, and single-letter options will be displayed in sepa?

 rate groups with different descriptions.

 Another use of patterns is to try multiple match specifications

 one after another. The matcher-list style offers something sim?

 ilar, but it is tested very early in the completion system and

 hence can't be set for single commands nor for more specific

 contexts. Here is how to try normal completion without any

 match specification and, if that generates no matches, try again

 with case-insensitive matching, restricting the effect to argu?

 ments of the command foo:

 zstyle ':completion:*:*:foo:*:*' tag-order '*' '*:-case'

 zstyle ':completion:*-case' matcher 'm:{a-z}={A-Z}'

 First, all the tags offered when completing after foo are tried

 using the normal tag name. If that generates no matches, the

 second value of tag-order is used, which tries all tags again

 except that this time each has -case appended to its name for

 lookup of styles. Hence this time the value for the matcher

 style from the second call to zstyle in the example is used to

 make completion case-insensitive.

 It is possible to use the -e option of the zstyle builtin com?

 mand to specify conditions for the use of particular tags. For

 example:

 zstyle -e '*:-command-:*' tag-order ' Page 60/122

 if [[-n $PREFIX$SUFFIX]]; then

 reply=()

 else

 reply=(-)

 fi'

 Completion in command position will be attempted only if the

 string typed so far is not empty. This is tested using the PRE?

 FIX special parameter; see zshcompwid for a description of pa?

 rameters which are special inside completion widgets. Setting

 reply to an empty array provides the default behaviour of trying

 all tags at once; setting it to an array containing only a hy?

 phen disables the use of all tags and hence of all completions.

 If no tag-order style has been defined for a context, the

 strings `(|*-)argument-* (|*-)option-* values' and `options'

 plus all tags offered by the completion function will be used to

 provide a sensible default behavior that causes arguments

 (whether normal command arguments or arguments of options) to be

 completed before option names for most commands.

 urls This is used together with the urls tag by functions completing

 URLs.

 If the value consists of more than one string, or if the only

 string does not name a file or directory, the strings are used

 as the URLs to complete.

 If the value contains only one string which is the name of a

 normal file the URLs are taken from that file (where the URLs

 may be separated by white space or newlines).

 Finally, if the only string in the value names a directory, the

 directory hierarchy rooted at this directory gives the comple?

 tions. The top level directory should be the file access

 method, such as `http', `ftp', `bookmark' and so on. In many

 cases the next level of directories will be a filename. The di?

 rectory hierarchy can descend as deep as necessary.

 For example, Page 61/122

 zstyle ':completion:*' urls ~/.urls

 mkdir -p ~/.urls/ftp/ftp.zsh.org/pub

 allows completion of all the components of the URL

 ftp://ftp.zsh.org/pub after suitable commands such as `netscape'

 or `lynx'. Note, however, that access methods and files are

 completed separately, so if the hosts style is set hosts can be

 completed without reference to the urls style.

 See the description in the function _urls itself for more infor?

 mation (e.g. `more $^fpath/_urls(N)').

 use-cache

 If this is set, the completion caching layer is activated for

 any completions which use it (via the _store_cache, _re?

 trieve_cache, and _cache_invalid functions). The directory con?

 taining the cache files can be changed with the cache-path

 style.

 use-compctl

 If this style is set to a string not equal to false, 0, no, and

 off, the completion system may use any completion specifications

 defined with the compctl builtin command. If the style is un?

 set, this is done only if the zsh/compctl module is loaded. The

 string may also contain the substring `first' to use completions

 defined with `compctl -T', and the substring `default' to use

 the completion defined with `compctl -D'.

 Note that this is only intended to smooth the transition from

 compctl to the new completion system and may disappear in the

 future.

 Note also that the definitions from compctl will only be used if

 there is no specific completion function for the command in

 question. For example, if there is a function _foo to complete

 arguments to the command foo, compctl will never be invoked for

 foo. However, the compctl version will be tried if foo only

 uses default completion.

 use-ip By default, the function _hosts that completes host names strips Page 62/122

 IP addresses from entries read from host databases such as NIS

 and ssh files. If this style is `true', the corresponding IP

 addresses can be completed as well. This style is not use in

 any context where the hosts style is set; note also it must be

 set before the cache of host names is generated (typically the

 first completion attempt).

 users This may be set to a list of usernames to be completed. If it

 is not set all usernames will be completed. Note that if it is

 set only that list of users will be completed; this is because

 on some systems querying all users can take a prohibitive amount

 of time.

 users-hosts

 The values of this style should be of the form `user@host' or

 `user:host'. It is used for commands that need pairs of user-

 and hostnames. These commands will complete usernames from this

 style (only), and will restrict subsequent hostname completion

 to hosts paired with that user in one of the values of the

 style.

 It is possible to group values for sets of commands which allow

 a remote login, such as rlogin and ssh, by using the my-accounts

 tag. Similarly, values for sets of commands which usually refer

 to the accounts of other people, such as talk and finger, can be

 grouped by using the other-accounts tag. More ambivalent com?

 mands may use the accounts tag.

 users-hosts-ports

 Like users-hosts but used for commands like telnet and contain?

 ing strings of the form `user@host:port'.

 verbose

 If set, as it is by default, the completion listing is more ver?

 bose. In particular many commands show descriptions for options

 if this style is `true'.

 word This is used by the _list completer, which prevents the inser?

 tion of completions until a second completion attempt when the Page 63/122

 line has not changed. The normal way of finding out if the line

 has changed is to compare its entire contents between the two

 occasions. If this style is `true', the comparison is instead

 performed only on the current word. Hence if completion is per?

 formed on another word with the same contents, completion will

 not be delayed.

CONTROL FUNCTIONS

 The initialization script compinit redefines all the widgets which per?

 form completion to call the supplied widget function _main_complete.

 This function acts as a wrapper calling the so-called `completer' func?

 tions that generate matches. If _main_complete is called with argu?

 ments, these are taken as the names of completer functions to be called

 in the order given. If no arguments are given, the set of functions to

 try is taken from the completer style. For example, to use normal com?

 pletion and correction if that doesn't generate any matches:

 zstyle ':completion:*' completer _complete _correct

 after calling compinit. The default value for this style is `_complete

 _ignored', i.e. normally only ordinary completion is tried, first with

 the effect of the ignored-patterns style and then without it. The

 _main_complete function uses the return status of the completer func?

 tions to decide if other completers should be called. If the return

 status is zero, no other completers are tried and the _main_complete

 function returns.

 If the first argument to _main_complete is a single hyphen, the argu?

 ments will not be taken as names of completers. Instead, the second

 argument gives a name to use in the completer field of the context and

 the other arguments give a command name and arguments to call to gener?

 ate the matches.

 The following completer functions are contained in the distribution,

 although users may write their own. Note that in contexts the leading

 underscore is stripped, for example basic completion is performed in

 the context `:completion::complete:...'.

 _all_matches Page 64/122

 This completer can be used to add a string consisting of all

 other matches. As it influences later completers it must appear

 as the first completer in the list. The list of all matches is

 affected by the avoid-completer and old-matches styles described

 above.

 It may be useful to use the _generic function described below to

 bind _all_matches to its own keystroke, for example:

 zle -C all-matches complete-word _generic

 bindkey '^Xa' all-matches

 zstyle ':completion:all-matches:*' old-matches only

 zstyle ':completion:all-matches::::' completer _all_matches

 Note that this does not generate completions by itself: first

 use any of the standard ways of generating a list of comple?

 tions, then use ^Xa to show all matches. It is possible instead

 to add a standard completer to the list and request that the

 list of all matches should be directly inserted:

 zstyle ':completion:all-matches::::' completer \

 _all_matches _complete

 zstyle ':completion:all-matches:*' insert true

 In this case the old-matches style should not be set.

 _approximate

 This is similar to the basic _complete completer but allows the

 completions to undergo corrections. The maximum number of er?

 rors can be specified by the max-errors style; see the descrip?

 tion of approximate matching in zshexpn(1) for how errors are

 counted. Normally this completer will only be tried after the

 normal _complete completer:

 zstyle ':completion:*' completer _complete _approximate

 This will give correcting completion if and only if normal com?

 pletion yields no possible completions. When corrected comple?

 tions are found, the completer will normally start menu comple?

 tion allowing you to cycle through these strings.

 This completer uses the tags corrections and original when gen? Page 65/122

 erating the possible corrections and the original string. The

 format style for the former may contain the additional sequences

 `%e' and `%o' which will be replaced by the number of errors ac?

 cepted to generate the corrections and the original string, re?

 spectively.

 The completer progressively increases the number of errors al?

 lowed up to the limit by the max-errors style, hence if a com?

 pletion is found with one error, no completions with two errors

 will be shown, and so on. It modifies the completer name in the

 context to indicate the number of errors being tried: on the

 first try the completer field contains `approximate-1', on the

 second try `approximate-2', and so on.

 When _approximate is called from another function, the number of

 errors to accept may be passed with the -a option. The argument

 is in the same format as the max-errors style, all in one

 string.

 Note that this completer (and the _correct completer mentioned

 below) can be quite expensive to call, especially when a large

 number of errors are allowed. One way to avoid this is to set

 up the completer style using the -e option to zstyle so that

 some completers are only used when completion is attempted a

 second time on the same string, e.g.:

 zstyle -e ':completion:*' completer '

 if [[$_last_try != "$HISTNO$BUFFER$CURSOR"]]; then

 _last_try="$HISTNO$BUFFER$CURSOR"

 reply=(_complete _match _prefix)

 else

 reply=(_ignored _correct _approximate)

 fi'

 This uses the HISTNO parameter and the BUFFER and CURSOR special

 parameters that are available inside zle and completion widgets

 to find out if the command line hasn't changed since the last

 time completion was tried. Only then are the _ignored, _correct Page 66/122

 and _approximate completers called.

 _canonical_paths [-A var] [-N] [-MJV12nfX] tag descr [paths ...

]

 This completion function completes all paths given to it, and

 also tries to offer completions which point to the same file as

 one of the paths given (relative path when an absolute path is

 given, and vice versa; when ..'s are present in the word to be

 completed; and some paths got from symlinks).

 -A, if specified, takes the paths from the array variable speci?

 fied. Paths can also be specified on the command line as shown

 above. -N, if specified, prevents canonicalizing the paths

 given before using them for completion, in case they are already

 so. The options -M, -J, -V, -1, -2, -n, -F, -X are passed to

 compadd.

 See _description for a description of tag and descr.

 _cmdambivalent

 Completes the remaining positional arguments as an external com?

 mand. The external command and its arguments are completed as

 separate arguments (in a manner appropriate for completing

 /usr/bin/env) if there are two or more remaining positional ar?

 guments on the command line, and as a quoted command string (in

 the manner of system(...)) otherwise. See also _cmdstring and

 _precommand.

 This function takes no arguments.

 _cmdstring

 Completes an external command as a single argument, as for sys?

 tem(...).

 _complete

 This completer generates all possible completions in a con?

 text-sensitive manner, i.e. using the settings defined with the

 compdef function explained above and the current settings of all

 special parameters. This gives the normal completion behaviour.

 To complete arguments of commands, _complete uses the utility Page 67/122

 function _normal, which is in turn responsible for finding the

 particular function; it is described below. Various contexts of

 the form -context- are handled specifically. These are all men?

 tioned above as possible arguments to the #compdef tag.

 Before trying to find a function for a specific context, _com?

 plete checks if the parameter `compcontext' is set. Setting

 `compcontext' allows the usual completion dispatching to be

 overridden which is useful in places such as a function that

 uses vared for input. If it is set to an array, the elements are

 taken to be the possible matches which will be completed using

 the tag `values' and the description `value'. If it is set to an

 associative array, the keys are used as the possible completions

 and the values (if non-empty) are used as descriptions for the

 matches. If `compcontext' is set to a string containing colons,

 it should be of the form `tag:descr:action'. In this case the

 tag and descr give the tag and description to use and the action

 indicates what should be completed in one of the forms accepted

 by the _arguments utility function described below.

 Finally, if `compcontext' is set to a string without colons, the

 value is taken as the name of the context to use and the func?

 tion defined for that context will be called. For this purpose,

 there is a special context named -command-line- that completes

 whole command lines (commands and their arguments). This is not

 used by the completion system itself but is nonetheless handled

 when explicitly called.

 _correct

 Generate corrections, but not completions, for the current word;

 this is similar to _approximate but will not allow any number of

 extra characters at the cursor as that completer does. The ef?

 fect is similar to spell-checking. It is based on _approximate,

 but the completer field in the context name is correct.

 For example, with:

 zstyle ':completion:::::' completer \ Page 68/122

 _complete _correct _approximate

 zstyle ':completion:*:correct:::' max-errors 2 not-numeric

 zstyle ':completion:*:approximate:::' max-errors 3 numeric

 correction will accept up to two errors. If a numeric argument

 is given, correction will not be performed, but correcting com?

 pletion will be, and will accept as many errors as given by the

 numeric argument. Without a numeric argument, first correction

 and then correcting completion will be tried, with the first one

 accepting two errors and the second one accepting three errors.

 When _correct is called as a function, the number of errors to

 accept may be given following the -a option. The argument is in

 the same form a values to the accept style, all in one string.

 This completer function is intended to be used without the _ap?

 proximate completer or, as in the example, just before it. Us?

 ing it after the _approximate completer is useless since _ap?

 proximate will at least generate the corrected strings generated

 by the _correct completer -- and probably more.

 _expand

 This completer function does not really perform completion, but

 instead checks if the word on the command line is eligible for

 expansion and, if it is, gives detailed control over how this

 expansion is done. For this to happen, the completion system

 needs to be invoked with complete-word, not expand-or-complete

 (the default binding for TAB), as otherwise the string will be

 expanded by the shell's internal mechanism before the completion

 system is started. Note also this completer should be called

 before the _complete completer function.

 The tags used when generating expansions are all-expansions for

 the string containing all possible expansions, expansions when

 adding the possible expansions as single matches and original

 when adding the original string from the line. The order in

 which these strings are generated, if at all, can be controlled

 by the group-order and tag-order styles, as usual. Page 69/122

 The format string for all-expansions and for expansions may con?

 tain the sequence `%o' which will be replaced by the original

 string from the line.

 The kind of expansion to be tried is controlled by the substi?

 tute, glob and subst-globs-only styles.

 It is also possible to call _expand as a function, in which case

 the different modes may be selected with options: -s for substi?

 tute, -g for glob and -o for subst-globs-only.

 _expand_alias

 If the word the cursor is on is an alias, it is expanded and no

 other completers are called. The types of aliases which are to

 be expanded can be controlled with the styles regular, global

 and disabled.

 This function is also a bindable command, see the section `Bind?

 able Commands' below.

 _extensions

 If the cursor follows the string `*.', filename extensions are

 completed. The extensions are taken from files in current direc?

 tory or a directory specified at the beginning of the current

 word. For exact matches, completion continues to allow other

 completers such as _expand to expand the pattern. The standard

 add-space and prefix-hidden styles are observed.

 _external_pwds

 Completes current directories of other zsh processes belonging

 to the current user.

 This is intended to be used via _generic, bound to a custom key

 combination. Note that pattern matching is enabled so matching

 is performed similar to how it works with the _match completer.

 _history

 Complete words from the shell's command history. This com?

 pleter can be controlled by the remove-all-dups, and sort styles

 as for the _history_complete_word bindable command, see the sec?

 tion `Bindable Commands' below and the section `Completion Sys? Page 70/122

 tem Configuration' above.

 _ignored

 The ignored-patterns style can be set to a list of patterns

 which are compared against possible completions; matching ones

 are removed. With this completer those matches can be rein?

 stated, as if no ignored-patterns style were set. The completer

 actually generates its own list of matches; which completers are

 invoked is determined in the same way as for the _prefix com?

 pleter. The single-ignored style is also available as described

 above.

 _list This completer allows the insertion of matches to be delayed un?

 til completion is attempted a second time without the word on

 the line being changed. On the first attempt, only the list of

 matches will be shown. It is affected by the styles condition

 and word, see the section `Completion System Configuration'

 above.

 _match This completer is intended to be used after the _complete com?

 pleter. It behaves similarly but the string on the command line

 may be a pattern to match against trial completions. This gives

 the effect of the GLOB_COMPLETE option.

 Normally completion will be performed by taking the pattern from

 the line, inserting a `*' at the cursor position and comparing

 the resulting pattern with the possible completions generated.

 This can be modified with the match-original style described

 above.

 The generated matches will be offered in a menu completion un?

 less the insert-unambiguous style is set to `true'; see the de?

 scription above for other options for this style.

 Note that matcher specifications defined globally or used by the

 completion functions (the styles matcher-list and matcher) will

 not be used.

 _menu This completer was written as simple example function to show

 how menu completion can be enabled in shell code. However, it Page 71/122

 has the notable effect of disabling menu selection which can be

 useful with _generic based widgets. It should be used as the

 first completer in the list. Note that this is independent of

 the setting of the MENU_COMPLETE option and does not work with

 the other menu completion widgets such as reverse-menu-complete,

 or accept-and-menu-complete.

 _oldlist

 This completer controls how the standard completion widgets be?

 have when there is an existing list of completions which may

 have been generated by a special completion (i.e. a sepa?

 rately-bound completion command). It allows the ordinary com?

 pletion keys to continue to use the list of completions thus

 generated, instead of producing a new list of ordinary contex?

 tual completions. It should appear in the list of completers

 before any of the widgets which generate matches. It uses two

 styles: old-list and old-menu, see the section `Completion Sys?

 tem Configuration' above.

 _precommand

 Complete an external command in word-separated arguments, as for

 exec and /usr/bin/env.

 _prefix

 This completer can be used to try completion with the suffix

 (everything after the cursor) ignored. In other words, the suf?

 fix will not be considered to be part of the word to complete.

 The effect is similar to the expand-or-complete-prefix command.

 The completer style is used to decide which other completers are

 to be called to generate matches. If this style is unset, the

 list of completers set for the current context is used -- ex?

 cept, of course, the _prefix completer itself. Furthermore, if

 this completer appears more than once in the list of completers

 only those completers not already tried by the last invocation

 of _prefix will be called.

 For example, consider this global completer style: Page 72/122

 zstyle ':completion:*' completer \

 _complete _prefix _correct _prefix:foo

 Here, the _prefix completer tries normal completion but ignoring

 the suffix. If that doesn't generate any matches, and neither

 does the call to the _correct completer after it, _prefix will

 be called a second time and, now only trying correction with the

 suffix ignored. On the second invocation the completer part of

 the context appears as `foo'.

 To use _prefix as the last resort and try only normal completion

 when it is invoked:

 zstyle ':completion:*' completer _complete ... _prefix

 zstyle ':completion::prefix:*' completer _complete

 The add-space style is also respected. If it is set to `true'

 then _prefix will insert a space between the matches generated

 (if any) and the suffix.

 Note that this completer is only useful if the COMPLETE_IN_WORD

 option is set; otherwise, the cursor will be moved to the end of

 the current word before the completion code is called and hence

 there will be no suffix.

 _user_expand

 This completer behaves similarly to the _expand completer but

 instead performs expansions defined by users. The styles

 add-space and sort styles specific to the _expand completer are

 usable with _user_expand in addition to other styles handled

 more generally by the completion system. The tag all-expansions

 is also available.

 The expansion depends on the array style user-expand being de?

 fined for the current context; remember that the context for

 completers is less specific than that for contextual completion

 as the full context has not yet been determined. Elements of

 the array may have one of the following forms:

 $hash

 hash is the name of an associative array. Note this is Page 73/122

 not a full parameter expression, merely a $, suitably

 quoted to prevent immediate expansion, followed by the

 name of an associative array. If the trial expansion

 word matches a key in hash, the resulting expansion is

 the corresponding value.

 _func

 _func is the name of a shell function whose name must be?

 gin with _ but is not otherwise special to the completion

 system. The function is called with the trial word as an

 argument. If the word is to be expanded, the function

 should set the array reply to a list of expansions. Op?

 tionally, it can set REPLY to a word that will be used as

 a description for the set of expansions. The return sta?

 tus of the function is irrelevant.

BINDABLE COMMANDS

 In addition to the context-dependent completions provided, which are

 expected to work in an intuitively obvious way, there are a few widgets

 implementing special behaviour which can be bound separately to keys.

 The following is a list of these and their default bindings.

 _bash_completions

 This function is used by two widgets, _bash_complete-word and

 _bash_list-choices. It exists to provide compatibility with

 completion bindings in bash. The last character of the binding

 determines what is completed: `!', command names; `$', environ?

 ment variables; `@', host names; `/', file names; `~' user

 names. In bash, the binding preceded by `\e' gives completion,

 and preceded by `^X' lists options. As some of these bindings

 clash with standard zsh bindings, only `\e~' and `^X~' are bound

 by default. To add the rest, the following should be added to

 .zshrc after compinit has been run:

 for key in '!' '$' '@' '/' '~'; do

 bindkey "\e$key" _bash_complete-word

 bindkey "^X$key" _bash_list-choices Page 74/122

 done

 This includes the bindings for `~' in case they were already

 bound to something else; the completion code does not override

 user bindings.

 _correct_filename (^XC)

 Correct the filename path at the cursor position. Allows up to

 six errors in the name. Can also be called with an argument to

 correct a filename path, independently of zle; the correction is

 printed on standard output.

 _correct_word (^Xc)

 Performs correction of the current argument using the usual con?

 textual completions as possible choices. This stores the string

 `correct-word' in the function field of the context name and

 then calls the _correct completer.

 _expand_alias (^Xa)

 This function can be used as a completer and as a bindable com?

 mand. It expands the word the cursor is on if it is an alias.

 The types of alias expanded can be controlled with the styles

 regular, global and disabled.

 When used as a bindable command there is one additional feature

 that can be selected by setting the complete style to `true'.

 In this case, if the word is not the name of an alias, _ex?

 pand_alias tries to complete the word to a full alias name with?

 out expanding it. It leaves the cursor directly after the com?

 pleted word so that invoking _expand_alias once more will expand

 the now-complete alias name.

 _expand_word (^Xe)

 Performs expansion on the current word: equivalent to the stan?

 dard expand-word command, but using the _expand completer. Be?

 fore calling it, the function field of the context is set to

 `expand-word'.

 _generic

 This function is not defined as a widget and not bound by de? Page 75/122

 fault. However, it can be used to define a widget and will then

 store the name of the widget in the function field of the con?

 text and call the completion system. This allows custom comple?

 tion widgets with their own set of style settings to be defined

 easily. For example, to define a widget that performs normal

 completion and starts menu selection:

 zle -C foo complete-word _generic

 bindkey '...' foo

 zstyle ':completion:foo:*' menu yes select=1

 Note in particular that the completer style may be set for the

 context in order to change the set of functions used to generate

 possible matches. If _generic is called with arguments, those

 are passed through to _main_complete as the list of completers

 in place of those defined by the completer style.

 _history_complete_word (\e/)

 Complete words from the shell's command history. This uses the

 list, remove-all-dups, sort, and stop styles.

 _most_recent_file (^Xm)

 Complete the name of the most recently modified file matching

 the pattern on the command line (which may be blank). If given

 a numeric argument N, complete the Nth most recently modified

 file. Note the completion, if any, is always unique.

 _next_tags (^Xn)

 This command alters the set of matches used to that for the next

 tag, or set of tags, either as given by the tag-order style or

 as set by default; these matches would otherwise not be avail?

 able. Successive invocations of the command cycle through all

 possible sets of tags.

 _read_comp (^X^R)

 Prompt the user for a string, and use that to perform completion

 on the current word. There are two possibilities for the

 string. First, it can be a set of words beginning `_', for ex?

 ample `_files -/', in which case the function with any arguments Page 76/122

 will be called to generate the completions. Unambiguous parts

 of the function name will be completed automatically (normal

 completion is not available at this point) until a space is

 typed.

 Second, any other string will be passed as a set of arguments to

 compadd and should hence be an expression specifying what should

 be completed.

 A very restricted set of editing commands is available when

 reading the string: `DEL' and `^H' delete the last character;

 `^U' deletes the line, and `^C' and `^G' abort the function,

 while `RET' accepts the completion. Note the string is used

 verbatim as a command line, so arguments must be quoted in ac?

 cordance with standard shell rules.

 Once a string has been read, the next call to _read_comp will

 use the existing string instead of reading a new one. To force

 a new string to be read, call _read_comp with a numeric argu?

 ment.

 _complete_debug (^X?)

 This widget performs ordinary completion, but captures in a tem?

 porary file a trace of the shell commands executed by the com?

 pletion system. Each completion attempt gets its own file. A

 command to view each of these files is pushed onto the editor

 buffer stack.

 _complete_help (^Xh)

 This widget displays information about the context names, the

 tags, and the completion functions used when completing at the

 current cursor position. If given a numeric argument other than

 1 (as in `ESC-2 ^Xh'), then the styles used and the contexts for

 which they are used will be shown, too.

 Note that the information about styles may be incomplete; it de?

 pends on the information available from the completion functions

 called, which in turn is determined by the user's own styles and

 other settings. Page 77/122

 _complete_help_generic

 Unlike other commands listed here, this must be created as a

 normal ZLE widget rather than a completion widget (i.e. with zle

 -N). It is used for generating help with a widget bound to the

 _generic widget that is described above.

 If this widget is created using the name of the function, as it

 is by default, then when executed it will read a key sequence.

 This is expected to be bound to a call to a completion function

 that uses the _generic widget. That widget will be executed,

 and information provided in the same format that the _com?

 plete_help widget displays for contextual completion.

 If the widget's name contains debug, for example if it is cre?

 ated as `zle -N _complete_debug_generic _complete_help_generic',

 it will read and execute the keystring for a generic widget as

 before, but then generate debugging information as done by _com?

 plete_debug for contextual completion.

 If the widget's name contains noread, it will not read a

 keystring but instead arrange that the next use of a generic

 widget run in the same shell will have the effect as described

 above.

 The widget works by setting the shell parameter

 ZSH_TRACE_GENERIC_WIDGET which is read by _generic. Unsetting

 the parameter cancels any pending effect of the noread form.

 For example, after executing the following:

 zle -N _complete_debug_generic _complete_help_generic

 bindkey '^x:' _complete_debug_generic

 typing `C-x :' followed by the key sequence for a generic widget

 will cause trace output for that widget to be saved to a file.

 _complete_tag (^Xt)

 This widget completes symbol tags created by the etags or ctags

 programmes (note there is no connection with the completion sys?

 tem's tags) stored in a file TAGS, in the format used by etags,

 or tags, in the format created by ctags. It will look back up Page 78/122

 the path hierarchy for the first occurrence of either file; if

 both exist, the file TAGS is preferred. You can specify the

 full path to a TAGS or tags file by setting the parameter $TAGS?

 FILE or $tagsfile respectively. The corresponding completion

 tags used are etags and vtags, after emacs and vi respectively.

UTILITY FUNCTIONS

 Descriptions follow for utility functions that may be useful when writ?

 ing completion functions. If functions are installed in subdirecto?

 ries, most of these reside in the Base subdirectory. Like the example

 functions for commands in the distribution, the utility functions gen?

 erating matches all follow the convention of returning status zero if

 they generated completions and non-zero if no matching completions

 could be added.

 _absolute_command_paths

 This function completes external commands as absolute paths (un?

 like _command_names -e which completes their basenames). It

 takes no arguments.

 _all_labels [-x] [-12VJ] tag name descr [command arg ...]

 This is a convenient interface to the _next_label function be?

 low, implementing the loop shown in the _next_label example.

 The command and its arguments are called to generate the

 matches. The options stored in the parameter name will automat?

 ically be inserted into the args passed to the command. Nor?

 mally, they are put directly after the command, but if one of

 the args is a single hyphen, they are inserted directly before

 that. If the hyphen is the last argument, it will be removed

 from the argument list before the command is called. This al?

 lows _all_labels to be used in almost all cases where the

 matches can be generated by a single call to the compadd builtin

 command or by a call to one of the utility functions.

 For example:

 local expl

 ... Page 79/122

 if _requested foo; then

 ...

 _all_labels foo expl '...' compadd ... - $matches

 fi

 Will complete the strings from the matches parameter, using com?

 padd with additional options which will take precedence over

 those generated by _all_labels.

 _alternative [-O name] [-C name] spec ...

 This function is useful in simple cases where multiple tags are

 available. Essentially it implements a loop like the one de?

 scribed for the _tags function below.

 The tags to use and the action to perform if a tag is requested

 are described using the specs which are of the form: `tag:de?

 scr:action'. The tags are offered using _tags and if the tag is

 requested, the action is executed with the given description de?

 scr. The actions are those accepted by the _arguments function

 (described below), excluding the `->state' and `=...' forms.

 For example, the action may be a simple function call:

 _alternative \

 'users:user:_users' \

 'hosts:host:_hosts'

 offers usernames and hostnames as possible matches, generated by

 the _users and _hosts functions respectively.

 Like _arguments, this function uses _all_labels to execute the

 actions, which will loop over all sets of tags. Special han?

 dling is only required if there is an additional valid tag, for

 example inside a function called from _alternative.

 The option `-O name' is used in the same way as by the _argu?

 ments function. In other words, the elements of the name array

 will be passed to compadd when executing an action.

 Like _tags this function supports the -C option to give a dif?

 ferent name for the argument context field.

 _arguments [-nswWCRS] [-A pat] [-O name] [-M matchspec] Page 80/122

 [:] spec ...

 _arguments [opt ...] -- [-l] [-i pats] [-s pair]

 [helpspec ...]

 This function can be used to give a complete specification for

 completion for a command whose arguments follow standard UNIX

 option and argument conventions.

 Options Overview

 Options to _arguments itself must be in separate words, i.e. -s

 -w, not -sw. The options are followed by specs that describe

 options and arguments of the analyzed command. To avoid ambigu?

 ity, all options to _arguments itself may be separated from the

 spec forms by a single colon.

 The `--' form is used to intuit spec forms from the help output

 of the command being analyzed, and is described in detail below.

 The opts for the `--' form are otherwise the same options as the

 first form. Note that `-s' following `--' has a distinct mean?

 ing from `-s' preceding `--', and both may appear.

 The option switches -s, -S, -A, -w, and -W affect how _arguments

 parses the analyzed command line's options. These switches are

 useful for commands with standard argument parsing.

 The options of _arguments have the following meanings:

 -n With this option, _arguments sets the parameter NORMARG

 to the position of the first normal argument in the

 $words array, i.e. the position after the end of the op?

 tions. If that argument has not been reached, NORMARG is

 set to -1. The caller should declare `integer NORMARG'

 if the -n option is passed; otherwise the parameter is

 not used.

 -s Enable option stacking for single-letter options, whereby

 multiple single-letter options may be combined into a

 single word. For example, the two options `-x' and `-y'

 may be combined into a single word `-xy'. By default,

 every word corresponds to a single option name (`-xy' is Page 81/122

 a single option named `xy').

 Options beginning with a single hyphen or plus sign are

 eligible for stacking; words beginning with two hyphens

 are not.

 Note that -s after -- has a different meaning, which is

 documented in the segment entitled `Deriving spec forms

 from the help output'.

 -w In combination with -s, allow option stacking even if one

 or more of the options take arguments. For example, if

 -x takes an argument, with no -s, `-xy' is considered as

 a single (unhandled) option; with -s, -xy is an option

 with the argument `y'; with both -s and -w, -xy is the

 option -x and the option -y with arguments to -x (and to

 -y, if it takes arguments) still to come in subsequent

 words.

 -W This option takes -w a stage further: it is possible to

 complete single-letter options even after an argument

 that occurs in the same word. However, it depends on the

 action performed whether options will really be completed

 at this point. For more control, use a utility function

 like _guard as part of the action.

 -C Modify the curcontext parameter for an action of the form

 `->state'. This is discussed in detail below.

 -R Return status 300 instead of zero when a $state is to be

 handled, in the `->string' syntax.

 -S Do not complete options after a `--' appearing on the

 line, and ignore the `--'. For example, with -S, in the

 line

 foobar -x -- -y

 the `-x' is considered an option, the `-y' is considered

 an argument, and the `--' is considered to be neither.

 -A pat Do not complete options after the first non-option argu?

 ment on the line. pat is a pattern matching all strings Page 82/122

 which are not to be taken as arguments. For example, to

 make _arguments stop completing options after the first

 normal argument, but ignoring all strings starting with a

 hyphen even if they are not described by one of the opt?

 specs, the form is `-A "-*"'.

 -O name

 Pass the elements of the array name as arguments to func?

 tions called to execute actions. This is discussed in

 detail below.

 -M matchspec

 Use the match specification matchspec for completing op?

 tion names and values. The default matchspec allows par?

 tial word completion after `_' and `-', such as complet?

 ing `-f-b' to `-foo-bar'. The default matchspec is:

 r:|[_-]=* r:|=*

 specs: overview

 Each of the following forms is a spec describing individual sets

 of options or arguments on the command line being analyzed.

 n:message:action

 n::message:action

 This describes the n'th normal argument. The message

 will be printed above the matches generated and the ac?

 tion indicates what can be completed in this position

 (see below). If there are two colons before the message

 the argument is optional. If the message contains only

 white space, nothing will be printed above the matches

 unless the action adds an explanation string itself.

 :message:action

 ::message:action

 Similar, but describes the next argument, whatever number

 that happens to be. If all arguments are specified in

 this form in the correct order the numbers are unneces?

 sary. Page 83/122

 *:message:action

 *::message:action

 *:::message:action

 This describes how arguments (usually non-option argu?

 ments, those not beginning with - or +) are to be com?

 pleted when neither of the first two forms was provided.

 Any number of arguments can be completed in this fashion.

 With two colons before the message, the words special ar?

 ray and the CURRENT special parameter are modified to re?

 fer only to the normal arguments when the action is exe?

 cuted or evaluated. With three colons before the message

 they are modified to refer only to the normal arguments

 covered by this description.

 optspec

 optspec:...

 This describes an option. The colon indicates handling

 for one or more arguments to the option; if it is not

 present, the option is assumed to take no arguments.

 The following forms are available for the initial opt?

 spec, whether or not the option has arguments.

 *optspec

 Here optspec is one of the remaining forms below.

 This indicates the following optspec may be re?

 peated. Otherwise if the corresponding option is

 already present on the command line to the left of

 the cursor it will not be offered again.

 -optname

 +optname

 In the simplest form the optspec is just the op?

 tion name beginning with a minus or a plus sign,

 such as `-foo'. The first argument for the option

 (if any) must follow as a separate word directly

 after the option. Page 84/122

 Either of `-+optname' and `+-optname' can be used

 to specify that -optname and +optname are both

 valid.

 In all the remaining forms, the leading `-' may be

 replaced by or paired with `+' in this way.

 -optname-

 The first argument of the option must come di?

 rectly after the option name in the same word.

 For example, `-foo-:...' specifies that the com?

 pleted option and argument will look like

 `-fooarg'.

 -optname+

 The first argument may appear immediately after

 optname in the same word, or may appear as a sepa?

 rate word after the option. For example,

 `-foo+:...' specifies that the completed option

 and argument will look like either `-fooarg' or

 `-foo arg'.

 -optname=

 The argument may appear as the next word, or in

 same word as the option name provided that it is

 separated from it by an equals sign, for example

 `-foo=arg' or `-foo arg'.

 -optname=-

 The argument to the option must appear after an

 equals sign in the same word, and may not be given

 in the next argument.

 optspec[explanation]

 An explanation string may be appended to any of

 the preceding forms of optspec by enclosing it in

 brackets, as in `-q[query operation]'.

 The verbose style is used to decide whether the

 explanation strings are displayed with the option Page 85/122

 in a completion listing.

 If no bracketed explanation string is given but

 the auto-description style is set and only one ar?

 gument is described for this optspec, the value of

 the style is displayed, with any appearance of the

 sequence `%d' in it replaced by the message of the

 first optarg that follows the optspec; see below.

 It is possible for options with a literal `+' or `=' to

 appear, but that character must be quoted, for example

 `-\+'.

 Each optarg following an optspec must take one of the

 following forms:

 :message:action

 ::message:action

 An argument to the option; message and action are

 treated as for ordinary arguments. In the first

 form, the argument is mandatory, and in the second

 form it is optional.

 This group may be repeated for options which take

 multiple arguments. In other words, :message1:ac?

 tion1:message2:action2 specifies that the option

 takes two arguments.

 :*pattern:message:action

 :*pattern::message:action

 :*pattern:::message:action

 This describes multiple arguments. Only the last

 optarg for an option taking multiple arguments may

 be given in this form. If the pattern is empty

 (i.e. :*:), all the remaining words on the line

 are to be completed as described by the action;

 otherwise, all the words up to and including a

 word matching the pattern are to be completed us?

 ing the action. Page 86/122

 Multiple colons are treated as for the `*:...'

 forms for ordinary arguments: when the message is

 preceded by two colons, the words special array

 and the CURRENT special parameter are modified

 during the execution or evaluation of the action

 to refer only to the words after the option. When

 preceded by three colons, they are modified to re?

 fer only to the words covered by this description.

 Any literal colon in an optname, message, or action must be pre?

 ceded by a backslash, `\:'.

 Each of the forms above may be preceded by a list in parentheses

 of option names and argument numbers. If the given option is on

 the command line, the options and arguments indicated in paren?

 theses will not be offered. For example, `(-two -three

 1)-one:...' completes the option `-one'; if this appears on the

 command line, the options -two and -three and the first ordinary

 argument will not be completed after it. `(-foo):...' specifies

 an ordinary argument completion; -foo will not be completed if

 that argument is already present.

 Other items may appear in the list of excluded options to indi?

 cate various other items that should not be applied when the

 current specification is matched: a single star (*) for the rest

 arguments (i.e. a specification of the form `*:...'); a colon

 (:) for all normal (non-option-) arguments; and a hyphen (-) for

 all options. For example, if `(*)' appears before an option and

 the option appears on the command line, the list of remaining

 arguments (those shown in the above table beginning with `*:')

 will not be completed.

 To aid in reuse of specifications, it is possible to precede any

 of the forms above with `!'; then the form will no longer be

 completed, although if the option or argument appears on the

 command line they will be skipped as normal. The main use for

 this is when the arguments are given by an array, and _arguments Page 87/122

 is called repeatedly for more specific contexts: on the first

 call `_arguments $global_options' is used, and on subsequent

 calls `_arguments !$^global_options'.

 specs: actions

 In each of the forms above the action determines how completions

 should be generated. Except for the `->string' form below, the

 action will be executed by calling the _all_labels function to

 process all tag labels. No special handling of tags is needed

 unless a function call introduces a new one.

 The functions called to execute actions will be called with the

 elements of the array named by the `-O name' option as argu?

 ments. This can be used, for example, to pass the same set of

 options for the compadd builtin to all actions.

 The forms for action are as follows.

 (single unquoted space)

 This is useful where an argument is required but it is

 not possible or desirable to generate matches for it.

 The message will be displayed but no completions listed.

 Note that even in this case the colon at the end of the

 message is needed; it may only be omitted when neither a

 message nor an action is given.

 (item1 item2 ...)

 One of a list of possible matches, for example:

 :foo:(foo bar baz)

 ((item1\:desc1 ...))

 Similar to the above, but with descriptions for each pos?

 sible match. Note the backslash before the colon. For

 example,

 :foo:((a\:bar b\:baz))

 The matches will be listed together with their descrip?

 tions if the description style is set with the values tag

 in the context.

 ->string Page 88/122

 In this form, _arguments processes the arguments and op?

 tions and then returns control to the calling function

 with parameters set to indicate the state of processing;

 the calling function then makes its own arrangements for

 generating completions. For example, functions that im?

 plement a state machine can use this type of action.

 Where _arguments encounters action in the `->string' for?

 mat, it will strip all leading and trailing whitespace

 from string and set the array state to the set of all

 strings for which an action is to be performed. The ele?

 ments of the array state_descr are assigned the corre?

 sponding message field from each optarg containing such

 an action.

 By default and in common with all other well behaved com?

 pletion functions, _arguments returns status zero if it

 was able to add matches and non-zero otherwise. However,

 if the -R option is given, _arguments will instead return

 a status of 300 to indicate that $state is to be handled.

 In addition to $state and $state_descr, _arguments also

 sets the global parameters `context', `line' and

 `opt_args' as described below, and does not reset any

 changes made to the special parameters such as PREFIX and

 words. This gives the calling function the choice of re?

 setting these parameters or propagating changes in them.

 A function calling _arguments with at least one action

 containing a `->string' must therefore declare appropri?

 ate local parameters:

 local context state state_descr line

 typeset -A opt_args

 to prevent _arguments from altering the global environ?

 ment.

 {eval-string}

 A string in braces is evaluated as shell code to generate Page 89/122

 matches. If the eval-string itself does not begin with

 an opening parenthesis or brace it is split into separate

 words before execution.

 = action

 If the action starts with `= ' (an equals sign followed

 by a space), _arguments will insert the contents of the

 argument field of the current context as the new first

 element in the words special array and increment the

 value of the CURRENT special parameter. This has the ef?

 fect of inserting a dummy word onto the completion com?

 mand line while not changing the point at which comple?

 tion is taking place.

 This is most useful with one of the specifiers that re?

 strict the words on the command line on which the action

 is to operate (the two- and three-colon forms above).

 One particular use is when an action itself causes _argu?

 ments on a restricted range; it is necessary to use this

 trick to insert an appropriate command name into the

 range for the second call to _arguments to be able to

 parse the line.

 word...

 word...

 This covers all forms other than those above. If the ac?

 tion starts with a space, the remaining list of words

 will be invoked unchanged.

 Otherwise it will be invoked with some extra strings

 placed after the first word; these are to be passed down

 as options to the compadd builtin. They ensure that the

 state specified by _arguments, in particular the descrip?

 tions of options and arguments, is correctly passed to

 the completion command. These additional arguments are

 taken from the array parameter `expl'; this will be set

 up before executing the action and hence may be referred Page 90/122

 to inside it, typically in an expansion of the form

 `$expl[@]' which preserves empty elements of the array.

 During the performance of the action the array `line' will be

 set to the normal arguments from the command line, i.e. the

 words from the command line after the command name excluding all

 options and their arguments. Options are stored in the associa?

 tive array `opt_args' with option names as keys and their argu?

 ments as the values. For options that have more than one argu?

 ment these are given as one string, separated by colons. All

 colons and backslashes in the original arguments are preceded

 with backslashes.

 The parameter `context' is set when returning to the calling

 function to perform an action of the form `->string'. It is set

 to an array of elements corresponding to the elements of $state.

 Each element is a suitable name for the argument field of the

 context: either a string of the form `option-opt-n' for the n'th

 argument of the option -opt, or a string of the form `argu?

 ment-n' for the n'th argument. For `rest' arguments, that is

 those in the list at the end not handled by position, n is the

 string `rest'. For example, when completing the argument of the

 -o option, the name is `option-o-1', while for the second normal

 (non-option-) argument it is `argument-2'.

 Furthermore, during the evaluation of the action the context

 name in the curcontext parameter is altered to append the same

 string that is stored in the context parameter.

 The option -C tells _arguments to modify the curcontext parame?

 ter for an action of the form `->state'. This is the standard

 parameter used to keep track of the current context. Here it

 (and not the context array) should be made local to the calling

 function to avoid passing back the modified value and should be

 initialised to the current value at the start of the function:

 local curcontext="$curcontext"

 This is useful where it is not possible for multiple states to Page 91/122

 be valid together.

 Grouping Options

 Options can be grouped to simplify exclusion lists. A group is

 introduced with `+' followed by a name for the group in the sub?

 sequent word. Whole groups can then be referenced in an exclu?

 sion list or a group name can be used to disambiguate between

 two forms of the same option. For example:

 _arguments \

 '(group2--x)-a' \

 + group1 \

 -m \

 '(group2)-n' \

 + group2 \

 -x -y

 If the name of a group is specified in the form `(name)' then

 only one value from that group will ever be completed; more for?

 mally, all specifications are mutually exclusive to all other

 specifications in that group. This is useful for defining op?

 tions that are aliases for each other. For example:

 _arguments \

 -a -b \

 + '(operation)' \

 {-c,--compress}'[compress]' \

 {-d,--decompress}'[decompress]' \

 {-l,--list}'[list]'

 If an option in a group appears on the command line, it is

 stored in the associative array `opt_args' with 'group-option'

 as a key. In the example above, a key `operation--c' is used if

 the option `-c' is present on the command line.

 Specifying Multiple Sets of Arguments

 It is possible to specify multiple sets of options and arguments

 with the sets separated by single hyphens. This differs from

 groups in that sets are considered to be mutually exclusive of Page 92/122

 each other.

 Specifications before the first set and from any group are com?

 mon to all sets. For example:

 _arguments \

 -a \

 - set1 \

 -c \

 - set2 \

 -d \

 ':arg:(x2 y2)'

 This defines two sets. When the command line contains the op?

 tion `-c', the `-d' option and the argument will not be consid?

 ered possible completions. When it contains `-d' or an argu?

 ment, the option `-c' will not be considered. However, after

 `-a' both sets will still be considered valid.

 As for groups, the name of a set may appear in exclusion lists,

 either alone or preceding a normal option or argument specifica?

 tion.

 The completion code has to parse the command line separately for

 each set. This can be slow so sets should only be used when nec?

 essary. A useful alternative is often an option specification

 with rest-arguments (as in `-foo:*:...'); here the option -foo

 swallows up all remaining arguments as described by the optarg

 definitions.

 Deriving spec forms from the help output

 The option `--' allows _arguments to work out the names of long

 options that support the `--help' option which is standard in

 many GNU commands. The command word is called with the argument

 `--help' and the output examined for option names. Clearly, it

 can be dangerous to pass this to commands which may not support

 this option as the behaviour of the command is unspecified.

 In addition to options, `_arguments --' will try to deduce the

 types of arguments available for options when the form Page 93/122

 `--opt=val' is valid. It is also possible to provide hints by

 examining the help text of the command and adding helpspec of

 the form `pattern:message:action'; note that other _arguments

 spec forms are not used. The pattern is matched against the

 help text for an option, and if it matches the message and ac?

 tion are used as for other argument specifiers. The special

 case of `*:' means both message and action are empty, which has

 the effect of causing options having no description in the help

 output to be ordered in listings ahead of options that have a

 description.

 For example:

 _arguments -- '**:toggle:(yes no)' \

 '*=FILE*:file:_files' \

 '*=DIR*:directory:_files -/' \

 '*=PATH*:directory:_files -/'

 Here, `yes' and `no' will be completed as the argument of op?

 tions whose description ends in a star; file names will be com?

 pleted for options that contain the substring `=FILE' in the de?

 scription; and directories will be completed for options whose

 description contains `=DIR' or `=PATH'. The last three are in

 fact the default and so need not be given explicitly, although

 it is possible to override the use of these patterns. A typical

 help text which uses this feature is:

 -C, --directory=DIR change to directory DIR

 so that the above specifications will cause directories to be

 completed after `--directory', though not after `-C'.

 Note also that _arguments tries to find out automatically if the

 argument for an option is optional. This can be specified ex?

 plicitly by doubling the colon before the message.

 If the pattern ends in `(-)', this will be removed from the pat?

 tern and the action will be used only directly after the `=',

 not in the next word. This is the behaviour of a normal speci?

 fication defined with the form `=-'. Page 94/122

 By default, the command (with the option `--help') is run after

 resetting all the locale categories (except for LC_CTYPE) to

 `C'. If the localized help output is known to work, the option

 `-l' can be specified after the `_arguments --' so that the com?

 mand is run in the current locale.

 The `_arguments --' can be followed by the option `-i patterns'

 to give patterns for options which are not to be completed. The

 patterns can be given as the name of an array parameter or as a

 literal list in parentheses. For example,

 _arguments -- -i \

 "(--(en|dis)able-FEATURE*)"

 will cause completion to ignore the options `--enable-FEATURE'

 and `--disable-FEATURE' (this example is useful with GNU config?

 ure).

 The `_arguments --' form can also be followed by the option `-s

 pair' to describe option aliases. The pair consists of a list

 of alternating patterns and corresponding replacements, enclosed

 in parens and quoted so that it forms a single argument word in

 the _arguments call.

 For example, some configure-script help output describes options

 only as `--enable-foo', but the script also accepts the negated

 form `--disable-foo'. To allow completion of the second form:

 _arguments -- -s "((#s)--enable- --disable-)"

 Miscellaneous notes

 Finally, note that _arguments generally expects to be the pri?

 mary function handling any completion for which it is used. It

 may have side effects which change the treatment of any matches

 added by other functions called after it. To combine _arguments

 with other functions, those functions should be called either

 before _arguments, as an action within a spec, or in handlers

 for `->state' actions.

 Here is a more general example of the use of _arguments:

 _arguments '-l+:left border:' \ Page 95/122

 '-format:paper size:(letter A4)' \

 '*-copy:output file:_files::resolution:(300 600)' \

 ':postscript file:_files -g *.\(ps\|eps\)' \

 '*:page number:'

 This describes three options: `-l', `-format', and `-copy'. The

 first takes one argument described as `left border' for which no

 completion will be offered because of the empty action. Its ar?

 gument may come directly after the `-l' or it may be given as

 the next word on the line.

 The `-format' option takes one argument in the next word, de?

 scribed as `paper size' for which only the strings `letter' and

 `A4' will be completed.

 The `-copy' option may appear more than once on the command line

 and takes two arguments. The first is mandatory and will be

 completed as a filename. The second is optional (because of the

 second colon before the description `resolution') and will be

 completed from the strings `300' and `600'.

 The last two descriptions say what should be completed as argu?

 ments. The first describes the first argument as a `postscript

 file' and makes files ending in `ps' or `eps' be completed. The

 last description gives all other arguments the description `page

 numbers' but does not offer completions.

 _cache_invalid cache_identifier

 This function returns status zero if the completions cache cor?

 responding to the given cache identifier needs rebuilding. It

 determines this by looking up the cache-policy style for the

 current context. This should provide a function name which is

 run with the full path to the relevant cache file as the only

 argument.

 Example:

 _example_caching_policy () {

 # rebuild if cache is more than a week old

 local -a oldp Page 96/122

 oldp=("$1"(Nm+7))

 (($#oldp))

 }

 _call_function return name [arg ...]

 If a function name exists, it is called with the arguments args.

 The return argument gives the name of a parameter in which the

 return status from the function name should be stored; if return

 is empty or a single hyphen it is ignored.

 The return status of _call_function itself is zero if the func?

 tion name exists and was called and non-zero otherwise.

 _call_program [-l] [-p] tag string ...

 This function provides a mechanism for the user to override the

 use of an external command. It looks up the command style with

 the supplied tag. If the style is set, its value is used as the

 command to execute. The strings from the call to _call_program,

 or from the style if set, are concatenated with spaces between

 them and the resulting string is evaluated. The return status

 is the return status of the command called.

 By default, the command is run in an environment where all the

 locale categories (except for LC_CTYPE) are reset to `C' by

 calling the utility function _comp_locale (see below). If the

 option `-l' is given, the command is run with the current lo?

 cale.

 If the option `-p' is supplied it indicates that the command

 output is influenced by the permissions it is run with. If the

 gain-privileges style is set to true, _call_program will make

 use of commands such as sudo, if present on the command-line, to

 match the permissions to whatever the final command is likely to

 run under. When looking up the gain-privileges and command

 styles, the command component of the zstyle context will end

 with a slash (`/') followed by the command that would be used to

 gain privileges.

 _combination [-s pattern] tag style spec ... field opts ... Page 97/122

 This function is used to complete combinations of values, for

 example pairs of hostnames and usernames. The style argument

 gives the style which defines the pairs; it is looked up in a

 context with the tag specified.

 The style name consists of field names separated by hyphens, for

 example `users-hosts-ports'. For each field for a value is al?

 ready known, a spec of the form `field=pattern' is given. For

 example, if the command line so far specifies a user `pws', the

 argument `users=pws' should appear.

 The next argument with no equals sign is taken as the name of

 the field for which completions should be generated (presumably

 not one of the fields for which the value is known).

 The matches generated will be taken from the value of the style.

 These should contain the possible values for the combinations in

 the appropriate order (users, hosts, ports in the example

 above). The values for the different fields are separated by

 colons. This can be altered with the option -s to _combination

 which specifies a pattern. Typically this is a character class,

 as for example `-s "[:@]"' in the case of the users-hosts style.

 Each `field=pattern' specification restricts the completions

 which apply to elements of the style with appropriately matching

 fields.

 If no style with the given name is defined for the given tag, or

 if none of the strings in style's value match, but a function

 name of the required field preceded by an underscore is defined,

 that function will be called to generate the matches. For exam?

 ple, if there is no `users-hosts-ports' or no matching hostname

 when a host is required, the function `_hosts' will automati?

 cally be called.

 If the same name is used for more than one field, in both the

 `field=pattern' and the argument that gives the name of the

 field to be completed, the number of the field (starting with

 one) may be given after the fieldname, separated from it by a Page 98/122

 colon.

 All arguments after the required field name are passed to com?

 padd when generating matches from the style value, or to the

 functions for the fields if they are called.

 _command_names [-e | -]

 This function completes words that are valid at command posi?

 tion: names of aliases, builtins, hashed commands, functions,

 and so on. With the -e flag, only hashed commands are com?

 pleted. The - flag is ignored.

 _comp_locale

 This function resets all the locale categories other than

 LC_CTYPE to `C' so that the output from external commands can be

 easily analyzed by the completion system. LC_CTYPE retains the

 current value (taking LC_ALL and LANG into account), ensuring

 that non-ASCII characters in file names are still handled prop?

 erly.

 This function should normally be run only in a subshell, because

 the new locale is exported to the environment. Typical usage

 would be `$(_comp_locale; command ...)'.

 _completers [-p]

 This function completes names of completers.

 -p Include the leading underscore (`_') in the matches.

 _describe [-12JVx] [-oO | -t tag] descr name1 [name2] [opt ...]

 [-- name1 [name2] [opt ...] ...]

 This function associates completions with descriptions. Multi?

 ple groups separated by -- can be supplied, potentially with

 different completion options opts.

 The descr is taken as a string to display above the matches if

 the format style for the descriptions tag is set. This is fol?

 lowed by one or two names of arrays followed by options to pass

 to compadd. The array name1 contains the possible completions

 with their descriptions in the form `completion:description'.

 Any literal colons in completion must be quoted with a back? Page 99/122

 slash. If a name2 is given, it should have the same number of

 elements as name1; in this case the corresponding elements are

 added as possible completions instead of the completion strings

 from name1. The completion list will retain the descriptions

 from name1. Finally, a set of completion options can appear.

 If the option `-o' appears before the first argument, the

 matches added will be treated as names of command options (N.B.

 not shell options), typically following a `-', `--' or `+' on

 the command line. In this case _describe uses the prefix-hid?

 den, prefix-needed and verbose styles to find out if the strings

 should be added as completions and if the descriptions should be

 shown. Without the `-o' option, only the verbose style is used

 to decide how descriptions are shown. If `-O' is used instead

 of `-o', command options are completed as above but _describe

 will not handle the prefix-needed style.

 With the -t option a tag can be specified. The default is `val?

 ues' or, if the -o option is given, `options'.

 The options -1, -2, -J, -V, -x are passed to _next_label.

 If selected by the list-grouped style, strings with the same de?

 scription will appear together in the list.

 _describe uses the _all_labels function to generate the matches,

 so it does not need to appear inside a loop over tag labels.

 _description [-x] [-12VJ] tag name descr [spec ...]

 This function is not to be confused with the previous one; it is

 used as a helper function for creating options to compadd. It

 is buried inside many of the higher level completion functions

 and so often does not need to be called directly.

 The styles listed below are tested in the current context using

 the given tag. The resulting options for compadd are put into

 the array named name (this is traditionally `expl', but this

 convention is not enforced). The description for the corre?

 sponding set of matches is passed to the function in descr.

 The styles tested are: format, hidden, matcher, ignore-line, ig? Page 100/122

 nored-patterns, group-name and sort. The format style is first

 tested for the given tag and then for the descriptions tag if no

 value was found, while the remainder are only tested for the tag

 given as the first argument. The function also calls _setup

 which tests some more styles.

 The string returned by the format style (if any) will be modi?

 fied so that the sequence `%d' is replaced by the descr given as

 the third argument without any leading or trailing white space.

 If, after removing the white space, the descr is the empty

 string, the format style will not be used and the options put

 into the name array will not contain an explanation string to be

 displayed above the matches.

 If _description is called with more than three arguments, the

 additional specs should be of the form `char:str'. These supply

 escape sequence replacements for the format style: every appear?

 ance of `%char' will be replaced by string.

 If the -x option is given, the description will be passed to

 compadd using the -x option instead of the default -X. This

 means that the description will be displayed even if there are

 no corresponding matches.

 The options placed in the array name take account of the

 group-name style, so matches are placed in a separate group

 where necessary. The group normally has its elements sorted (by

 passing the option -J to compadd), but if an option starting

 with `-V', `-J', `-1', or `-2' is passed to _description, that

 option will be included in the array. Hence it is possible for

 the completion group to be unsorted by giving the option `-V',

 `-1V', or `-2V'.

 In most cases, the function will be used like this:

 local expl

 _description files expl file

 compadd "$expl[@]" - "$files[@]"

 Note the use of the parameter expl, the hyphen, and the list of Page 101/122

 matches. Almost all calls to compadd within the completion sys?

 tem use a similar format; this ensures that user-specified

 styles are correctly passed down to the builtins which implement

 the internals of completion.

 _dir_list [-s sep] [-S]

 Complete a list of directory names separated by colons (the same

 format as $PATH).

 -s sep Use sep as separator between items. sep defaults to a

 colon (`:').

 -S Add sep instead of slash (`/') as an autoremoveable suf?

 fix.

 _dispatch context string ...

 This sets the current context to context and looks for comple?

 tion functions to handle this context by hunting through the

 list of command names or special contexts (as described above

 for compdef) given as strings. The first completion function to

 be defined for one of the contexts in the list is used to gener?

 ate matches. Typically, the last string is -default- to cause

 the function for default completion to be used as a fallback.

 The function sets the parameter $service to the string being

 tried, and sets the context/command field (the fourth) of the

 $curcontext parameter to the context given as the first argu?

 ment.

 _email_addresses [-c] [-n plugin]

 Complete email addresses. Addresses are provided by plugins.

 -c Complete bare localhost@domain.tld addresses, without a

 name part or a comment. Without this option, RFC822

 `Firstname Lastname <address>' strings are completed.

 -n plugin

 Complete aliases from plugin.

 The following plugins are available by default: _email-ldap (see

 the filter style), _email-local (completes user@hostname Unix

 addresses), _email-mail (completes aliases from ~/.mailrc), Page 102/122

 _email-mush, _email-mutt, and _email-pine.

 Addresses from the _email-foo plugin are added under the tag

 `email-foo'.

 Writing plugins

 Plugins are written as separate functions with names starting

 with `_email-'. They are invoked with the -c option and compadd

 options. They should either do their own completion or set the

 $reply array to a list of `alias:address' elements and return

 300. New plugins will be picked up and run automatically.

 _files The function _files is a wrapper around _path_files. It supports

 all of the same functionality, with some enhancements -- no?

 tably, it respects the list-dirs-first style, and it allows

 users to override the behaviour of the -g and -/ options with

 the file-patterns style. _files should therefore be preferred

 over _path_files in most cases.

 This function accepts the full set of options allowed by

 _path_files, described below.

 _gnu_generic

 This function is a simple wrapper around the _arguments function

 described above. It can be used to determine automatically the

 long options understood by commands that produce a list when

 passed the option `--help'. It is intended to be used as a

 top-level completion function in its own right. For example, to

 enable option completion for the commands foo and bar, use

 compdef _gnu_generic foo bar

 after the call to compinit.

 The completion system as supplied is conservative in its use of

 this function, since it is important to be sure the command un?

 derstands the option `--help'.

 _guard [options] pattern descr

 This function displays descr if pattern matches the string to be

 completed. It is intended to be used in the action for the

 specifications passed to _arguments and similar functions. Page 103/122

 The return status is zero if the message was displayed and the

 word to complete is not empty, and non-zero otherwise.

 The pattern may be preceded by any of the options understood by

 compadd that are passed down from _description, namely -M, -J,

 -V, -1, -2, -n, -F and -X. All of these options will be ig?

 nored. This fits in conveniently with the argument-passing con?

 ventions of actions for _arguments.

 As an example, consider a command taking the options -n and

 -none, where -n must be followed by a numeric value in the same

 word. By using:

 _arguments '-n-: :_guard "[0-9]#" "numeric value"' '-none'

 _arguments can be made to both display the message `numeric

 value' and complete options after `-n<TAB>'. If the `-n' is al?

 ready followed by one or more digits (the pattern passed to

 _guard) only the message will be displayed; if the `-n' is fol?

 lowed by another character, only options are completed.

 _message [-r12] [-VJ group] descr

 _message -e [tag] descr

 The descr is used in the same way as the third argument to the

 _description function, except that the resulting string will al?

 ways be shown whether or not matches were generated. This is

 useful for displaying a help message in places where no comple?

 tions can be generated.

 The format style is examined with the messages tag to find a

 message; the usual tag, descriptions, is used only if the style

 is not set with the former.

 If the -r option is given, no style is used; the descr is taken

 literally as the string to display. This is most useful when

 the descr comes from a pre-processed argument list which already

 contains an expanded description. Note that this option does

 not disable the `%'-sequence parsing done by compadd.

 The -12VJ options and the group are passed to compadd and hence

 determine the group the message string is added to. Page 104/122

 The second -e form gives a description for completions with the

 tag tag to be shown even if there are no matches for that tag.

 This form is called by _arguments in the event that there is no

 action for an option specification. The tag can be omitted and

 if so the tag is taken from the parameter $curtag; this is main?

 tained by the completion system and so is usually correct. Note

 that if there are no matches at the time this function is

 called, compstate[insert] is cleared, so additional matches gen?

 erated later are not inserted on the command line.

 _multi_parts [-i] sep array

 The argument sep is a separator character. The array may be ei?

 ther the name of an array parameter or a literal array in the

 form `(foo bar)', a parenthesised list of words separated by

 whitespace. The possible completions are the strings from the

 array. However, each chunk delimited by sep will be completed

 separately. For example, the _tar function uses `_multi_parts /

 patharray' to complete partial file paths from the given array

 of complete file paths.

 The -i option causes _multi_parts to insert a unique match even

 if that requires multiple separators to be inserted. This is

 not usually the expected behaviour with filenames, but certain

 other types of completion, for example those with a fixed set of

 possibilities, may be more suited to this form.

 Like other utility functions, this function accepts the `-V',

 `-J', `-1', `-2', `-n', `-f', `-X', `-M', `-P', `-S', `-r',

 `-R', and `-q' options and passes them to the compadd builtin.

 _next_label [-x] [-12VJ] tag name descr [option ...]

 This function is used to implement the loop over different tag

 labels for a particular tag as described above for the tag-order

 style. On each call it checks to see if there are any more tag

 labels; if there is it returns status zero, otherwise non-zero.

 As this function requires a current tag to be set, it must al?

 ways follow a call to _tags or _requested. Page 105/122

 The -x12VJ options and the first three arguments are passed to

 the _description function. Where appropriate the tag will be

 replaced by a tag label in this call. Any description given in

 the tag-order style is preferred to the descr passed to

 _next_label.

 The options given after the descr are set in the parameter given

 by name, and hence are to be passed to compadd or whatever func?

 tion is called to add the matches.

 Here is a typical use of this function for the tag foo. The

 call to _requested determines if tag foo is required at all; the

 loop over _next_label handles any labels defined for the tag in

 the tag-order style.

 local expl ret=1

 ...

 if _requested foo; then

 ...

 while _next_label foo expl '...'; do

 compadd "$expl[@]" ... && ret=0

 done

 ...

 fi

 return ret

 _normal [-P | -p precommand]

 This is the standard function called to handle completion out?

 side any special -context-. It is called both to complete the

 command word and also the arguments for a command. In the sec?

 ond case, _normal looks for a special completion for that com?

 mand, and if there is none it uses the completion for the -de?

 fault- context.

 A second use is to reexamine the command line specified by the

 $words array and the $CURRENT parameter after those have been

 modified. For example, the function _precommand, which com?

 pletes after precommand specifiers such as nohup, removes the Page 106/122

 first word from the words array, decrements the CURRENT parame?

 ter, then calls `_normal -p $service'. The effect is that `no?

 hup cmd ...' is treated in the same way as `cmd ...'.

 -P Reset the list of precommands. This option should be used

 if completing a command line which allows internal com?

 mands (e.g. builtins and functions) regardless of prior

 precommands (e.g. `zsh -c').

 -p precommand

 Append precommand to the list of precommands. This option

 should be used in nearly all cases in which -P is not ap?

 plicable.

 If the command name matches one of the patterns given by one of

 the options -p or -P to compdef, the corresponding completion

 function is called and then the parameter _compskip is checked.

 If it is set completion is terminated at that point even if no

 matches have been found. This is the same effect as in the

 -first- context.

 _options

 This can be used to complete the names of shell options. It

 provides a matcher specification that ignores a leading `no',

 ignores underscores and allows upper-case letters to match their

 lower-case counterparts (for example, `glob', `noglob',

 `NO_GLOB' are all completed). Any arguments are propagated to

 the compadd builtin.

 _options_set and _options_unset

 These functions complete only set or unset options, with the

 same matching specification used in the _options function.

 Note that you need to uncomment a few lines in the _main_com?

 plete function for these functions to work properly. The lines

 in question are used to store the option settings in effect be?

 fore the completion widget locally sets the options it needs.

 Hence these functions are not generally used by the completion

 system. Page 107/122

 _parameters

 This is used to complete the names of shell parameters.

 The option `-g pattern' limits the completion to parameters

 whose type matches the pattern. The type of a parameter is that

 shown by `print ${(t)param}', hence judicious use of `*' in pat?

 tern is probably necessary.

 All other arguments are passed to the compadd builtin.

 _path_files

 This function is used throughout the completion system to com?

 plete filenames. It allows completion of partial paths. For

 example, the string `/u/i/s/sig' may be completed to `/usr/in?

 clude/sys/signal.h'.

 The options accepted by both _path_files and _files are:

 -f Complete all filenames. This is the default.

 -/ Specifies that only directories should be completed.

 -g pattern

 Specifies that only files matching the pattern should be

 completed.

 -W paths

 Specifies path prefixes that are to be prepended to the

 string from the command line to generate the filenames

 but that should not be inserted as completions nor shown

 in completion listings. Here, paths may be the name of

 an array parameter, a literal list of paths enclosed in

 parentheses or an absolute pathname.

 -F ignored-files

 This behaves as for the corresponding option to the com?

 padd builtin. It gives direct control over which file?

 names should be ignored. If the option is not present,

 the ignored-patterns style is used.

 Both _path_files and _files also accept the following options

 which are passed to compadd: `-J', `-V', `-1', `-2', `-n', `-X',

 `-M', `-P', `-S', `-q', `-r', and `-R'. Page 108/122

 Finally, the _path_files function uses the styles expand, am?

 biguous, special-dirs, list-suffixes and file-sort described

 above.

 _pick_variant [-b builtin-label] [-c command] [-r name]

 label=pattern ... label [arg ...]

 This function is used to resolve situations where a single com?

 mand name requires more than one type of handling, either be?

 cause it has more than one variant or because there is a name

 clash between two different commands.

 The command to run is taken from the first element of the array

 words unless this is overridden by the option -c. This command

 is run and its output is compared with a series of patterns.

 Arguments to be passed to the command can be specified at the

 end after all the other arguments. The patterns to try in order

 are given by the arguments label=pattern; if the output of `com?

 mand arg ...' contains pattern, then label is selected as the

 label for the command variant. If none of the patterns match,

 the final command label is selected and status 1 is returned.

 If the `-b builtin-label' is given, the command is tested to see

 if it is provided as a shell builtin, possibly autoloaded; if

 so, the label builtin-label is selected as the label for the

 variant.

 If the `-r name' is given, the label picked is stored in the pa?

 rameter named name.

 The results are also cached in the _cmd_variant associative ar?

 ray indexed by the name of the command run.

 _regex_arguments name spec ...

 This function generates a completion function name which matches

 the specifications specs, a set of regular expressions as de?

 scribed below. After running _regex_arguments, the function

 name should be called as a normal completion function. The pat?

 tern to be matched is given by the contents of the words array

 up to the current cursor position joined together with null Page 109/122

 characters; no quotation is applied.

 The arguments are grouped as sets of alternatives separated by

 `|', which are tried one after the other until one matches.

 Each alternative consists of a one or more specifications which

 are tried left to right, with each pattern matched being

 stripped in turn from the command line being tested, until all

 of the group succeeds or until one fails; in the latter case,

 the next alternative is tried. This structure can be repeated

 to arbitrary depth by using parentheses; matching proceeds from

 inside to outside.

 A special procedure is applied if no test succeeds but the re?

 maining command line string contains no null character (implying

 the remaining word is the one for which completions are to be

 generated). The completion target is restricted to the remain?

 ing word and any actions for the corresponding patterns are exe?

 cuted. In this case, nothing is stripped from the command line

 string. The order of evaluation of the actions can be deter?

 mined by the tag-order style; the various formats supported by

 _alternative can be used in action. The descr is used for set?

 ting up the array parameter expl.

 Specification arguments take one of following forms, in which

 metacharacters such as `(', `)', `#' and `|' should be quoted.

 /pattern/ [%lookahead%] [-guard] [:tag:descr:action]

 This is a single primitive component. The function tests

 whether the combined pattern `(#b)((#B)pattern)look?

 ahead*' matches the command line string. If so, `guard'

 is evaluated and its return status is examined to deter?

 mine if the test has succeeded. The pattern string `[]'

 is guaranteed never to match. The lookahead is not

 stripped from the command line before the next pattern is

 examined.

 The argument starting with : is used in the same manner

 as an argument to _alternative. Page 110/122

 A component is used as follows: pattern is tested to see

 if the component already exists on the command line. If

 it does, any following specifications are examined to

 find something to complete. If a component is reached

 but no such pattern exists yet on the command line, the

 string containing the action is used to generate matches

 to insert at that point.

 /pattern/+ [%lookahead%] [-guard] [:tag:descr:action]

 This is similar to `/pattern/ ...' but the left part of

 the command line string (i.e. the part already matched by

 previous patterns) is also considered part of the comple?

 tion target.

 /pattern/- [%lookahead%] [-guard] [:tag:descr:action]

 This is similar to `/pattern/ ...' but the actions of the

 current and previously matched patterns are ignored even

 if the following `pattern' matches the empty string.

 (spec)

 Parentheses may be used to groups specs; note each paren?

 thesis is a single argument to _regex_arguments.

 spec # This allows any number of repetitions of spec.

 spec spec

 The two specs are to be matched one after the other as

 described above.

 spec | spec

 Either of the two specs can be matched.

 The function _regex_words can be used as a helper function to

 generate matches for a set of alternative words possibly with

 their own arguments as a command line argument.

 Examples:

 _regex_arguments _tst /$'[^\0]#\0'/ \

 /$'[^\0]#\0'/ :'compadd aaa'

 This generates a function _tst that completes aaa as its only

 argument. The tag and description for the action have been Page 111/122

 omitted for brevity (this works but is not recommended in normal

 use). The first component matches the command word, which is

 arbitrary; the second matches any argument. As the argument is

 also arbitrary, any following component would not depend on aaa

 being present.

 _regex_arguments _tst /$'[^\0]#\0'/ \

 /$'aaa\0'/ :'compadd aaa'

 This is a more typical use; it is similar, but any following

 patterns would only match if aaa was present as the first argu?

 ment.

 _regex_arguments _tst /$'[^\0]#\0'/ \(\

 /$'aaa\0'/ :'compadd aaa' \

 /$'bbb\0'/ :'compadd bbb' \) \#

 In this example, an indefinite number of command arguments may

 be completed. Odd arguments are completed as aaa and even argu?

 ments as bbb. Completion fails unless the set of aaa and bbb

 arguments before the current one is matched correctly.

 _regex_arguments _tst /$'[^\0]#\0'/ \

 \(/$'aaa\0'/ :'compadd aaa' \| \

 /$'bbb\0'/ :'compadd bbb' \) \#

 This is similar, but either aaa or bbb may be completed for any

 argument. In this case _regex_words could be used to generate a

 suitable expression for the arguments.

 _regex_words tag description spec ...

 This function can be used to generate arguments for the

 _regex_arguments command which may be inserted at any point

 where a set of rules is expected. The tag and description give

 a standard tag and description pertaining to the current con?

 text. Each spec contains two or three arguments separated by a

 colon: note that there is no leading colon in this case.

 Each spec gives one of a set of words that may be completed at

 this point, together with arguments. It is thus roughly equiva?

 lent to the _arguments function when used in normal (non-regex) Page 112/122

 completion.

 The part of the spec before the first colon is the word to be

 completed. This may contain a *; the entire word, before and

 after the * is completed, but only the text before the * is re?

 quired for the context to be matched, so that further arguments

 may be completed after the abbreviated form.

 The second part of spec is a description for the word being com?

 pleted.

 The optional third part of the spec describes how words follow?

 ing the one being completed are themselves to be completed. It

 will be evaluated in order to avoid problems with quoting. This

 means that typically it contains a reference to an array con?

 taining previously generated regex arguments.

 The option -t term specifies a terminator for the word instead

 of the usual space. This is handled as an auto-removable suffix

 in the manner of the option -s sep to _values.

 The result of the processing by _regex_words is placed in the

 array reply, which should be made local to the calling function.

 If the set of words and arguments may be matched repeatedly, a #

 should be appended to the generated array at that point.

 For example:

 local -a reply

 _regex_words mydb-commands 'mydb commands' \

 'add:add an entry to mydb:$mydb_add_cmds' \

 'show:show entries in mydb'

 _regex_arguments _mydb "$reply[@]"

 _mydb "$@"

 This shows a completion function for a command mydb which takes

 two command arguments, add and show. show takes no arguments,

 while the arguments for add have already been prepared in an ar?

 ray mydb_add_cmds, quite possibly by a previous call to

 _regex_words.

 _requested [-x] [-12VJ] tag [name descr [command [arg ...]] Page 113/122

 This function is called to decide whether a tag already regis?

 tered by a call to _tags (see below) has been requested by the

 user and hence completion should be performed for it. It re?

 turns status zero if the tag is requested and non-zero other?

 wise. The function is typically used as part of a loop over

 different tags as follows:

 _tags foo bar baz

 while _tags; do

 if _requested foo; then

 ... # perform completion for foo

 fi

 ... # test the tags bar and baz in the same way

 ... # exit loop if matches were generated

 done

 Note that the test for whether matches were generated is not

 performed until the end of the _tags loop. This is so that the

 user can set the tag-order style to specify a set of tags to be

 completed at the same time.

 If name and descr are given, _requested calls the _description

 function with these arguments together with the options passed

 to _requested.

 If command is given, the _all_labels function will be called im?

 mediately with the same arguments. In simple cases this makes

 it possible to perform the test for the tag and the matching in

 one go. For example:

 local expl ret=1

 _tags foo bar baz

 while _tags; do

 _requested foo expl 'description' \

 compadd foobar foobaz && ret=0

 ...

 ((ret)) || break

 done Page 114/122

 If the command is not compadd, it must nevertheless be prepared

 to handle the same options.

 _retrieve_cache cache_identifier

 This function retrieves completion information from the file

 given by cache_identifier, stored in a directory specified by

 the cache-path style which defaults to ~/.zcompcache. The re?

 turn status is zero if retrieval was successful. It will only

 attempt retrieval if the use-cache style is set, so you can call

 this function without worrying about whether the user wanted to

 use the caching layer.

 See _store_cache below for more details.

 _sep_parts

 This function is passed alternating arrays and separators as ar?

 guments. The arrays specify completions for parts of strings to

 be separated by the separators. The arrays may be the names of

 array parameters or a quoted list of words in parentheses. For

 example, with the array `hosts=(ftp news)' the call `_sep_parts

 '(foo bar)' @ hosts' will complete the string `f' to `foo' and

 the string `b@n' to `bar@news'.

 This function accepts the compadd options `-V', `-J', `-1',

 `-2', `-n', `-X', `-M', `-P', `-S', `-r', `-R', and `-q' and

 passes them on to the compadd builtin used to add the matches.

 _sequence [-s sep] [-n max] [-d] function [-] ...

 This function is a wrapper to other functions for completing

 items in a separated list. The same function is used to complete

 each item in the list. The separator is specified with the -s

 option. If -s is omitted it will use `,'. Duplicate values are

 not matched unless -d is specified. If there is a fixed or maxi?

 mum number of items in the list, this can be specified with the

 -n option.

 Common compadd options are passed on to the function. It is pos?

 sible to use compadd directly with _sequence, though _values may

 be more appropriate in this situation. Page 115/122

 _setup tag [group]

 This function sets up the special parameters used by the comple?

 tion system appropriately for the tag given as the first argu?

 ment. It uses the styles list-colors, list-packed,

 list-rows-first, last-prompt, accept-exact, menu and force-list.

 The optional group supplies the name of the group in which the

 matches will be placed. If it is not given, the tag is used as

 the group name.

 This function is called automatically from _description and

 hence is not normally called explicitly.

 _store_cache cache_identifier param ...

 This function, together with _retrieve_cache and _cache_invalid,

 implements a caching layer which can be used in any completion

 function. Data obtained by costly operations are stored in pa?

 rameters; this function then dumps the values of those parame?

 ters to a file. The data can then be retrieved quickly from

 that file via _retrieve_cache, even in different instances of

 the shell.

 The cache_identifier specifies the file which the data should be

 dumped to. The file is stored in a directory specified by the

 cache-path style which defaults to ~/.zcompcache. The remaining

 params arguments are the parameters to dump to the file.

 The return status is zero if storage was successful. The func?

 tion will only attempt storage if the use-cache style is set, so

 you can call this function without worrying about whether the

 user wanted to use the caching layer.

 The completion function may avoid calling _retrieve_cache when

 it already has the completion data available as parameters.

 However, in that case it should call _cache_invalid to check

 whether the data in the parameters and in the cache are still

 valid.

 See the _perl_modules completion function for a simple example

 of the usage of the caching layer. Page 116/122

 _tags [[-C name] tag ...]

 If called with arguments, these are taken to be the names of

 tags valid for completions in the current context. These tags

 are stored internally and sorted by using the tag-order style.

 Next, _tags is called repeatedly without arguments from the same

 completion function. This successively selects the first, sec?

 ond, etc. set of tags requested by the user. The return status

 is zero if at least one of the tags is requested and non-zero

 otherwise. To test if a particular tag is to be tried, the _re?

 quested function should be called (see above).

 If `-C name' is given, name is temporarily stored in the argu?

 ment field (the fifth) of the context in the curcontext parame?

 ter during the call to _tags; the field is restored on exit.

 This allows _tags to use a more specific context without having

 to change and reset the curcontext parameter (which has the same

 effect).

 _tilde_files

 Like _files, but resolve leading tildes according to the rules

 of filename expansion, so the suggested completions don't start

 with a `~' even if the filename on the command-line does.

 _values [-O name] [-s sep] [-S sep] [-wC] desc spec ...

 This is used to complete arbitrary keywords (values) and their

 arguments, or lists of such combinations.

 If the first argument is the option `-O name', it will be used

 in the same way as by the _arguments function. In other words,

 the elements of the name array will be passed to compadd when

 executing an action.

 If the first argument (or the first argument after `-O name') is

 `-s', the next argument is used as the character that separates

 multiple values. This character is automatically added after

 each value in an auto-removable fashion (see below); all values

 completed by `_values -s' appear in the same word on the command

 line, unlike completion using _arguments. If this option is not Page 117/122

 present, only a single value will be completed per word.

 Normally, _values will only use the current word to determine

 which values are already present on the command line and hence

 are not to be completed again. If the -w option is given, other

 arguments are examined as well.

 The first non-option argument, desc, is used as a string to

 print as a description before listing the values.

 All other arguments describe the possible values and their argu?

 ments in the same format used for the description of options by

 the _arguments function (see above). The only differences are

 that no minus or plus sign is required at the beginning, values

 can have only one argument, and the forms of action beginning

 with an equal sign are not supported.

 The character separating a value from its argument can be set

 using the option -S (like -s, followed by the character to use

 as the separator in the next argument). By default the equals

 sign will be used as the separator between values and arguments.

 Example:

 _values -s , 'description' \

 '*foo[bar]' \

 '(two)*one[number]:first count:' \

 'two[another number]::second count:(1 2 3)'

 This describes three possible values: `foo', `one', and `two'.

 The first is described as `bar', takes no argument and may ap?

 pear more than once. The second is described as `number', may

 appear more than once, and takes one mandatory argument de?

 scribed as `first count'; no action is specified, so it will not

 be completed. The `(two)' at the beginning says that if the

 value `one' is on the line, the value `two' will no longer be

 considered a possible completion. Finally, the last value

 (`two') is described as `another number' and takes an optional

 argument described as `second count' for which the completions

 (to appear after an `=') are `1', `2', and `3'. The _values Page 118/122

 function will complete lists of these values separated by com?

 mas.

 Like _arguments, this function temporarily adds another context

 name component to the arguments element (the fifth) of the cur?

 rent context while executing the action. Here this name is just

 the name of the value for which the argument is completed.

 The style verbose is used to decide if the descriptions for the

 values (but not those for the arguments) should be printed.

 The associative array val_args is used to report values and

 their arguments; this works similarly to the opt_args associa?

 tive array used by _arguments. Hence the function calling _val?

 ues should declare the local parameters state, state_descr,

 line, context and val_args:

 local context state state_descr line

 typeset -A val_args

 when using an action of the form `->string'. With this function

 the context parameter will be set to the name of the value whose

 argument is to be completed. Note that for _values, the state

 and state_descr are scalars rather than arrays. Only a single

 matching state is returned.

 Note also that _values normally adds the character used as the

 separator between values as an auto-removable suffix (similar to

 a `/' after a directory). However, this is not possible for a

 `->string' action as the matches for the argument are generated

 by the calling function. To get the usual behaviour, the call?

 ing function can add the separator x as a suffix by passing the

 options `-qS x' either directly or indirectly to compadd.

 The option -C is treated in the same way as it is by _arguments.

 In that case the parameter curcontext should be made local in?

 stead of context (as described above).

 _wanted [-x] [-C name] [-12VJ] tag name descr command [arg ...]

 In many contexts, completion can only generate one particular

 set of matches, usually corresponding to a single tag. However, Page 119/122

 it is still necessary to decide whether the user requires

 matches of this type. This function is useful in such a case.

 The arguments to _wanted are the same as those to _requested,

 i.e. arguments to be passed to _description. However, in this

 case the command is not optional; all the processing of tags,

 including the loop over both tags and tag labels and the genera?

 tion of matches, is carried out automatically by _wanted.

 Hence to offer only one tag and immediately add the correspond?

 ing matches with the given description:

 local expl

 _wanted tag expl 'description' \

 compadd matches...

 Note that, as for _requested, the command must be able to accept

 options to be passed down to compadd.

 Like _tags this function supports the -C option to give a dif?

 ferent name for the argument context field. The -x option has

 the same meaning as for _description.

 _widgets [-g pattern]

 This function completes names of zle widgets (see the section

 `Widgets' in zshzle(1)). The pattern, if present, is matched

 against values of the $widgets special parameter, documented in

 the section `The zsh/zleparameter Module' in zshmodules(1).

COMPLETION SYSTEM VARIABLES

 There are some standard variables, initialised by the _main_complete

 function and then used from other functions.

 The standard variables are:

 _comp_caller_options

 The completion system uses setopt to set a number of options.

 This allows functions to be written without concern for compati?

 bility with every possible combination of user options. However,

 sometimes completion needs to know what the user's option pref?

 erences are. These are saved in the _comp_caller_options asso?

 ciative array. Option names, spelled in lowercase without under? Page 120/122

 scores, are mapped to one or other of the strings `on' and

 `off'.

 _comp_priv_prefix

 Completion functions such as _sudo can set the

 _comp_priv_prefix array to a command prefix that may then

 be used by _call_program to match the privileges when

 calling programs to generate matches.

 Two more features are offered by the _main_complete function.

 The arrays compprefuncs and comppostfuncs may contain names of

 functions that are to be called immediately before or after com?

 pletion has been tried. A function will only be called once un?

 less it explicitly reinserts itself into the array.

COMPLETION DIRECTORIES

 In the source distribution, the files are contained in various subdi?

 rectories of the Completion directory. They may have been installed in

 the same structure, or into one single function directory. The follow?

 ing is a description of the files found in the original directory

 structure. If you wish to alter an installed file, you will need to

 copy it to some directory which appears earlier in your fpath than the

 standard directory where it appears.

 Base The core functions and special completion widgets automatically

 bound to keys. You will certainly need most of these, though

 will probably not need to alter them. Many of these are docu?

 mented above.

 Zsh Functions for completing arguments of shell builtin commands and

 utility functions for this. Some of these are also used by

 functions from the Unix directory.

 Unix Functions for completing arguments of external commands and

 suites of commands. They may need modifying for your system,

 although in many cases some attempt is made to decide which ver?

 sion of a command is present. For example, completion for the

 mount command tries to determine the system it is running on,

 while completion for many other utilities try to decide whether Page 121/122

 the GNU version of the command is in use, and hence whether the

 --help option is supported.

 X, AIX, BSD, ...

 Completion and utility function for commands available only on

 some systems. These are not arranged hierarchically, so, for

 example, both the Linux and Debian directories, as well as the X

 directory, may be useful on your system.

zsh 5.8 February 14, 2020 ZSHCOMPSYS(1)

Page 122/122

